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Abstract
Aberrant activity of the retrotransposable element long interspersed nuclear element-1 (LINE-1) has been hypothesized 
to contribute to cellular dysfunction in age-related disorders, including late-onset Alzheimer’s disease (LOAD). However, 
whether LINE-1 is differentially expressed in cell types of the LOAD brain, and whether these changes contribute to disease 
pathology is largely unknown. Here, we examined patterns of LINE-1 expression across neurons, astrocytes, oligodendro-
cytes, and microglia in human postmortem prefrontal cortex tissue from LOAD patients and cognitively normal, age-matched 
controls. We report elevated immunoreactivity of the open reading frame 1 protein (ORF1p) encoded by LINE-1 in microglia 
from LOAD patients and find that this immunoreactivity correlates positively with disease-associated microglial morphol-
ogy. In human iPSC-derived microglia (iMG), we found that CRISPR-mediated transcriptional activation of LINE-1 drives 
changes in microglial morphology and cytokine secretion and impairs the phagocytosis of amyloid beta (Aβ). We also find 
LINE-1 upregulation in iMG induces transcriptomic changes genes associated with antigen presentation and lipid metabo-
lism as well as impacting the expression of many AD-relevant genes. Our data posit that heightened LINE-1 expression 
may trigger microglial dysregulation in LOAD and that these changes may contribute to disease pathogenesis, suggesting a 
central role for LINE-1 activity in human LOAD.
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Introduction

Alzheimer’s disease (AD), especially its late-onset form 
(LOAD), is a complex neurodegenerative disease charac-
terized by cognitive decline and significant neuronal loss. 

The pathogenic hallmarks of LOAD encompass a combina-
tion of genetic predispositions, environmental factors, and 
pathological processes including the formation of amyloid-
beta (Aβ) plaques, tau protein hyperphosphorylation, and 
neuroinflammation [45, 110, 139]. Notably, the presence of 
sustained neuroinflammation has recently emerged as a key 
contributing factor in pathological mechanisms of AD [1, 
47, 65, 81, 127]. Microglia, the resident immune cells of the 
brain play a central role in the neuroinflammatory response 
observed in AD. These cells perform various critical roles 
in the brain, including maintenance of homeostasis and 
phagocytosis of cellular debris and pathogens. Strikingly, 
a majority of AD susceptibility genes discovered through 
genome-wide association studies are selectively expressed 
in microglia, and recent studies have identified several AD-
linked microglial subpopulations enriched for these risk 
genes [111, 123, 130, 131].

The strongest known risk factor for AD is aging [40, 
108]. Interestingly, aged microglia exhibit shortened pro-
cesses with altered phagocytosis and immune response, 
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reduced motility, vacuolization, and large somas [20, 32, 
37, 49, 57, 72, 91, 112, 114, 137]. Recently, transposable 
elements (TEs), formerly regarded as 'junk' DNA, have been 
recognized for their role in aging-related cellular changes 
in the brain [36]. TEs are mobile genetic elements capable 
of changing their genomic locations within human genome 
through DNA or RNA intermediates [11, 48, 53]. While 
45% of the human genome consists of TE-derived repeti-
tive sequences, most have lost their mobility through vari-
ous genetic and epigenetic modifications [63]. However, 
aging and pathological conditions can trigger TE derepres-
sion, which can induce DNA damage, genomic instability, 
altered gene expression, and neuroinflammation: features 
all linked to neurodegeneration [12, 36, 42, 52, 109, 116]. 
The most abundant and only autonomously mobilizing TE 
family in humans is the retrotransposon long interspersed 
nuclear element-1 (LINE-1), which comprises about 17% 
of the genome [63]. Although majority of the LINE-1s are 
inactivated due to 5′ truncations and the accumulation of 
inactivating indels, full-length LINE-1 transposition can 
occur through the transcription of a full-length genomic 
LINE-1 using the host RNA polymerase II. The resulting 
bicistronic LINE-1 messenger RNA (mRNA) is exported to 
the cytoplasm, where it undergoes translation into an RNA 
chaperone (ORF1p), and an endonuclease and reverse tran-
scriptase (ORF2p). Both ORF1p and ORF2p are essential 
for LINE-1 transposition [36].

Due to their abundance and repetitive nature, stand-
ard quantitative polymerase chain reaction (qPCR) and 
short-read RNA sequencing (RNA-seq) approaches have 
limited utility in studying LINE-1 activity [62]. Notably, 
both bulk and single-cell RNA-seq often cannot distin-
guish LINE-1 transcripts from bystander transcripts arising 
from readthrough transcription. Nonetheless, despite these 
technical challenges, the potential role of LINE-1 activity 
in neurons and the nervous system has gained attention in 
recent years [4, 5, 27, 33, 76, 124]. However, its impact on 
microglia, particularly in the context of AD, remains largely 
unexplored. We hypothesize that age-associated LINE-1 
hyperactivity maybe a driving force behind microglial dys-
function in LOAD.

Pursuing this hypothesis, we investigated the activ-
ity of LINE-1 in various brain cells, including neurons, 
astrocytes, oligodendrocytes, and microglia, using ORF1p 
expression as an indicator of LINE-1 activity. Analyzing 
human postmortem prefrontal cortex samples, we found 
that LOAD patient microglia exhibit heightened LINE-1 
activity compared to age-matched controls, with LINE-1 
expression correlating with disease-associated microglial 
morphology. Utilizing CRISPR-mediated transcriptional 
activation of LINE-1 in human iPSC-derived microglia 
(iMG), we observed changes in morphology, cytokine pro-
duction, transcriptomic state, and phagocytic function that 

is likely to be relevant for LOAD pathogenesis. Together, 
these results demonstrate that heightened LINE-1 activity 
modifies microglial functions, suggesting a potential role of 
TEs in neurodegeneration.

Materials and methods

Postmortem brain tissue acquisition

Human DL-PFC autopsy tissue sections were from donors 
in the Religious Orders Study or Rush Memory and Aging 
Project (ROSMAP) at the Rush Alzheimer’s Disease Center 
(RADC) in Chicago [6, 7]. Both studies were approved by 
an Institutional Review Board of Rush University Medical 
Center and all participants signed informed and reposi-
tory consents and an Anatomic Gift Act. Additional sam-
ples came from Columbia University Medical Center/New 
York Brain Bank in New York, NY [126]. All samples were 
acquired with adherence to informed consent protocols. All 
appropriate approvals were obtained for research procedures 
from the Institutional Review Board (IRB) of Columbia 
University Medical Center (protocol AAAR4962). Detailed 
information regarding donor age, sex, clinical diagnosis, and 
neuropathology is available in Supplementary Table 1.

Immunohistochemistry (IHC) of postmortem human 
brain tissue

Tissue sections were deparaffinized using CitriSolv (Decon 
Labs Inc. Cat. No. 5989-27-5) and rehydrated through pro-
gressively decreasing concentrations of ethanol. Microwave 
antigen retrieval was conducted for 25 min, 30% power using 
EDTA solution (Sigma-Aldrich, Cat. No. E1161). Sections 
were then washed and blocked using 3% BSA one hour at 
RT, and then incubated overnight with primary antibody 
at 4 °C. The following day, sections were incubated with 
secondary antibodies for one hour at RT and then washed. 
Slides were then treated with Biotium TrueBlack Lipo-
fuscin Quencher for 5 min and then washed and mounted 
with DAPI (Invitrogen, Cat. No.36931). Stained tissue was 
imaged with the Olympus BX3 Microscope. CellProfiler 
software was used to perform image analysis and quanti-
fication. Antibody concentrations are available in Supple-
mentary Table 2.

Immunoblotting

Harvested cells and homogenized tissue samples were col-
lected in ice-cold RIPA buffer (Cell Signaling Technology, 
Cat no. 9806S) with freshly added protein inhibitor cocktail 
and PMSF at a 1:1000 dilution. Samples were then soni-
cated for 10 s on/off with 20 amplitudes and vortexed before 
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being lysed on ice for 1 h. Samples were then centrifuged at 
12000 g for 5 min at 4 °C. The supernatant was isolated and 
kept as the protein sample. Protein samples were quantified 
using the Pierce BCA Protein Assay Kits (Thermo Scientific, 
Cat. No.23225). Samples were appropriately diluted and 
mixed with SDS Loading Buffer supplemented with DTT 
and boiled for 5 min at 95 °C. Samples were loaded into 
4–20% Mini-PROTEAN TGX Precast Protein Gels (Bio-
Rad, Cat no 4561094) for gel electrophoresis and transferred 
using the Trans-Blot Turbo Mini 0.2 μm PVDF Transfer 
Packs (BioRad, Cat no. 1704156) and semi-dry transfer 
system. PVDF membranes were then blocked for 1 h in a 
solution of equal parts TBS and Intercept (TBS) Blocking 
Buffer (LICOR, Cat no. 927–60001) at RT. Blots were then 
incubated with primary antibodies overnight at 4 °C on a 
shaker. Blots were then washed and incubated with second-
ary antibody for 1 h at RT on a shaker. Finally, blots were 
washed and imaged using the Biorad GelDoc Go gel imag-
ing system. FIJI software was used to quantify protein band 
densities from blots and analyze data. Antibody concentra-
tions are available in Supplementary Table 2.

Human iPSC and astrocyte cell maintenance

Three biologically independent human episomal lines 
were sourced from Gibco (Cat No. A18945, derived from 
CD34 + blood cord progenitor cells, healthy female), ATCC 
(Cat No. ACS-1024, CD34 + bone marrow cells, healthy 
male) and from the Columbia Stem Cell Initiative (dona-
tion, derived from dermal fibroblasts, healthy male). hiP-
SCs were cultured in  mTeSRTM1 (StemCell Technologies, 
Cat. No. 85850) media. We utilized a human astrocyte line 
(LONZA Bioscience, Cat No. CC-2565) which was plated 
on Poly-l-Lysine (PLL) (Sigma, Cat. No. P4707) coated 
plates and cultured in ABM basal medium (Lonza, Cat. No. 
CC-3187. Cells were cultured and maintained in 5%  CO2 
in a 37 °C humidified incubator. Cells were passaged every 
2–3 days. Cultures were regularly examined for mycoplasma 
contamination.

Generation of LINE‑1 overexpression cell lines using 
CRISPRa

hIPSCs were transduced with a lentiviral vector encoding 
dCas9-VP64 along in order to stably integrate the CRIS-
PRa machinery. Following this, dCas9-VP64 hiPSCs were 
transduced using customizable lentiviral vectors [102] car-
rying single guide RNA (sgRNA) targeting the LINE-1 pro-
moter and a non-targeting (NT) sgRNA with sequences TGG 
GAG TGA CCC GAT TTT CC and GTG TGT GTA GCA CCG 
CGT AA respectfully. Successful activation was confirmed 
through immunoblotting and quantitative PCR assays.

Differentiation from iPSCs to iMG

Differentiations into iMG lines were performed in adher-
ence to a previously published protocol [46]. Briefly, iPSCs 
were first differentiated into hematopoetic progenitor cells 
using the STEMdiff Hematopoetic Kit (StemCell Technolo-
gies, Cat. No. 05310). The cells are cultured for 3 days with 
STEMdiff Hematopoetic supplement A, followed by 9 days 
of culture with supplement B. The media was replaced every 
2 days. Following this, cells were relocated to played coated 
with PLL (Sigma, Cat. No. P4707-50ML) and cultured for 
8 days in astrocyte-conditioned media supplemented with 
growth factors, freshly added during medium replacement. 
Floating cells at this stage were collected and transferred to 
PLL-coated plates and cultured in iMG homeostatic medium 
supplemented with growth factors, to obtain fully differenti-
ated iMG.

Immunocytochemistry (ICC) and morphological 
analysis using CellProfiler

Cells were plated in 8 well chamber slides prior to ICC. 
Cells were fixed and permeabilized in ice-cold methanol 
for 5 min, washed, and then blocked with 10% normal 
goat serum for 30 min. Cells were then incubated for 1 h 
or overnight with primary antibody at 4 °C, washed, and 
then incubated with secondary antibody for 30 min. Cham-
bers were then removed before slides were mounted with 
DAPI. Details regarding antibody concentrations are avail-
able in Supplementary Table 2. Slides were imaged using 
the Olympus BX3 Microscope. In order to automatically 
segment cells and measure cellular morphology we uti-
lized CellProfiler v4.2.1. DAPI-positive nuclei were first 
classified and masked utilizing the ‘IdentifyPrimaryObjects’ 
module. Typically, the “Threshold” module was applied to 
the fluorescence channel for a cell-type specific marker (e.g. 
IBA1), followed by the “ConvertImageToObjects” module. 
These objects were then filtered for size to exclude artefacts 
using the “MeasureObjectSizeShape” and “FilterObjects” 
modules. The objects were further filtered for those con-
taining nuclei using the “RelateObjects” and “FilterOb-
jects” modules. For cells with processes, like microglia, the 
“SplitOrMergeObjects” was used to ensure branches were 
associated with their given cell bodies in each object. Once 
the cells were defined, we applied the “MeasureObjectInt-
ensity” and “MeasureObjectSizeShape” to extract size and 
morphology information along with fluorescence intensity 
measurements in the relevant channels. Downstream analy-
ses primarily utilized the “MeanIntensity”, “IntegratedIn-
tensity”, and “Compactness” features to quantify protein 
expression levels and classify cell morphologies by branch 
ramification.
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Quantitative real‑time PCR (qPCR)

1 million cells were harvested, and RNA extraction was car-
ried out using the RNAeasy kits. (QIAGEN, Cat. No. 74104). 
RNA was then converted to cDNA using the iSCRIPT cDNA 
Synthesis Kit (Biorad, Cat. No. 1708890). Amplified cDNA 
was purified using SPRI beads and quantified through Qubit. 
qPCR was conducted using Fast SYBR Green Master Mix 
(ThermoFisher Scientific, Cat. No. 4385610) with 1 ng of 
purified cDNA per 10 μl reaction. qPCR was performed using 
Quant Studio 4.0 (Applied Biosystem). A list of primers is 
provided in the extended supplement.

Cytokine profiling

NT or LINE-1 overexpressing iMG were plated in equivalent 
numbers in a near-homeostatic media [46] and the superna-
tant was collected after 12 h. A panel of 34 human cytokines 
and chemokines were used in a multiplex immunoassay plat-
form (Multiplexing Laser Bead Technology) to measure the 
cytokine concentrations. To identify differentially secreted 
cytokines, we performed multiple comparisons testing using 
the Benjamini–Hochberg procedure to control for the false 
discovery rate. A q value of 0.01 (1%) was used to determine 
the significance threshold.

Phagocytosis of Aβ42

Phagocytosis assays were performed using 647-fluorescently 
conjugated Aβ42 (ANASPEC, Cat No. AS-64161). For ICC-
based phagocytosis experiments, iMG were plated in chamber 
slides, for flow cytometric experiments, iMG were plated in 
12-well plates. In both cases, iMG were incubated with 0.5 µM 
Aβ for 2 h at 37 °C. For ICC-phagocytosis, a fluorescently 
conjugated actin antibody (ThermoFisher Scientific, Cat No. 
A57246) was added in the last 30 min to enable cell masking 
and visualization. In both Aβ42 phagocytosis experiments, we 
included a sample of iMG which was pre-treated with cytoch-
alasin-D [89], an inhibitor of phagocytosis, as an additional 
control to validate our assay. Cells were then washed three 
times with PBS. For ICC, chamber slides were removed before 
slides were mounted with DAPI and imaged using the Olym-
pus BX3 Microscope. Images were analyzed and quantified 
using CellProfiler software. For flow cytometric phagocyto-
sis, a BD Influx sorter was used for cytometric analysis and 
FlowJo software was used to visualize and analyze the data.

Bulk RNAseq of iMG

Sequencing

Total RNA was extracted from iMG using RNAeasy kits. 
(QIAGEN, Cat. No. 74104) RNA quality was assessed via 

Bioanalyzer (RIN > 9.5). Libraries were prepared using the 
TruSeq Stranded mRNA Library Prep Kit (Illumina, Cat 
No. 20020595). Samples underwent 2 × 75 bp paired-end 
sequencing on the Aviti Element at the Columbia Genome 
Center. Above 15 million reads were obtained per sample, 
and the experiment was performed on three independent 
biological replicates.

Analysis

Kallisto[10] was used to produced quantification of tran-
script abundance. The raw counts per gene were analyzed 
using DEseq2 [34, 71] to identify genes that were signifi-
cantly differentially expressed between NT and LINE-1+ 
iMG samples. Log fold change > 0.5 and q < 0.01 parameters 
were used to determine significance thresholds.

For GO analysis, the 100 most significantly upregulated 
and downregulated DEGs in the LINE-1 + iMG compared 
to control were examined through Enrichr using the GO 
Molecular Function 2023 gene set library. Enrichment analy-
sis was also performed on the list of 100 most significantly 
upregulated DEGs using the Database of Genotypes and 
Phenotypes (dbGaP) to identify phenotypes related to the 
transcriptional signature of the LINE-1 + iMG.

Results

LINE‑1 activity is found in major CNS cell types 
of the aged human brain

Endogenous retrotransposition is perhaps best known for 
driving genetic variation in the germline and in oncogen-
esis [50, 52], and was previously considered to be largely 
silenced. However, multiple subsequent reports have doc-
umented somatic activation of LINE-1, including in the 
human brain [5, 24, 26, 27, 54, 82, 87, 124] and in aging 
[33]. Previous studies examining LINE-1 transposition in 
the brain have utilized methylation as an indirect readout 
of activity; whole-genome sequencing, or bulk or single-
cell RNA sequencing methodologies have also been used 
to examine LINE-1 abundance and expression. While these 
efforts provide valuable insight into LINE-1 dynamics, 
challenges due to the repetitive and polymorphic nature of 
LINE-1 insertions restrict their ability to accurately quantify 
and compare active expression. Conversely, examining the 
presence of LINE-1 proteins can indicate active transposi-
tion occurring during given time period, such as in aging. To 
date, no study has examined the presence of LINE-1 proteins 
at a cell-type resolution in the brain.

To begin disentangling the potential role of transpo-
son activity in neurodegenerative disease, we first sought 
to determine whether LINE-1 activity was found in aged 
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human brain tissue and across cell types. We used an anti-
body against LINE-1 ORF1p, a protein encoded by LINE-1 
that is produced during retrotransposition, to measure active 
LINE-1 transcription. We co-immunostained human post-
mortem dorsolateral prefrontal cortex (DLPFC) tissue with 
ORF1p and markers for different cell types in the brain. We 

found ORF1p immunoreactivity in neurons, microglia, oli-
godendrocytes, and astrocytes, labeled by NeuN, IBA1, CNP 
and GFAP, respectively (Fig. 1a). As expected, we noted 
the highest ORF1p immunoreactivity in NeuN-positive 
neurons, as previous studies have reported LINE-1 expres-
sion in human neurons and neuronal cell lines [87, 119, 

Fig. 1  LINE-1 activity is found in major CNS cell types of the aged 
human brain. A Representative images showing endogenous LINE-1 
ORF1 (ORF1p) protein expression in cognitively healthy human 
DLFPC postmortem brain tissue in NeuN, IBA1, CNP and GFAP 
positive cells using indirect immunohistochemistry. B Quantification 
of average ORF1p integrated (total) fluorescence intensity/cell from 

three healthy DLPFC donors. Number of cells analyzed are 5937, 
1565, 440 and 62 for NeuN + , IBA1 + , CNP + and GFAP + cells 
respectively. C A representative image of LINE-1 ORF1p expres-
sion in the nucleus. Scale bar represents 10 µm. Cell type markers are 
shown in green, ORP1p shown in red and DAPI represented as blue



 Acta Neuropathologica          (2024) 148:75    75  Page 6 of 22



Acta Neuropathologica          (2024) 148:75  Page 7 of 22    75 

124]. Intriguingly, we also observed strong ORF1p staining 
within IBA1-positive microglia. GFAP-positive astrocytes 
and CNP-positive oligodendrocytes also exhibited LINE-1 
activity, albeit to a lesser extent (Fig. 1b).

While the ORF1p signal was primarily found in the cyto-
plasm, we detected occasional strong punctate staining in the 
nucleus, in line with previous reports from various human 
in vitro cell systems[35, 85, 105, 107] (Fig. 1c). Using an 
antibody that has been tested multiple times for immunohis-
tochemistry immunoprecipitation, and immunoblotting [23, 
99, 118, 132], we detected LINE-1-encoded protein rather 
than merely identifying LINE-1 sequences. This finding con-
firms the expression of LINE-1 at the time of autopsy within 
these aged tissue samples. Together, these data reveal that 
active LINE-1 translation occurs across multiple cell types 
of the aged human brain, supporting the compelling hypoth-
esis that LINE-1 may contribute to age-related disorders.

LINE‑1 activity is altered in LOAD patients compared 
to non‑AD controls

To examine whether aberrant LINE-1 activity is linked to 
late-onset AD, we compared LINE-1 ORF1p expression 
across cell types (Fig. 2a, Supplementary Figure S2) of the 
brain in late-onset AD patient postmortem tissue from the 
DLPFC to an older cohort of non-AD controls (Supplemen-
tary Table 1). Strikingly, we found a significant increase in 
LINE-1 ORF1p mean fluorescence in IBA1 + cells in LOAD 
patients compared with controls (p = 0.0172) (Fig. 2b, AU). 
Due to the non-normal distribution in the AD group (Sha-
piro–Wilk test, p = 0.0414), we applied the Mann–Whitney 
U test. The two-tailed analysis revealed a significant dif-
ference between the groups (U = 16, p = 0.0172), with the 

median of the control group at 0.0002125 (n = 10) and the 
AD group at 0.0002910 (n = 9). The difference in medi-
ans was 7.850e−005, with a Hodges-Lehmann estimate of 
8.100e−005, indicating a statistically significant increase in 
LINE-1 activity in LOAD.

To further explore this difference, we established thresh-
olds for LINE-1 expression based on the upper and lower 
quartiles of ORF1p fluorescence intensity across all cell 
types. We found a significantly reduced percentage of cells 
with low LINE-1 expression in LOAD compared to con-
trols (p = 0.0351), and a significantly increased percentage 
of cells with high LINE-1 expression in LOAD (p = 0.0318) 
(Fig. 2b, percentage).

While the ORF1p mean fluorescence intensity in 
NeuN + , GFAP + and CNP + cells trended higher in LOAD 
patients compared to control (Fig. 2c–e), these differences 
did not reach statistical significance, possibly due to our 
small sample size. The detection of elevated LINE-1 activ-
ity in microglia suggests that microglia may be particularly 
vulnerable to disease-related epigenomic changes, although 
this apparent selectivity may be influenced by sample size. 
Importantly, previous epigenetic studies have shown that 
DNA methylation signatures enriched in LOAD are largely 
driven by variation in microglia [21, 106]. These findings 
emphasize the potential role of LINE-1 activity in LOAD-
associated neuropathology.

LINE‑1 activity correlates with disease‑associated microglial 
phenotypes in the human brain

We next sought to investigate whether LINE-1 activity pat-
terns in the brain were associated with microglia pheno-
types typically associated with LOAD. We first examined 
whether there was a relationship between LINE-1 activity 
and microglial morphological state. Microglial morphol-
ogy is believed to be tightly linked to its function [60, 135]. 
Under homeostatic conditions, microglia are highly ramified 
with branched processes required for microenvironment sur-
veillance and motility [90, 97]. Microglia from LOAD brains 
can present with a morphology marked by de-ramification 
and reduced arborization [29].

Using CellProfiler, we examined IBA1 + microglia from 
nine AD-samples (Supplementary Table 1) to quantify their 
morphology, segregating cells into “Ramified” and “Ame-
boid” categories based on their degree of branch arbori-
zation (see Fig. 3a and Methods section). We found that 
microglia classified as ameboid had significantly higher 
mean ORF1p fluorescent intensity than ramified microglia 
(p = 0.0067) (Fig. 3b). Similarly, there was a significantly 
higher percentage of ORF1p-positive cells in the ameboid 
microglia group than the ramified (p = 0.0093) (Fig. 3c). 
When stratified by disease state, we found that LOAD 

Fig. 2  Microglial LINE-1 ORF1p protein expression is increased in 
LOAD patients. A Representative images of IBA1 (green), ORF1p 
(red) and DAPI (blue) immunostaining in human postmortem brain 
tissue from LOAD patients and cognitively healthy controls exam-
ined by fluorescence microscopy. Scale bars represent 10 µm. B–E 
Comparison of average LINE-1 ORF1p mean fluorescence per cell 
(AU) (left), the percentage of ORF1p-low expressing cells (middle) 
and the percentage of ORF1p-high expressing cells (right) between 
control and LOAD DLPFC microglia (B), neurons (C), astrocytes 
(D) and oligodendrocytes (E). Experimental information is as fol-
lows: B IBA1 + cells; n = 9 (control subjects) and n = 10 (LOAD sub-
jects); average of 417 cells analyzed per patient. (C) NeuN + cells; 
n = 9 (control subjects) and n = 10 (LOAD subjects); average of 532 
cells analyzed per patient. (D) GFAP + cells; n = 4 (control sub-
jects) and n = 5 (LOAD subjects); average of 176 cells analyzed per 
patient. E CNP + cells; n = 4 (control subjects) and n = 5 (LOAD sub-
jects); average of 74 cells analyzed per patient. Data are presented 
as mean ± S.D. and analyzed using an unpaired two-tailed t test; 
*P ≤ 0.05; ns: not significant. Exact P values can be found in source 
text. A detailed table with information regarding the human subjects 
and diagnosis can be found in Supplementary Table 1. Further infor-
mation on image acquisition and analysis can be found in the Meth-
ods

◂
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patients exhibited a similar pattern of higher ORF1p inten-
sity (p = 0.0441) and a greater percentage of ORF1p-positive 
cells (p = 0.0467) in the ameboid population compared to the 
ramified (Fig. 3d, 3e). We did not find significant differences 
in LINE-1 activity in our non-AD samples (Fig. 3f, 3g), but 
it is unclear whether that is due to limited sample size or 
any sort of disease association. These results suggest that 
LINE-1 activity is associated with microglial morphology 
and may contribute to the activated microglial phenotype 
associated with AD [29].

LINE‑1 activity is associated with tau pathological 
burden in the human brain

One distinguishing feature of AD and other tauopathies is 
the accumulation of intracellular neurofibrillary tangles, 
which are comprised of insoluble aggregates of the microtu-
bule-associated protein tau (MAPT) [2, 95]. Intriguingly, tau 
burden is associated with extensive chromatin remodeling, 
loss of TE silencing, and its subsequent activation [31, 39, 
42, 58, 116]. We investigated whether there was a correla-
tion between LINE-1 activity and tau pathologic burden in 
aged patient samples. We extracted protein from the DLPFC 
of 15 postmortem human brains (5 non-AD control and 10 
LOAD patients) and immunoblotted for levels of Tau-5 [15, 
68], LINE-1 ORF1p and GAPDH. After normalizing sample 

proteomic values to GAPDH, we found a strong correlation 
between LINE-1 ORF1p and Tau 5 protein levels (r = 0.730, 
p = 0.002) (Fig. 3h, 3i).

Since neurons are the primarily cell type with tau pathol-
ogy, we used immunohistochemistry on patient postmortem 
tissue to examine the overlap between ORF1p and Tau-5 
immunostaining in NeuN + cells. We found a strong correla-
tion between ORF1p and Tau 5 mean fluorescence intensity 
in control, LOAD and EOAD cells, with the strongest cor-
relation found in LOAD and similar correlations in EOAD 
and control (Fig. 3j–m). The differences in the correlation 
between LOAD and control samples may be explained by 
the lack of significant tau pathology in the control samples, 
evidenced by the average and highest tau intensity values 
being much lower in control samples than in the AD. Inter-
estingly, the correlation in LOAD (r = 0.7) was stronger than 
in EOAD (r = 0.35), despite higher tau intensity levels in 
EOAD, indicating a potential link between age and retro-
transposition activity in AD.

These findings confirms a relationship between neuronal 
LINE-1 activity and tau burden, further highlighting the role 
of LINE-1 in AD pathology across multiple brain cell types.

To further explore the relationship between Tau and 
LINE-1 expression in neurons, we stratified neurons 
based on low, medium, and high Tau or ORF1p expres-
sion (Fig. S3a–f). The positive correlation between ORF1p 
and Tau was strongest in neurons with low Tau and high 
ORF1p expression, potentially indicating that Tau’s impact 
on LINE-1 regulation may be most prominent in early stages 
of Tau pathology. In addition, we compared mean ORF1p 
expression in non-AD and LOAD neurons within low-Tau 
and high-Tau subsets (Figure S3g). Although ORF1p expres-
sion trended higher in LOAD neurons across both subsets 
compared to non-AD, the difference was not statistically 
significant in our small sample size.

Overexpression of LINE‑1 induces hyporamification 
in iMG

Our analysis of LINE-1 expression in postmortem tissue 
established an association between retrotransposition and 
microglial morphology but it was not suited to define the 
directionality of this relationship. We hypothesize that 
heightened LINE-1 activity in microglia contributes to a 
shift from a homeostatic state towards morphologically acti-
vated state, which is associated with LOAD [20, 104, 115]. 
To ascertain whether LINE-1 transposition induces these 
morphological changes in microglia, we turned to an in vitro 
system where we could manipulate transposition activity: a 
human pluripotent stem cell-derived microglia model (iMG) 
previously established in our laboratory [46].

We first examined whether iMG in culture recapitulated 
the relationship between LINE-1 activity and microglial 

Fig. 3  LINE-1 activity correlates with AD-associated phenotypes in 
the human brain. A Representative images of IBA1 (green), ORF1p 
(red) and DAPI (blue) immunostaining demonstrating ORF1p expres-
sion level correlating with morphology in microglia; example cells 
denoted by white arrow. Scale bars represent 20 µm. B Comparison 
of average LINE-1 ORF1p mean fluorescence intensity per cell (AU) 
in ameboid and ramified microglia. C Comparison of percentage of 
cells with LINE-1 activity in ameboid and ramified microglia. D–G 
Data from B and C stratified by disease state: LOAD (D and E) and 
control (F and G). n = 8 subjects (5 LOAD and 3 control). An aver-
age of 428 microglial cells were analyzed per individual subject. H 
Representative immunoblot and (I) and immunoblot quantification 
shown on a scatterplot of LINE-1 ORF1p and Tau-5 levels from 5 
control and 10 LOAD patients, finding a strong linear correlation 
(Pearson r = 0.7303) between LINE-1 ORF1p and Tau-5 protein lev-
els. Image densities were normalized to GAPDH expression prior to 
examining correlation. J Representative immunostaining from LOAD 
postmortem brain tissue showing strong overlap between LINE-1 
ORF1p expression (pink) and Tau expression (green) in NeuN-
labeled neurons (red). Scale bars represent 10 µm. K–M Scatter plots 
demonstrating a modest correlation between Tau and LINE-1 in neu-
rons from control patients, and a strong correlation between Tau and 
LINE-1 in neurons from EOAD and LOAD patients. n = 2 control 
subjects, with an average of 804 neurons analyzed per subject; n = 3 
EOAD subjects, with an average of 358 neurons analyzed per subject; 
n = 4 LOAD subjects, with an average of 1358 neurons analyzed per 
subject. Data in B-G are presented as mean ± S.D. and analyzed using 
an unpaired two-tailed t test; *P ≤ 0.05; **P ≤ 0.01, ns: not signifi-
cant. Exact P values can be found in source text. A detailed table with 
information regarding the human subjects and diagnosis can be found 
in Supplementary Table 1. Further information on image acquisition 
and analysis can be found in the Methods

◂
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morphology. Indeed, immunostaining experiments revealed 
that ameboid cells within the iMG culture had significantly 
higher expression of LINE-1 ORF1p than spindle or ramified 
cells (p = 0.0003) (Fig. 4a, 4b). To disentangle the causal 
direction of the relationship between LINE-1 activity and 
morphologically active (ameboid) phenotype, we used the 
CRISPR- activation system (CRISPRa) [59, 103] with single 
guide RNAs (sgRNAs) targeting putative LINE-1 promoters 

to drive increased expression of the LINE-1 gene in human 
iPSCs that we differentiated into iMG, termed henceforth as 
LINE-1+ iMG. Alongside this, we utilized the same system 
with reference sgRNAs targeting the sequences not present 
in human genome, as a control (NT). We established that 
forced LINE-1 transcriptional activation does not disrupt 
typical microglial differentiation using qPCR and our previ-
ously validated set of microglial markers [46] (Fig. S4a).
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We then examined phenotypic changes in LINE-1+ iMG 
compared with our reference NT- iMG. We first confirmed 
that our system successfully produced increased LINE-1 
transcription in the iPSC as well as the differentiated iMG 
through the detection of significantly elevated ORF1p, 
ORF2p and 5’ UTR mRNA (Fig. 4c) and of ORF1p pro-
tein (Fig. 4d, e). We then assessed whether the induction of 
LINE-1 transcription influenced iMG morphology. Intrigu-
ingly, we found that LINE-1+ iMG had a significantly higher 
percentage of ameboid cells (p = 0.002) compared with NT 
iMG, and a significantly lower percentage of intermediate 
(p = 0.019) and ramified cells (p = 0.033) (Fig. 4f, 4g). These 
data corroborate the correlation between retrotransposon 
activity and morphological changes in microglia and finds 
that boosting LINE-1 transcription is sufficient to induce 
this phenotypic shift.

Increased LINE‑1 expression induces an altered 
cytokine secretion profile in iMG

We next sought to assess whether the morphological changes 
we observed in LINE-1+ iMG also reflected functional alter-
ations. Microglia react to changes in cellular milieu in the 
brain but also have the ability to influence their microenvi-
ronment through cytokine production and signaling. LOAD 
is associated with a strong upregulation of pro-inflammatory 
patterns of cytokine secretion, induced by disease-associated 
stimuli such as Aβ-plaques[69]. Sustained inflammation 
drives high production of these cytokines and contributes 
to cognitive decline [127]. We sought to assess the impact 

of increased LINE-1 activity on the cytokine secretion pro-
file of iMG. We utilized multiplex immunoassay platform 
(Multiplexing Laser Bead Technology), to measure the lev-
els of 34 human cytokines and chemokines secreted into 
the culture media of LINE-1 + and NT-iMG (Fig. 5a). To 
account for multiple hypotheses and control for false dis-
coveries, we applied the Benjamini–Hochberg procedure for 
multiple comparisons testing. A stringent q-value threshold 
of 0.01 (1% false discovery rate) was set to ensure robust 
identification of differentially secreted factors. This analysis 
revealed 9 cytokines that were significantly altered in the 
LINE-1 + condition compared to NT-iMG: IL-10, RANTES, 
VEGF-A, IL-1α, MIP-1α, MIP-1β, GM-CSF, CXCL9, and 
PDGF-AA.

A closer look at these cytokines revealed an interest-
ing altered immune profile of LINE-1+ iMG. A major-
ity of these cytokines (GM-CSF, MIP-1α, IL-10, IL-1α, 
RANTES, VEGF-A, and CXCL9) are altered in the CSF, 
plasma or brains of AD patients or have AD-associated 
polymorphisms [66, 74, 79, 86, 120, 121, 125, 136]. GM-
CSF, MIP-1α, MIP-1β, and CXCL9, IL-10 and VEGF-A 
are increased in the media of LINE-1 overexpressing iMG. 
GM-CSF, MIP-1α, MIP-1β, and CXCL9 are associated with 
immune and inflammatory responses [9, 93, 96]. VEGF-A 
levels were found to be elevated in the CSF and prefrontal 
cortex of AD patients compared to controls [79, 117], and its 
protein expression is associated with increased blood brain 
barrier permeability and tangle pathology [79].

Intriguingly, the most significant difference was the 
upregulation of the anti-inflammatory cytokine IL-10 in 
LINE-1+ iMG. IL-10 suppresses immune responses through 
downregulation of proinflammatory signaling and inhibition 
of major histocompatibility (MHC) class II expression [18, 
64], and is elevated in AD patient brains [22, 41]. Studies 
in AD mouse models have found that IL-10 overexpression 
exacerbates memory dysfunction, impairs Aβ phagocyto-
sis and promotes plaque burden [13], and conversely, IL-10 
deficiency promotes Aβ clearance, preserves synaptic integ-
rity, and limits cognitive impairment [41]. Our data dem-
onstrate that increased LINE-1 activity can disrupt typical 
immune homeostasis and cytokine signaling, and many of 
these changes parallel those observed in the AD brain.

Elevated LINE‑1 activity in iMG impairs phagocytosis 
of Aβ42

Appropriate phagocytic function of microglia is critical in 
maintaining healthy brain homeostasis. Deficient phagocytic 
clearance and the accumulation of neurotoxic, aggregate-
prone proteins is a feature common to multiple age-related 
neurodegenerative disease. Microglia display defective 
phagocytic clearance of amyloid beta (Aβ) fragments and 
other substrates in both aging and in LOAD [32, 80, 100], 

Fig. 4  Overexpression of LINE-1 induces hyporamification in iMG. 
A Representative fluorescence microscopy image of wild-type 
iMG ORF1p (red) and DAPI (blue) immunostaining in iMG show-
ing increased expression ameboid iMG and reduced expression in 
ramified iMG. Scale bar represents 10µM. B Comparison of ORFp1 
immunofluorescence intensity in ameboid and ramified iMG. n = 3 
(three independent differentiations). An average of 245 iMG were 
analyzed per iMG line/experiment. C Relative mRNA expression of 
LINE-1 ORF1p, LINE-1 ORF2p and LINE-1 5’ UTR is increased 
in LINE-1+ iMG compared to control (NT-iMG). n = 3 biologi-
cally independent experiments. D Representative immunoblots and 
E quantifications of LINE-1 ORF1p and Vinculin protein showing 
increased ORF1p in iPSCs and corresponding iMG overexpressing 
LINE-1 compared to control (NT-iMG). F Representative images 
of IBA1 (green) and DAPI (blue) immunostaining showing cellular 
morphology in LINE-1-overexpressing iMG and NT control iMG. 
Scale bar represents 50 µm. G Quantification of the percentage of 
cells with ameboid, intermediate, and ramified morphology of LINE-
1-overexpressing or NT control iMG, showing a significant increase 
of ameboid cells and a significant decrease in intermediate and rami-
fied cells in LINE-1 overexpressing iMG compared with NT control. 
n = 6 experimental replicates, 3 biologically independent samples. An 
average of 274 iMG were analyzed per experimental replicate. Data 
are presented as mean ± S.D. and analyzed using an unpaired two-
tailed t test; *P ≤ 0.05; **P ≤ 0.01, ***P ≤ 0.001, ns: not significant. 
Exact P-values can be found in source text
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Fig. 5  Increased LINE-1 
activity drives altered immune 
response in iMG. A Volcano 
plot with data from multiplex 
array measuring cytokine con-
centration levels in supernatants 
from NT control and LINE-1 
overexpressing iMG. Labeled 
cytokines indicate a significant 
(p < 0.05) difference in the con-
centration of the given cytokine 
between NT and LINE-1 
overexpressing iMG. P values 
have been adjusted using the 
Benjamini–Hochberg FDR cor-
rection procedure. Dashed line 
indicates a LFC of 0.5. B Rep-
resentative microscopy images 
of Aβ42 phagocytosis in NT 
control, NT control + Cytocha-
lasin D, and LINE-1+ iMG. C 
Quantification of phagocytosis. 
n = 3 biologically independ-
ent experiments. An average 
of 265 iMG were analyzed per 
iMG line for each condition. 
D Histograms (flowcytometry) 
showing proportion of Aβ42-
positive and negative cells in 
both populations. E Quantifica-
tion of percentage differences 
in flow. Data are presented as 
mean ± S.D. and analyzed using 
an unpaired two-tailed t test; 
*P ≤ 0.05; **P ≤ 0.01. Exact P 
values can be found in source 
text. Scale bar represents 50 µm. 
LFC log fold change
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leading to the development of its characteristic extracellular 
amyloid plaques [32]. Given our observation of increased 
LINE-1 expression in LOAD patient microglia, we specu-
lated that LINE-1 overexpression may disrupt microglial 
phagocytosis of Aβ. Our findings of dysregulated immune 
signaling and morphological changes in the LINE-1 + micro-
glia support the hypothesis that LINE-1 activity could com-
promise microglial phagocytic ability, potentially as part of 
a broader alteration in microglial phenotype.

To investigate this, we incubated NT-iMG or LINE-1+ 
iMG with fluorescently labeled Aβ42 (Aβ-647) for 2 h and 
then analyzed uptake. Through microscopy, we found a 
roughly threefold reduction in Aβ42 internalization, meas-
ured through mean fluorescent intensity of conjugated Aβ42-
647 in LINE-1+ iMG compared to NT control. (p = 0.0021) 
(Fig. 5b, c). These results were corroborated through flow 
cytometry, where we found a significantly reduced percent-
age of Aβ42-positive cells in the LINE-1+ iMG population 
compared to NT control. (p = 0.0172) (Fig. 5d, 5e) To con-
firm the efficacy of our assay, we also pre-incubated a set of 
iMG with Cytochalasin D, an inhibitor of actin polymeriza-
tion, before Aβ42 incubation and confirmed that Aβ42 inter-
nalization was largely abolished (p = 0.0016). Our findings 
suggest a reduced capacity of LINE-1+ iMG to phagocytose 
Aβ42. While this observation could also reflect increased 
uptake and subsequent degradation of Aβ42 by LINE-1+ 
microglia within the assessed timeframe, the diminished Aβ 
signal, alongside the observed increase in IL-10 expression, 
most likely indicates that LINE-1 overexpression impairs 
the microglial ability to phagocytose Aβ42. These data thus 
posit that the LOAD-related decline in phagocytic clearance 
of amyloid beta could be, in part, due to increased LINE-1 
retrotransposon activity in microglia.

LINE‑1+ iMG transcriptome reveals changes in lipid 
metabolism and antigen presentation

To approach a broader, unbiased examination of how 
LINE-1 overexpression influences microglial state and func-
tion, we performed transcriptomics on the LINE-1+ and NT-
iMG (Fig. 6a, Supplementary Table 3, and supplementary 
Fig. 6). Strikingly, we found a strong downregulation of 
various MHC class II and associated genes in the LINE-1+ 
iMG, including a pronounced reduction in HLA-DRA, HLA-
DRB1, HLA-DPB1, CD74, HLA-DRB5, HLA-DQB1, and 
CIITA. We validated several of the strongest transcriptomic 
hits through qPCR, (Fig. 6b), confirming the most prominent 
hits from our transcriptomic analysis.

We used Enrichr (see Supplementary Table 4 for gene 
list used) to conduct gene ontology (GO) analysis on our 
differentially expressed genes (DEGs). We found that 
genes upregulated in LINE-1+ iMG are primarily enriched 
for genes associated with lipoprotein particle binding and 

cholesterol homeostasis, including APOE, LRP1, APOC1, 
PLTP, THBS1 and SORL1 (Fig.  6c). These results are 
intriguing due to the mounting focus on lipid dysregulation 
in AD [14, 134], and in particular, an association between 
higher risk of AD development and levels of low-density 
lipoprotein cholesterol (LDL-c) [101, 138]. We also uti-
lized the Database of Genotypes and Phenotypes (dbGaP) 
to examine which phenotypes and diseases are enriched with 
the DEGs upregulated in the LINE-1+ iMG. The analysis 
identified gene involved in lipid metabolism, cholesterol, 
HDL and LDL lipoproteins, and AD as the traits that are 
most enriched with our DEGs (Fig. 6e). Consistent with 
this, some of the lipoprotein-associated genes enriched in 
LINE-1+ iMG have been previously linked to AD, such as 
APOE and LRP1. In addition to being the strongest genetic 
risk factor for AD, APOE plays critical roles in lipid trans-
port and homeostasis and is a ligand for several low-density 
lipoprotein receptors [51, 98]. Notably, microglia expressing 
the APOE ε4 risk allele exhibit reduced Aβ42 clearance and 
ameboid morphology [67], paralleling our observations in 
LINE-1+ iMG.

Genes in the LINE-1+ downregulated set were enriched 
for genes involved in the MHC class II protein complex 
binding and receptor activity (Fig. 6c). MHC II molecules 
play various roles in inflammation and immune recognition 
[19, 128]. Reduced MHC II expression may affect microglial 
ability to act as an antigen presenting cell, minimizing the 
expansion of CNS immune responses against Aβ42. Inter-
estingly, previous studies have identified a microglial sub-
population enriched in antigen presentation genes, including 
CD74 and HLA genes, which is depleted in the cortex of 
AD patients [92], paralleling the loss of this signature in the 
LINE-1+ iMG.

We next examined whether LINE-1 overexpression in 
iMG impacted expression of AD-associated genes extracted 
from prior literature. We found that a large number of genes 
implicated in AD were differentially expressed in LINE-
1+ iMG, (Fig. 6d) including the AD risk genes triggering 
receptor expressed on myeloid cells 2 (TREM2) and Abelson 
interactor family member 3 (ABI3), which were reduced in 
the LINE-1+ iMG. TREM2 encodes a receptor which medi-
ates several microglial functions, including inflammatory 
signaling, lipid metabolism, and phagocytosis of Aβ42 and 
other substrates [73]. ABI3 encodes a protein which plays a 
role in actin cytoskeleton rearrangement and is required for 
normal microglial migration and phagocytosis [55, 56, 111].

Altogether, the altered transcriptomic signature of LINE-
1+ iMG demonstrates an impact of retrotransposition in vari-
ous critical microglial functions linked to AD pathogenesis.
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Discussion

Age is the primary risk factor for Alzheimer’s disease, 
however the mechanism by which age-related changes con-
tribute to disease pathology remains under investigation. 
Recently, a role for transposable element activation in aged 
and senescent cells in driving nervous system dysfunction 
has emerged. Widespread epigenetic changes have been 
documented with aging, such as global heterochromatin 
loss and redistribution [70], which can lead to a permis-
sive environment for transcription of retrotransposable 
elements such as LINE-1. Importantly, studies examining 
differences between young and aged microglia repeatedly 
identify disruptions in chromatin organization and epige-
netic regulation in aging, two processes that are highly 
associated with increased retrotransposon activity [30]. 
This process of epigenetic aging may be even further dys-
regulated in AD [88]. Given the disruptive capacity of 
LINE-1 retrotransposon activity to cell types of the brain, 
we sought to explore the hypothesis that age-induced 
LINE-1 mobilization may contribute to disease-associated 
phenotypes in Alzheimer’s disease.

We demonstrate that cell types across the central nerv-
ous system in the aged brain possess active LINE-1 copies 
and that LINE-1 ORF1p expression is higher in microglia 
from LOAD patients compared to controls. We show that 
increased LINE-1 expression is associated with activated 
microglial morphology in patient brain samples. Addition-
ally, our data substantiate prior studies identifying a link 
between tau pathology and TE dysregulation in neurons 
[31, 39, 42, 58, 116]. Using an in vitro model of increased 
LINE-1 activity in microglia, we determine that retrotrans-
poson activity disrupts numerous microglial functions and 
features: morphology, cytokine profile, phagocytic function, 
lipid metabolism and expression of the antigen presenting 
machinery. Our data establish a prospective role of LINE-
1-mediated microglial dysfunction in LOAD pathology mer-
iting deeper investigation.

Our findings suggest that LINE-1 dysregulation drives 
microglial dysfunction, such as a blunted phagocytic 
response to Aβ challenge and downregulation of MHC class 
II molecules. As previous studies in human fibroblasts found 
that LINE-1 derepression stimulated inflammation [12], the 
strong upregulation of IL-10 was unexpected. We speculate 
that prolonged production of endogenous immunostimula-
tory extranuclear LINE-1 nucleic acids through persistent 
retrotransposition may induce immune tolerance programs 
mediated by IL-10 and promote an immunosuppressive phe-
notype [61, 129].

It is increasingly clear that a careful balance of microglial 
function at different stages of aging is critical to ensure cog-
nitive health [65]. Longitudinal studies suggest there may 
be two peaks of microglial activation over the course of AD 
progression [28, 38, 43], and there is evidence that early 
microglial activation in the prodromal stage of AD may be 
protective [114]. Failure to mount an appropriate immune 
response during the initial stages of pathology could con-
tribute to the development of aggregates, such as amyloid 
plaques. In the later stages of AD, these aggregates pro-
voke detrimental microglial activation. This hypothesis is 
supported by the fact that variants protective against AD, 
such as the P522R polymorphism of PLCG2, is associated 
with a mild, lifelong increase in microglial activation, anti-
gen presentation, phagocytosis and inflammatory signaling 
[3, 16, 77, 78, 113, 122], implying that an earlier, poten-
tiated immune response can prevent the initial pathology 
from developing. We speculate that conversely, prolonged 
immune dysfunction caused by increased LINE-1 could 
compromise these early responses and drive AD progression.

Higher rates of somatic mutations have also been reported 
in Alzheimer’s disease [83, 84, 94]. LINE-1 mobilization, by 
nature, causes endogenous mutagenesis and genome insta-
bility. De novo LINE-1 insertions initiate and drive progres-
sion in several cancers [44], and LINE-1 hypomethylation 
correlates with cancer risk and worse prognosis [133]. Given 
the significant genetic component of LOAD (which has a 
heritability of 58–79%) and the involvement of multiple 
genetic loci [110], LINE-1-mediated mutagenesis may also 
contribute to AD development. Intriguingly, LINE-1-driven 
somatic mosaicism has been documented in both human and 
mouse neurons and accumulating data suggests this activity 
contributes to driving neuronal transcriptome complexity 
and functional diversification important for brain function 
[8, 17, 25–27, 87, 124]. Our identification of LINE-1 expres-
sion in glial cells raises the question of whether LINE-1 
activity may be important for establishing transcriptome 
diversity or heterogeneity in glia.

While this study proposes an exciting role for LINE-1 
activity in microglia and neurons in LOAD, we recog-
nize potential limitations to this work. To assess the 
impact of LINE-1 on microglial function, we induced its 

Fig. 6  Transcriptomic analysis of LINE-1+ iMG reveal compromised 
antigen presentation. A Volcano plot highlighting differential expres-
sion of LINE-1+ iMG compared to NT control iMG, analyzed using 
DESeq2. n = 3 biologically independent experiments. B qPCR vali-
dation of several top differentially expressed hits. n = 3 biologically 
independent experiments. C GO analysis of top 100 most significant 
differentially expressed hits upregulated and downregulated in LINE-
1+ iMG using Enrichr examining Molecular Function GO terms. D 
Heatmap showing gene expression variation (Z score) for selected 
AD-associated genes between control and LINE-1 overexpress-
ing iMG. E Enrichr-based GO analysis of top 100 upregulated hits 
using dbGaP database to identify phenotypes associated with LINE-
1+ transcriptional signature. Data are presented as mean ± S.D. and 
analyzed using an unpaired two-tailed t test; *P ≤ 0.05; **P ≤ 0.01, 
***P ≤ 0.001, ****P P ≤ 0.0001, ns not significant. Scale bar repre-
sents 50µM. FC fold change
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overexpression in iMG and studied relatively acute effects, 
as iMG in culture last for a limited number of weeks. In 
LOAD, this activity may occur over the course of decades, 
and the long-term impact of activity may differ from the 
acute. Ideally, we would complement our gain-of-function 
experiments with testing the impact of LINE-1 repression in 
microglia. However, we detected little to no baseline LINE-1 
activity in our iMG system, making it difficult to explore 
the effects of its repression. Our in vitro system investigated 
iMG in isolation to specifically study its role in microglia, 
but future investigations in multi-cell, organoid or in vivo 
systems may deepen our understanding of its physiological 
role. As we only had access to postmortem LOAD tissue, 
we are unable to examine at which point of LOAD progres-
sion our observed differences in LINE-1 activity develop. 
Intriguingly, a recent report found massive dysregulation 
of TEs, including significant overexpression of LINE-1, 
immediately preceding the clinical manifestation of amnes-
tic mild cognitive impairment (aMCI) or LOAD [75]. This 
aligns with our hypothesis that LINE-1 dysregulation is an 
early event in LOAD and its reactivation occurs with age. 
Our findings suggest that LINE-1 activity at this stage may 
impair microglial functions, such as Aβ clearance, poten-
tially driving increased amyloid plaque burden. Examining 
a possible correlation between microglial LINE-1 expres-
sion and amyloid plaque burden in AD patients would be 
valuable. Although technical constraints prevented us from 
probing this relationship in our samples, prior studies have 
shown associations between transcription of certain TEs and 
amyloid pathology [42]. Future studies should investigate 
how LINE-1 dysregulation and amyloid pathology correlate 
over disease progression.

Overall, our findings identify LINE-1 activity as a novel 
element underlying microglial and immune dysfunction in 
LOAD and expand our understanding of how epigenetic 
dysregulation in aging can contribute to neurodegenera-
tion. These discoveries conceive a potential role for thera-
peutics promoting protective epigenetic regulation of TEs 
or inhibiting retrotransposition as successful treatments in 
Alzheimer’s disease.
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