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A B S T R A C T

Aging is often accompanied by changes in brain structure and executive functions, particularly in tasks involving
cognitive flexibility, such as task-switching. However, substantial individual differences in the degree of
cognitive impairment indicate that some individuals can cope with brain changes more effectively than others,
suggesting higher cognitive reserve (CR). This study identified a neural basis for CR by examining the longitu-
dinal relationship between task-related brain activation, structural brain changes, and changes in cognitive
performance during an executive task-switching paradigm including single and dual conditions. Fifty-two older
individuals were assessed at baseline and followed up after five years. Structural brain changes related to task-
switching performance were analyzed using elastic net regression. Task-related functional brain activation was
measured using ordinal trends canonical variate analysis (OrT CVA), capturing patterns of activation increasing
from single to dual conditions. A differential task-related expression score (dOrT) was calculated as the difference
in pattern expression scores between single and dual conditions at baseline. A linear regression model tested
whether dOrT moderated the impact of brain changes on changes in switch cost over five years. Results showed a
significant interaction between changes in brain structure and dOrT activation on switch cost change, indicating
a moderation effect of task-related activation. Higher dOrT buffered the impact of brain structural decline on
switch costs, enabling older adults to better cope with age-related brain structural changes and preserve
cognitive flexibility. These findings suggest that these task-related activation patterns represent a neural basis for
CR.

1. Introduction

Aging is accompanied by various alterations in brain structure and
functions, including decline in executive functions (Buckner, 2004). One
of the main components of executive functions is task-switching, an
ability that fundamentally influences flexibility in cognition and
behavior (Monsell, 2003; Vandierendonck et al., 2010). Switching or
shifting between tasks impacts our performance, typically manifesting
as an increase in response time and/or error rate compared to per-
forming each task separately. This performance cost incurred by
switching is referred to as “switch cost” (Monsell, 2003). Prior research
has demonstrated behavioral performance decline (Meiran et al., 2001;

Wasylyshyn et al., 2011), associated alteration in underlying neural
activation (Aron et al., 2004; Badre and Wagner, 2006; Brass and Von
Cramon, 2002; Dove et al., 2000; Gazes et al., 2015, 2012; Uddin, 2021),
as well as structural deterioration (Gold et al., 2010; Nguyen et al., 2019;
Oh et al., 2018) within brain regions that mediate executive task control
during task-switching in older adults. Older adults typically show larger
switch costs when switching between tasks (Wasylyshyn et al., 2011),
which has been linked to reduced flexibility in cognitive control (Oh
et al., 2018). However, there are substantial individual differences in the
degree of task-switching impairment (Kray and Lindenberger, 2000).
While some older adults maintain high cognitive functioning despite
age-related brain changes, others experience more decline. This
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variability suggests that differences in underlying neural activations
likely enable some older individuals to cope more effectively with
structural brain changes than others (Stern, 2009). A key concept that
elucidates this phenomenon is cognitive reserve (CR). CR is a property of
the brain that enables higher cognitive performance compared to what
would be expected, considering the extent of brain changes associated
with life-course events, as well as brain injury or disease (Stern et al.,
2023). Studying CR requires assessing relationships between brain
changes and cognitive performance, along with variables that influence
or moderate this relationship. This moderating variable can be IQ,
exposure like education and occupation, or the specific neural mecha-
nisms that influence the impact of brain changes on cognition. CR is
demonstrated when a hypothesized moderating factor like sociocultural
or brain functional measure impacts the relationship between brain
changes and cognitive performance.

In the current longitudinal study with two measurement time points
(baseline and 5-year follow-up), we aimed to investigate differential
task-related neural activation during the performance of an experi-
mental task-switching paradigm as a potential neural implementation of
CR. Specifically, we explored whether greater engagement of task-
related functional brain networks during the performance of an execu-
tive control function (ECF) task is associated with more preserved
cognitive performance in the presence of age-related structural brain
changes that would typically impair cognition. To obtain task-related
brain networks, we applied ordinal trend canonical variates analysis
(OrT CVA) to functional MRI (fMRI) data recorded from the single and
dual task conditions in a set-shifting paradigm. OrT CVA is a multivar-
iate technique that detects a consistent set of brain regions displaying
correlated changes in activation as task difficulty increases among par-
ticipants (Habeck, Krakauer, et al., 2005). So, this technique allows the
characterization of individual differences in functional brain responses
to increasing task-switching demands, here the difference between sin-
gle to dual conditions. A multivariate structural brain measure was
constructed by applying an elastic net linear regression model to extract
a summary metric of volume and thickness changes in several cortical
and subcortical regions that impact task performance. We then exam-
ined changes in task-switching performance (as measured by switch
cost) over 5 years and how these changes were impacted by changes in
brain structure and brain function. We hypothesized that the impact of
structural brain changes on task-switching performance would be
moderated by the level of differential task-related activation between
single to dual conditions. This hypothesis is grounded in cognitive
reserve theory, particularly the concept of capacity which posits that
individuals with higher cognitive reserve have greater capacity to
engage neural resources as task demands increase (Stern et al., 2020).
This greater capacity may allow them to maintain performance in the
face of age-related brain changes or increasing task complexity.

Key features of this study include a longitudinal design over 5 years
to examine the changes in brain structure and cognition. Moreover, we
used advanced data analysis methods, including OrT CVA to charac-
terize task-related fMRI patterns. Most importantly, in this study we
moved beyond traditional CR proxies like IQ and education and iden-
tified neural representation of cognitive reserve. This is the first study to
directly investigate directly investigate differential functional activation
as a neural marker of cognitive reserve in ECF tasks, testing whether
greater engagement of specific functional networks mitigates the impact
of structural decline on switch cost. The longitudinal approach assessing
whether brain activation moderates trajectories of cognitive function
and brain structure unveils new insights into the neural implementation
of CR.

2. Materials and methods

2.1. Participants

In the present study, a total of 52 individuals in later adulthood with

the baseline age range of 60–71 years (average age of 64.79 ± 3 years)
were assessed over two time points: baseline and a 5-year follow-up.
Detailed participants’ information can be found in Table 1. Inclusion
criteria included being right-handed, having a normal or corrected-to-
normal vision, proficient in English, and having no history of psychiat-
ric or neurological disorders. Additionally, participants underwent
screening for dementia and mild cognitive impairment using the De-
mentia Rating Scale (Mattis, 1988) at both baseline and follow-up as-
sessments. All participants provided written informed consent. The
Institutional Review Board of the College of Physicians and Surgeons of
Columbia University reviewed and approved all protocols based on the
guidelines and regulations.

2.2. Task design and stimulus presentation

The task was based on the design of Koechlin et al.’s (Koechlin et al.,
2003) Experiment 2, using a color-cued task-switching paradigm with a
no-go component to probe cognitive processes related to task-switching
(Fig. 1). The task consisted of two single blocks and two dual blocks.
Each block lasted 33.6 s and contained 12 letter stimuli to which par-
ticipants responded with timed button presses. Before each block, a
4.8-second instruction cue was indicated to inform about the required
action. Responses involved right or left button presses, or no action,
based on color-coded cues: green for vowel/consonant judgments, red
for lower/upper case judgments, and white for no-go trials. The exper-
iment also included two 33.6 s rest blocks with no stimulus presentation
and responses. The fMRI acquisition session consisted of six functional
runs, each containing the four active and two rest blocks in a Latin
Square order to minimize any potential sequencing biases (Gazes et al.,
2012).To promote stable cognitive/behavioral performance during the
scanning session, participants completed a pre-training session outside
the scanner, including task instructions review, practice blocks, and
auditory error feedback.

The stimulus presentation was executed using an LCD projector,
projected onto a screen situated at the foot of the MRI bed. Participants
viewed stimuli through mirrors within the head coil. Responses were
collected using a LUMItouch response system and task administration,
synchronization, and data collection were managed using E-Prime
software running on a computer.

2.3. Behavioral analysis

Behavioral performance was assessed by collecting the median re-
action time for correct trials in single and dual conditions at baseline and
follow-up. The difference in median reaction time between the two task
conditions was referred to as the switch cost, which was calculated for
both baseline and follow-up.

2.4. MRI acquisition

Structural and functional MRI data were acquired at baseline and
follow-up. For the baseline session, all participants underwent MRI
scanning on a 3.0 T Philips Achieva scanner equipped with a standard
quadrature head coil. In the follow-up session, data from 39 participants
were acquired using the same Philips scanner, while data from the

Table 1
Participants information.

Characteristics

N 52
Sex (Male/Female) 25/27
Baseline Age (Mean ± SD) 64.82±3
Years of Education (Mean ± SD) 16.13± 2.09
NART-IQ (Mean ± SD) 119±7.97
Baseline DRS (Mean ± SD) 140.5±2.8
Follow-up DRS (Mean ± SD) 139.7±2.76
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remaining 13 participants were acquired on a 3.0 T Siemens PRISMA
scanner.

High-resolution T1-weighted images on the Philips scanner were
obtained via a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence with parameters including TR of 6.5874 ms, TE of
2.98 ms, flip angle of 8◦, voxel size of 1 mm isotropic, and acquisition
matrix size of 256 x 256 x 165. Functional images were acquired with
the parameters including TR of 2000 ms, TE of 20 ms, flip angle of 72◦,
voxel size of 2 mm x 2 mm x 3 mm, and acquisition matrix size of 112 x
112 x 41 x 111. On the Siemens scanner, the T1 MPRAGE parameters
were TR of 2400 ms, TE of 2960 ms, flip angle of 9◦, voxel size of
0.5 mm isotropic, and acquisition matrix size of 416 x 512 x 512 and the
functional image parameters were TR of 1008 ms, TE of 37 ms, flip angle
of 52◦, voxel size of 2 mm isotropic, and acquisition matrix of 104 x 104
x 72 x 217.

2.5. Brain structural analysis

For the structural brain analysis, we utilized the Desikan-Killiany
atlas (Desikan et al., 2006) to segment the brain into cortical and
subcortical regions. These regions included key areas such as the hip-
pocampus, amygdala, insula, fusiform gyrus, and precentral gyrus.

T1-weighted structural scans for each participant were processed
using FreeSurfer v5.1.3. FreeSurfer’s longitudinal pipeline, which
automatically corrected for intra-subject variability across time points
were used ensuring accurate measurements of cortical thickness and
volume. For quality control of processing, the boundaries between white
and gray matter, as well as gray matter and cerebrospinal fluid, were
carefully examined slice by slice. If discrepancies were identified,
manual control points were added, and the reconstruction process was
repeated until acceptable results were achieved for all participants.
Subcortical structure borders were visualized using TkMedit and cross-
checked against actual brain regions, with manual corrections made as
necessary.

Using the segmented brain regions, we extracted a multivariate
structural brain change index associated with switch cost change over
time. This index was derived through an Elastic Net regression model,
applied to the changes in volume and thickness of the selected brain
regions among 149 candidates, between baseline and follow-up. The
dependent variable in the model was the change in switch cost from

baseline to follow-up. The data were partitioned into training and
testing sets, with 80 % used for training and 20 % for testing. The Elastic
Net model, trained using 3-fold cross-validation, identified the brain
measures most predictive of switch cost change. The brain change index
was then calculated as a linear combination of these selected measures.
To ensure the robustness of our findings, model performance was eval-
uated on both the training and testing datasets, minimizing the risk of
overfitting. Finally, this brain structure change index was used in further
analyses to explore the relationship between changes in age-related
brain measures and cognitive performance over time.

2.6. fMRI analysis

2.6.1. Preprocessing
Preprocessing and analyses of fMRI data were performed using

FMRIB Software Library (FSL) v5.0 and custom-written Python code.
Functional images were initially realigned to the first volume and then
corrected for slice acquisition order. Subsequently, they were smoothed
using a 5mm3 nonlinear kernel and normalized for intensity. A high pass
filter was applied using a Gaussian kernel with a cutoff frequency of
0.008 Hz. The first functional volume was then co-registered to the
template-aligned T1-weighted image using FMRIB’s Linear Image
Registration Tool (FLIRT) with the normalized mutual information cost
function. The transformation parameters obtained were then used to
map the statistical parametric maps from the subject-level analysis to
standard space.

To address potential confounds from using different MRI scanners,
we employed the Combining Batch (COMBAT) harmonization method
for our fMRI data (Fortin et al., 2018, 2017; Johnson et al., 2007). This
approach minimizes scanner-related confounds while preserving bio-
logical variability. To enhance the power of scanner effect estimate, our
harmonization process included data from 82 participants (including a
group of young individuals who were removed from the main analysis
because the current study only focused on individuals in later adult-
hood). We used task and timepoint information in the covariate array for
COMBAT. An aging covariate array and a subject-task intercept array
were included to capture aging effects and time-invariant subject and
task effects. This ensures that COMBAT does not remove variability due
to aging or other relevant demographic factors, while effectively miti-
gating potential confounds introduced by scanner differences.

The fMRI Expert Analysis Tool (FEAT) module within FSL was used
for subject-level analysis. The fMRI time-series data underwent pre-
whitening to correct for intrinsic autocorrelations. For each partici-
pant, a block-based analysis was conducted. The predictor variables in
the first-level design matrix comprised epochs representing each unique
experimental task block. Within each of the six runs, one predictor for
each of the four task blocks and one predictor for instructions were
separately modeled. Each epoch was convolved with a model of the
hemodynamic response function. Contrasts for single-task and dual
conditions were then entered into the task-related activation analysis.

2.6.2. Task-related activation patterns
To identify functionally activated brain regions, OrT CVA was

employed on both baseline and follow-up data. OrT CVA is a multivar-
iate data-driven technique that identifies patterns of regional functional
activation that show a monotonic change across multiple experimental
conditions (in the current study single and dual conditions). The
extracted functional activation patterns, called ordinal trends (OrT),
indicate sustained activity across graduated increase in task demand
(Habeck, Krakauer, et al., 2005; Habeck, Rakitin, et al., 2005). The
technique utilizes a specialized design matrix to enhance variance
contributions from patterns that exhibit within-subject increases in
pattern scores from single to dual conditions. The test statistic that is
used to assess the significance of the task condition relationship of the
derived activation pattern is the number of exceptions i.e. the number of
individuals showing decreased pattern expression from single to dual

Fig. 1. Block examples of single and dual block conditions. In the single con-
dition, participants were assigned either a vowel/consonant task or a lower-
case/upper-case task. While in the dual condition, participants were required
to switch between these two tasks. The colors represent task cues: white for no-
go trials, red for the upper/lower-case task, and green for the vowel/consonant
task. Arrows indicate the assigned response hands: left for lower-case/right for
upper-case and left for vowel/right for consonant. At the start of each block,
instructions were shown for 4.8 s. The time interval between the onsets of each
letter trial was 2.4 s, including the interstimulus interval blank screen (0.5 s).
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condition and thus violate the majority rule of an increase. A null dis-
tribution is generated using a permutation test with 1000 iterations,
where condition assignments are randomized within participants. The
p-value is determined by the fraction of times the permutation test yields
a number of exceptions as low or lower than the point estimate. To
ensure the robustness of voxel loadings in the derived pattern, a simple
bootstrap technique is employed. The data are resampled with
replacement (without randomizing subject and condition assignments),
and the analytic point-estimate process is repeated 500 times. Z-values
for the voxel loadings are computed as the ratio of the point estimate of
the loading divided by the bootstrap standard deviation around this
point estimate. The identified pattern is projected to baseline data and
for each subject, the OrT score is computed for both single and dual
conditions at baseline. Then differential task-related expression score
(dOrT) is calculated as the difference between OrT scores of derived
patterns in single and dual conditions at baseline.

2.7. Statistical analysis

To investigate changes in reaction time over time, a repeated mea-
sures analysis of variance (ANOVA) was conducted on the reaction time
data with task condition (dual vs. single) and time point (baseline vs. 5-
year follow-up) as within-subjects factors. The key analysis in the cur-
rent study centers on examining how individual differences in task-
related brain activation patterns, considered as a neural implementa-
tion of CR, may moderate the effects of age-related structural brain
changes on changes in switch cost over time. To test this, a multivariate
linear model was utilized. The dependent variable in this model was the
change in switch cost, while independent variables included the struc-
tural brain change index, dOrT score, and their interaction term. Base-
line age, switch cost at baseline, sex, and scanner ID variable were
included as covariates. Scanner ID was included in the model to account
for potential differences in data acquired from the two MRI scanners.

3. Results

3.1. Behavioral analysis

Reaction time for the single and dual conditions along with switch
cost at baseline and follow-up are reported in Table 2. To evaluate the
effect of task condition (single and dual), and time point (baseline and
follow-up) on behavioral performance, a two-way repeated measures
ANOVA was conducted on reaction time. The analysis revealed signifi-
cant main effects for both task conditions (F(1, 51) = 10.19, p =

0.002419) and time point (F(1, 51) = 314.06, p < 0.001). However, the
interaction effect between task condition and time point was not sta-
tistically significant (F(1, 51) = 1.4907, p = 0.22772). These findings
indicate that both task condition and time point independently influ-
enced the reaction time. The task condition effect suggests that there is a
significant difference in reaction times between single and dual condi-
tions, irrespective of time. Similarly, the significant main effect of
timepoints shows that reaction time changed from baseline to follow-up,
regardless of the condition. The non-significant interaction implies that
the effect of timepoint was consistent across both conditions, and vice
versa. As Table 2 indicates, there is an increase in switch costs from
baseline to follow-up, although it is not statistically significant. Fig. 2
shows individual (grey) and population (bold black) trajectories of

changes in switch cost with age. It is important to note that higher switch
costs are associated with poorer performance.

3.2. Brain structure index

Elastic Net regression was used to extract a brain change index from
the volume and thickness change of 149 cortical and subcortical brain
regions to best predict the switch-cost change from baseline to follow-
up. The model was applied using leave-one-out cross validation. Mul-
tiple models were trained with different alpha values and based on cross-
validation analysis an alpha value of 0.55 was selected for the Elastic Net
model which balanced the L1 (lasso) and L2 (ridge) regularization and
minimized the error. The lambda value that minimized the mean
squared error was selected, and the corresponding coefficients were
obtained while 11 brain measures were selected (Table 3).

3.3. fMRI OrT patterns

The OrT analysis identifies task-related patterns that show a signif-
icant change in expression from the single to the dual condition (p <

0.001 of permutation test for N=1000 iterations). The patterns with z
values above threshold (|z|>2) and with cluster size >100 voxels were
used for analysis. The positive weights within the pattern correspond to
regions exhibiting greater activation from the single to the dual condi-
tion, while regions with negative weights demonstrate a decrease in
activation during the shift from the single to the dual condition.

The task-positive and -negative networks are identified using FDR-

Table 2
Mean reaction time (RT) for the single and dual conditions and switch cost (RT
dual- RT single) at baseline and follow-up.

Baseline (Mean ± SD) Follow-up (Mean ± SD)

RT single 0.87±0.13 0.93±0.15
RT dual 1.15±0.22 1.24±0.22
Switch cost 0.28±0.13 0.31±0.17

Fig. 2. Individual (grey) and population (bold black) trajectories of switch cost
(difference in median reaction time between single and dual conditions)
across age.

Table 3
Selected brain measure by elastic net regularization to obtain brain
structure change index.

Brain Measure Hemisphere

Subcortical Gray Matter Volume -
Cuneus Volume Left
Lingual Volume Left
Medial Orbitofrontal Volume Left
Medial Orbitofrontal Thickness Left
Pars Orbitalis Volume Left
Posterior Cingulate Volume Left
Lateral Occipital Volume Right
Pars Opercularis Volume Right
Temporal Pole Thickness Left
Entorhinal Thickness Right
Lateral Occipital Thickness Right
Middle Temporal Thickness Left

F. Hasanzadeh et al. Neurobiology of Aging 145 (2025) 76–83 

79 



corrected thresholds for both single and dual task conditions, as illus-
trated in Fig. 3 and reported with details in Table A.1 (Appendix A). The
identified pattern is extracted based on stacked baseline and follow-up
data, then we used the OrT score of the identified pattern which is
projected to baseline data for the analysis.

3.4. Task-related activation moderates the association between brain
structure change and changes in switch cost from baseline to follow-up

A subsequent linear regression model was applied to check the
relation between change in brain structural index and change in switch
cost from baseline to follow-up, and to explore the moderation effect of
baseline OrT pattern expression score on this relationship. The model
included structural brain change index, dOrT score, and their interaction
term as the independent variable and change in switch cost as the
dependent variable. Baseline age, switch cost at baseline, sex, baseline
intracranial volume and scanner ID variable included as covariates.

The linear regression model revealed significant findings (Table 4).
Structural brain change index (β = 0.5763, p = 0.0001) were positively
associated with change in switch cost, suggesting that higher structural
brain change index were linked to an elevated change in switch costs.
Notably, the interaction term of dOrT and structural brain change index
presented a significant negative association with switch cost change (β =

− 0.035, p = 0.005). This significant interaction indicates that the dOrT
moderated the effect of brain change on change in switch cost. In other
words, dOrT decreased the effect of brain change on change in switch
cost. Meanwhile, baseline age, sex, Intracranial Volume, scanner ID and
dOrT did not have statistically significant effects in the model. The
scanner ID is a variable that is used to account for the effect of two
applied MRI scanners (Philips Achieva and Siemens PRISMA) and its
corresponding p value approaches significance (p= 0.0637), although it
doesn’t reach the statistical significance level of 0.05.

To examine the specificity of our findings, we conducted additional
analyses on general slowing observed over the 5-year period. For
changes in single-task RT, structural brain changes were significantly
associated with increased RT (β = 0.2, p <0.01), and dOrT significantly
moderated this relationship (interaction β = − 0.004, p = 0.04). For
changes in dual-task RT, structural brain changes were significantly
associated with increased RT (β = 0.33, p <0.01), but the interaction
effect was not significant (interaction β = − 0.005, p= 0.2). These results
indicate that the moderating effect of dOrT is present for both the
simpler single-task condition and the more complex switch cost mea-
sure, but not for the dual-task condition

To illustrate the moderation effect of dOrT on the relation of brain
change and switch cost change, simple slope analyses (Preacher et al.,
2006) were applied. As shown in the interaction plot (Fig. 4), the posi-
tive relationship between brain changes and increased switch costs is
more pronounced in the low dOrT group compared to the high dOrT
group. Specifically, for participants with low dOrT, greater brain change

is associated with larger increases in switch costs. In contrast, the rela-
tionship is considerably weaker for those who have high OrT. These
findings suggest that the degree to which brain changes affect the switch
costs depends significantly on the dOrT score. When the differential
activation in identified patterns is low, individual differences in brain
changes were more tightly coupled with switch costs. However, this
structural brain-behavior relationship is attenuated under conditions of
higher differential activation in the OrT patterns.

Additionally, the Johnson-Neyman plots are used to probe the region
of significance of the interaction between brain change and dOrT on
switch cost change. This analysis uses 95 % confidence intervals to
determine the range of values of the moderator (dOrT) for which the
effect of the predictor (brain change index) on the outcome (switch cost
change) is statistically significant. The resulting Johnson-Neyman plot
(Fig. 5) depicts a line with a negative slope, indicating that the effect of

Fig. 3. Brain regions with positive (red) and negative (blue) loadings in the OrT patterns (obtained by ordinal trends canonical variate analysis or OrT CVA).

Table 4
Fixed effect coefficients of Linear Mixed Effects Model.

β t stat p value

Intercept − 0.0782 − 0.1869 0.8527
Baseline Switch Cost 0.2523 1.5341 0.1329
Baseline Age 0.0000 − 0.0055 0.9956
Sex-Female 0.0297 0.5644 0.5756
Scanner ID-PRISMA − 0.0960 − 1.9070 0.0637
Baseline Intracranial Volume 0.0142 0.5325 0.5973
dOrT − 0.0018 − 0.5232 0.6037
Brain Change Index 0.5763 4.4466 0.0001
dOrT x Brain Change − 0.0351 − 2.9501 0.0053

Fig. 4. The interaction effect between brain changes and dOrT on switch cost
(difference in median reaction time between single and dual conditions)
changes. Low dOrT which is differential task-related expression score of pat-
terns obtained by ordinal trends canonical variate analysis (1 SD below the
mean) is depicted by the dashed line, and high dOrT (1 SD above the mean) by
the solid line.
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brain change on switch cost change diminishes as dOrT increases. When
dOrT is lower than 11.63, the effect of brain change on switch cost
change is statistically significant (p<0.05) while for dOrT higher than
11.63, the relation is no longer significant. The value of 11.63 corre-
sponds closely to the 75th percentile of our sample (11.56), indicating
that for approximately 25 % of participants with the highest dOrT
scores, there was no significant relationship between brain structural
changes and switch cost changes. The dOrT scores in our sample ranged
from − 8.37–26.31 (specified by bold black horizontal line in Fig. 5),
with a mean of 7.86 (SD = 6.00) and a median of 7.29.

4. Discussion

This longitudinal study provides evidence that greater expression of
a specific pattern of task-related brain activation can moderate the
impact of brain-structural change on change in switch cost over time.
This suggests that enhanced engagement of the identified networks
during an executive task enables the preservation of task-switching
abilities despite the accumulation of age-related structural brain
changes. The Framework for Terms Use in the Research of Reserve and
Resilience defines cognitive reserve as a property of the brain that allows
for cognitive performance that is better than accepted given the degree
of life course related brain changes and brain injury of disease. The
observed moderating effect of the dOrT score demonstrates that the
differential expression of the identified task-related pattern is a neural
implementation of cognitive reserve (Stern et al., 2023).

The reported analyses focus on participants in later adulthood, aged
60 and above. This choice is motivated by the CR hypothesis, which
explores functional cognitive processes in the presence of significant age
or disease-related structural brain changes (Stern et al., 2023). The re-
sults suggest that greater capacity to upregulate functional brain net-
works enables the preservation of task-switching capabilities in the
presence of structural brain changes, specifically in old age. This finding
aligns with the concept of capacity, one of the potential mechanisms
underlying CR suggested by Stern (Stern, 2009). Capacity is defined as
"the maximum degree to which a task-related brain network can be
activated to keep performing a task in the face of increasing demands"
(Stern et al., 2020). Our findings provide direct evidence for this
mechanism, showing that individuals with higher dOrT scores exhibited
greater increases in activation from single to dual task conditions. This

higher functional capacity at baseline may allow individuals to maintain
cognitive performance over time despite accumulating structural brain
changes. Prior cross-sectional studies also found that older individuals
who sustain task-switching abilities exhibit greater prefrontal and pa-
rietal activation than those with switching deficits (Gazes et al., 2012;
Gold et al., 2010). Our longitudinal findings extend these observations,
demonstrating that this increased activation moderates the impact of
structural brain changes on cognitive decline over time.

Our additional analyses revealed that dOrT moderates general
slowing in the single-task condition and longitudinal changes in switch
cost, but not general slowing in the dual-task condition. This pattern
suggests that the neural implementation of reserve we identified may be
most effective at certain levels of cognitive demand, aligning with
Stern’s conceptualization of reserve (Stern, 2009) as a feature of brain
function with varying effects across different task difficulties. The
absence of a moderating effect in the dual-task condition might indicate
a complexity threshold beyond which this specific neural implementa-
tion of reserve is less effective.

The OrT analysis we employed identifies patterns of coordinated
brain activity across the entire brain, rather than focusing on isolated
regional activations. This multivariate approach captures the complex
interplay of neural systems involved in task performance. While it pro-
vides valuable insights into network-wide activation patterns, it is
important to recognize that the OrT method emphasizes the collective
behavior of brain regions rather than pinpointing specific localized
functions. In this context, we observed that certain brain regions showed
increased activation from single to dual task conditions, included areas
associated with executive function, attention, and cognitive control,
such as the precuneus, inferior parietal Lobule, and precentral gyrus
(Barber and Carter, 2005; Cavanna and Trimble, 2006). The precuneus,
which showed the highest positive loading in our OrT pattern, has been
implicated in a wide range of cognitive functions, including
visuo-spatial imagery, episodic memory retrieval, and self-processing
operations (Cavanna and Trimble, 2006). Precuneus also has been
associated with task switching (Kim et al., 2012) and its activation is
related to maintaining task-relevant information (Loose et al., 2017) and
showed greater activity in preparation to switch between tasks (Barber
and Carter, 2005). The increased engagement of this region in in-
dividuals with higher dOrT scores may reflect a greater capacity to
efficiently prepare for switching between tasks. It is reported that the
precuneus may support the anticipatory aspect of task switching by
preparing the cognitive system for task performance under heightened
attentional demands. In contrast, the inferior parietal activation which is
also found to be involved during task switching, may associated with the
reconfiguration of task set (Barber and Carter, 2005). The other region in
our identified pattern is precentral gyrus which is primarily associated
with motor function and its inclusion in our CR pattern may reflect the
motor processes required for efficient task-switching. A meta-analyses
on brain regions associated with different types of task switching
found that precentral gyrus is preferentially activated for different task
switching (Kim et al., 2012). The negative loadings in our OrT pattern,
primarily in temporal and insular regions, suggest that effective CR in-
volves both enhancement and suppression neural activity. This could be
related to the idea that cognitive efficiency involves both the upregu-
lation of task-relevant networks and the downregulation of
task-irrelevant activity (Gazzaley et al., 2005).

The observed variability in the degree of activation of identified
patterns during single and dual task conditions among our participants,
all of whom are in later adulthood, highlights the heterogeneous nature
of cognitive aging. Although our study did not compare young and older
adults, this variability may be related to the concept of neural dedif-
ferentiation, where brain regions that once showed specialized re-
sponses for specific cognitive processes in young adults become less
specialized in older adults, responding more similarly across different
cognitive tasks (Goh, 2011). This reduced neural selectivity is thought to
contribute to cognitive decline, particularly in fluid cognitive abilities

Fig. 5. Johnson-Neyman plot depicting the conditional relationship between
brain change index and switch cost change across levels of dOrT (differential
task-related expression score of patterns obtained by ordinal trends canonical
variate analysis). The dashdotted line indicates a statistically significant rela-
tionship (p<0.05) between brain change index and switch cost (difference in
median reaction time between single and dual conditions) change. The dotted
line indicates a non-significant relationship.
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(Koen & Rugg, 2019). Neural dedifferentiation is characterized by less
distinctive cognitive representations, reduced selectivity in posterior
brain regions, increased and less selective frontal recruitment, and al-
terations in functional connectivity, all of which contribute to
age-related cognitive changes across various domains including
perception, memory, and executive function (Goh, 2011). In another
study, Goh et al demonstrated that cognitive aging is not a uniform
process, but rather a heterogeneous one with different components of
executive and memory processes showing distinct longitudinal changes.
They found declines in inhibition, manipulation, semantic retrieval,
phonological retrieval, switching, and long-term memory, while abili-
ties such as abstraction, capacity, chunking, discrimination, and
short-term memory were maintained or even improved with age (Goh
et al., 2012). The individual differences we observed in task-related
activation patterns suggest that the degree of dedifferentiation may
vary among older adults. Despite calculating the same neural pattern
across participants, we found individual differences in the degree of
change in activation between single and dual conditions. This vari-
ability, quantified by the differential expression of the dOrT, led to
differences in the impact of brain structural change on switch costs in
aging. It has been posited that aging decreases the extent to which
behavior is specialized or differentiated for individual tasks (Park et al.,
2004). In current results, higher dOrT scores, indicating greater differ-
entiation between single and dual task conditions, were associated with
a lower impact of structural brain changes on switch costs (i.e. better
performance). These findings suggest that the ability to maintain more
differentiated neural responses to varying task demands may be a key
factor in cognitive resilience among older adults. Individuals who show
less dedifferentiation (as indicated by higher dOrT scores) appear to be
better able to cope with structural brain changes, maintaining better
task-switching performance. This underscores the importance of
considering individual differences in neural activation patterns when
studying cognitive resilience in aging, even within a group of older
adults.

In the brain structural analysis, the elastic net model identified a set
of cortical and subcortical regions whose structural changes were asso-
ciated with changes in task-switching performance over time. Instead of
focusing on a predetermined set of brain areas, this data-driven
approach revealed a widespread pattern of age-related changes in grey
matter volume and cortical thickness. Some regions identified by the
model, including the posterior cingulate cortex, have been reported in
earlier studies to have related activation with cognitive flexibility
(Razzaq et al., 2022) and task-switching (Hayden et al., 2010; Leech and
Sharp, 2014). Moreover pars opercularis and pars orbitalis are parts of
the inferior frontal gyrus, which is reported as the second most signifi-
cant region in switching paradigms in a meta-analysis (Derrfuss et al.,
2005). The inclusion of medial orbitofrontal and entorhinal regions in
our structural change index is noteworthy, as these areas are among the
earliest to show age-related atrophy and are particularly vulnerable in
neurodegenerative conditions like Alzheimer’s disease (Fjell et al.,
2014). Their association with changes in task-switching performance
may underscore the close link between structural brain health and
cognitive function in aging.

The current study applied OrT CVA to characterize differential brain
activation patterns underlying executive control processes. OrT CVA
identifies ordinal trends in brain activity on a subject-by-subject basis
rather than just looking at group averages; hence, it is an excellent
candidate for studying individual differences. Moreover, it analyzes the
entire brain unbiasedly and does not require a priori specification of
brain regions of interest. (Habeck, Krakauer, et al., 2005; Habeck,
Rakitin, et al., 2005).

This study has its limitations. The number of participants is relatively
low. Longitudinal studies with larger sample sizes would provide a more
complete and accurate understanding of the changes in brain structure,
function, and cognitive performance over time. Moreover, the study
could be extended to young individuals in order to explore similarities or

differences in the neural substrates of cognitive performance between
older adults and younger individuals, and address whether more
youthful appearing activation patterns are associated with cognitive
reserve as well. Furthermore, while the task-switching paradigm effec-
tively measured executive function, future studies can include a broader
range of cognitive tasks to better assess the neural implementation of
cognitive reserve across various cognitive domains.

5. Conclusion

This longitudinal study provides novel evidence that enhanced
engagement of a task-related functional brain network can moderate
cognitive decline associated with structural brain changes in aging. We
identified a brain network exhibiting differential activation between
single and dual task conditions on a set-shifting task. Critically, this
differential activation moderated the relationship between structural
brain change and change in task-switching performance over 5 years.
Individuals showing greater increases in neural activation from single to
dual conditions better preserved cognitive flexibility despite accumu-
lating structural brain change, suggesting a neural implementation of
cognitive reserve. While structural declines impaired performance,
functional upregulation of a specific brain network buffered against
deleterious effects. Such proximal candidates for the neural imple-
mentation of CR present alternate valuable research in addition to the
evaluation of traditional epidemiological CR proxies such as educational
or occupational attainment.
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