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Chronic stress and glucocorticoids
(GCs, the stress hormones of the body)
are implicated in the tau, amyloid β (Aβ),
and neuroinflammatory pathology that
is characteristic of Alzheimer's disease.

Stress andGCs activate kinases and in-
hibit proteostasis mechanisms, thus
driving tau hyperphosphorylation, ag-
gregation, and secretion/spreading
through the brain.

Stress and GCs promote Aβ pathology
by increasing the expression and
amyloidogenic processing of amyloid
precursor protein (APP) and by impairing
APP and Aβ clearance mechanisms.
Chronic stress and the accompanying long-term elevation of glucocorticoids
(GCs), the stress hormones of the body, increase the risk and accelerate the pro-
gression of Alzheimer's disease (AD). Signatures of AD include intracellular tau
(MAPT) tangles, extracellular amyloid β (Aβ) plaques, and neuroinflammation. A
growing body of work indicates that stress and GCs initiate cellular processes
underlying these pathologies through dysregulation of protein homeostasis
and trafficking, mitochondrial bioenergetics, and response to damage-
associated stimuli. In this review, we integrate findings frommechanistic studies
in rodent and cellular models, wherein defined chronic stress protocols or GC
administration have been shown to elicit AD-related pathology. We specifically
discuss the effects of chronic stress and GCs on tau pathogenesis, including
hyperphosphorylation, aggregation, and spreading, amyloid precursor protein
(APP) processing and trafficking culminating in Aβ production, immune priming
by proinflammatory cytokines and disease-associated molecular patterns, and
alterations to glial cell and blood–brain barrier (BBB) function.
Stress and GCs stimulate neuroinflam-
mation through upregulation of the in-
flammasome and damage-associated
molecular pattern (DAMP) receptors,
thereby promoting the secretion of proin-
flammatory cytokines.

Stress and GCs induce aberrant glial cell
functioning, leading to over-pruning of
synapses, glutamate excitotoxicity, and
decreased integrity of the blood–brain
barrier (BBB) and glymphatic clearance
systems.
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Stress and GC signaling in the brain
During exposure to stressful stimuli, nuclei in the locus coeruleus of the brainstem release norepi-
nephrine, coinciding with activation of the hypothalamic–pituitary–adrenal (HPA) axis [1,2]. The
HPA axis initiates a cascade of hormones, culminating in the release of GCs – the primary stress
hormones – from the adrenal glands into the systemic circulation [2,3]. GCs in turn induce phys-
iological changes, including alterations to neuronal communication and energy mobilization, that
enable organisms to cope with the initiating stressor and enhance their chance of survival in
threatening situations; thus, strong selective pressure has maintained the HPA axis and stress/
GC signaling throughout evolution. However, prolonged exposure to stressors and persistent el-
evation of GCs, manifesting as chronic stress, have profoundly negative consequences on organ-
ismal physiology [4,5]. The brain is particularly sensitive to changes in energy production that
occur during sustained stress signaling because it has the highest energy demand of any
organ. This sensitivity is due in part to the polarized morphology of neurons, wherein energy-
intensive protein/organelle transport and clearance pathways are necessary to maintain the func-
tion of neuronal synapses [6,7]. Accumulating evidence suggests that dysregulation of these
pathways during chronic stress signaling mimics changes to neurons and glia observed early in
neurodegeneration; indeed, chronic stress is now a well-documented risk factor for AD [4,8–10].

GCs signal through mineralocorticoid receptors and GC receptors (GRs). Although GCs have
high affinity for mineralocorticoid receptors, these receptors are typically saturated by basal GC
levels, whereas stress and elevated GC levels facilitate GR-mediated effects. GRs are expressed
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ubiquitously throughout the brain [11] but are particularly enriched in the hypothalamus (for feed-
back to the HPA axis), hippocampus [12], and prefrontal cortex, where GCs have wide-ranging
effects on learning, memory, and neuronal morphology [11]. GRs localize not only to the plasma
membrane, like conventional ligand-binding receptors, but also to the cytosol and to membranes
of subcellular organelles such as mitochondria. Cytosolic GRs facilitate the genomic effects of
GCs on gene expression. In the absence of GCs, cytosolic GRs are bound to an inhibitory com-
plex, comprising HSP70, HSP90, FKBP51, FKBP52, and BAG1, that conceals the GR nuclear
localization signal [11]. This complex is displaced upon GC binding, facilitating nuclear transloca-
tion of GC-bound GRs and their indispensable function as transcription factors that regulate a
large set of steroid hormone-responsive genes via GC response elements in the genome [11].
GC/GR complexes directly regulate multiple genes relevant to protein homeostasis and mito-
chondrial quality control (biogenesis, fission/fusion, mitophagy) [13], and can physically interact
with nearly 300 other transcription factors to achieve context-specific, tunable gene regulation
[11,14]. In contrast to their cytosolic counterparts, GRs associated with plasma and mitochon-
drial membranes typically facilitate the non-genomic effects of GCs. At the plasma membrane,
GC-bound GRs interact with phosphatases, kinases, the membrane-trafficking machinery, and
receptors for neurotransmitters, thereby orchestrating changes in synaptic strength that facilitate
responsiveness/adaptation to stress-provoking stimuli. Mitochondria-associated GRs stimulate
mitochondrial Ca2+ buffering [15,16] and oxidative phosphorylation [17], while inhibiting autoph-
agy via phosphorylation and activation of the kinase mTOR [16,18]. These and other actions fa-
cilitate rapid energy production and utilization that enable organisms to escape from acute
stressors. By contrast, sustained GC exposure causes decreased mitochondrial ATP production
[15], long-term inhibition of autophagy, and dysregulation of organelle and protein trafficking [16],
all of which are pathogenic mechanisms implicated in AD [19,20].

Indeed, clinical and epidemiological studies implicate chronic stress as a risk factor for AD, which
the World Health Organization credits as the cause of ~70% of dementia in individuals over age
65 [21]. The dual observations that AD patients exhibit hypercortisolemia [22,23], and that AD
subjects treated daily with prednisone (a synthetic GC) experience significantly greater cognitive
decline than those who do not receive this treatment [24], support the hypothesis of stress as a
risk factor or accelerant of AD pathogenesis. In addition, a recent cohort study of >1 million
individuals revealed that a diagnosis of chronic stress-induced exhaustion disorder confers an
odds ratio for Alzheimer disease of 2.45 [9], greater than the odds ratios for all other modifiable
AD risk factors.

This review aims to discuss recent work linking chronic stress and high GC levels to AD patho-
genesis, as well as the molecular and cellular mechanisms through which stress/GCs precipitate
or accelerate AD. We focus primarily on stress as modeled through well-documented paradigms
in rodents (e.g., chronic unpredictable stress, chronic social defeat stress [25,26]) and exoge-
nous GC administration, although we acknowledge that other hormones and neurotransmitters
[e.g., norepinephrine, corticotrophin-releasing hormone (CRH), and aldosterone] contribute to
the physiological effects of stress, and that these animal model studies incompletely recapitulate
the experience of chronic psychological stress in humans. In the following sections we specifically
highlight the impacts of chronic stress and high GC levels on three hallmark features of AD: tau
pathogenesis, Aβ production, and neuroinflammation.

Chronic stress and GCs induce intracellular tau pathology
Tau is amicrotubule-associated protein that has crucial roles in the assembly, stability, and spatial
organization of microtubules in neurons [27,28]. As such, tau is essential for normal axonal and
nucleocytoplasmic transport; its aberrant hyperphosphorylation, aggregation, and incorporation
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into neurofibrillary tangles disrupt these processes and are hallmarks of AD [29]. Considerable
evidence implicates chronic stress/GC-induced tau pathogenesis (hyperphosphorylation, accu-
mulation, aggregation, transcellular spreading) as a key mechanism through which stress precip-
itates brain pathology and accelerates AD progression [4]. Tau is phosphorylated by multiple
kinases, including glycogen synthase kinase 3β (GSK3β), cyclin-dependent kinase 5 (CDK5),
SRC kinases, p38 mitogen-activated protein kinase (MAPK), and microtubule affinity regulating
kinase 4 (MARK4) [30], and stress/GCs are reported to activate several of these. For instance, in-
creased GC signaling via the expression of a constitutively active GR was shown to promote
MAPK signaling [31], whereas knockout of neuronal GRs conversely led to downregulation of
MAPK pathway components [RAS, RAF1, extracellular signaling-regulated kinase 1 (ERK1),
ERK2, and EGR-1] in mouse hippocampus. In addition, GCs were found to induce tau
hyperphosphorylation in primary neuronal cultures [32] and rodent brain [33–35] through
phosphorylation/ activation of GSK3β, CDK5, and ERK1/2, kinases that are also implicated in
tau pathogenesis in AD (Figure 1) [30]. Chronic unpredictable stress paradigms involving daily ex-
posure to randomly selected stressors (e.g., white noise, restraint, damp bedding, overcrowding,
tilted cage) similarly upregulate CDK5 and GSK3β phosphorylation in mouse anterior cingulate
cortex [36], an area associated with development of negative mood and depression. Such
hyperphosphorylation promotes tau detachment frommicrotubules and its mis-sorting to synap-
ses, where it has been shown to impair presynaptic neurotransmitter release via interactions with
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Figure 1. Glucocorticoids (GCs) stimulate tau pathology through multiple mechanisms. GCs (top right) activate
kinases and deplete protein chaperones, which can lead to tau hyperphosphorylation, misfolding, and aggregation. GCs
also induce mitochondrial damage (e.g., by activating the mitochondrial permeability transition pore, mPTP), thereby increas-
ing the production of reactive oxygen species (ROS) that in turn promote tau pathogenesis. Tau oligomers and aggregates
accumulate in cells because GCs impair their clearance via inhibition of autophagy and RAB35-mediated endolysosoma
sorting. Finally, GCs promote tau secretion through type I unconventional protein secretion (UPS), which requires interactions
between phospho-tau and plasmamembrane heparin sulfate proteoglycans (HSPGs), and likely through the release of sma
extracellular vesicles (sEVs) upon multivesicular endosome (MVE) fusion with the plasma membrane. Abbreviations: ER, en-
doplasmic reticulum; GR, glucocorticoid receptor; P, phosphorylation. Figure created with BioRender.

Trends i
l

ll
n Neurosciences, Month 2024, Vol. xx, No. xx 3

CellPress logo


Trends in Neurosciences
the synaptic vesicle-associated protein synaptogyrin 3 [37], and to stimulate postsynaptic
N-methyl-D-aspartic acid receptor (NMDAR)-mediated excitotoxicity via interactions with
FYN kinase [38,39]. Indeed, exposure to chronic unpredictable stress was found to increase
NMDAR/FYN-driven synaptic signaling in the hippocampus of wild-type mice, but did not alter
this signaling pathway in tau (Mapt) knockout mice, demonstrating the tau-dependence of this
synaptic effect [39]. Hyperphosphorylation of tau also facilitates its intracellular aggregation into
neurofibrillary tangles and its secretion from neurons [30,40,41], thereby contributing to the trans-
cellular spreading of pathogenic tau species (discussed in the next section).

Another mechanism by which stress/GCs contribute to tau aggregation is through the downreg-
ulation of molecular chaperones. One of these is heat-shock protein HSP70, which mediates the
folding and trafficking of newly synthesized proteins and is particularly crucial for regulating the in-
teractions of aggregation-prone proteins such as tau (Figure 1) [42]. Although HSP70 is upregu-
lated in multiple cell types during acute stress [43], it is significantly downregulated under chronic
stress or GC administration via downregulation of its transcription factor heat-shock factor 1
(HSF1) [42]. This reduction of HSP70 likely precipitates tau misfolding, leading to exposure of
its intrinsically disordered regions which in turn drives aggregation of tau monomers into oligo-
mers and ultimately neurofibrillary tangles [44,45].

In addition to promoting tau phosphorylation and aggregation, stress/GCs inhibit autophagy and
endolysosomal protein degradation, allowing hyperphosphorylated and aggregated tau to accu-
mulate in cells over time. High GC levels in cultured neuronal cells and the chronic unpredictable
stress paradigm in vivo were shown to induce phosphorylation and activation of mTOR, thereby
inhibiting autophagy and promoting the accumulation of tau aggregates, leading to cell death
(Figure 1) [18]. Inhibition of mTOR with the rapamycin analog CCI-779 attenuated these GC-
driven phenotypes in vitro [18], demonstrating the importance of autophagy for tau aggregate
clearance in cells and its impairment by GCs. High GC levels also inhibit tau degradation via the
endolysosomal pathway through transcriptional downregulation of the small GTPase RAB35
[46], a master regulator of endosomal protein trafficking. RAB35 was shown to mediate tau
sorting into the endolysosomal pathway by promoting interactions between ubiquitinated
tau and the early endosome-associated protein HRS [46], the first component of the ESCRT
(endosomal sorting complex required for transport) pathway (Figure 1). Notably, adeno-associated
virus (AAV)-mediated expression of recombinant RAB35 in rat hippocampus prevented GC-
induced tau accumulation and downstream tau-dependent loss of dendrites and synapses in
CA1 pyramidal neurons. These findings demonstrate that GC-mediated disruption of tau
proteostasis precipitates tau-driven synaptic and neuronal toxicity (Figure 1), which can be
rescued by stimulating tau degradation.

Our group has recently uncovered another mechanism by which GCs contribute to tau patho-
genesis through the regulation of mitochondrial health [47]. As discussed in the preceding text,
prolonged GC exposure impairs mitochondrial function, and decreases ATP production and en-
ergy availability while increasing the production of cytotoxic reactive oxygen species (ROS) [13].
GCs also promote mitochondrial ROS production via transcriptional downregulation of the mi-
tophagy adaptor NIX [48], leading to the accumulation of damaged mitochondria. ROS are highly
toxic to cells and have been shown to induce tau hyperphosphorylation and aggregation through
mechanisms that are poorly understood [49]. Our recent work shows that GCs damage mito-
chondria via a further mechanism, the transcriptional upregulation of cyclophilin D (CYPD) [47].
CYPD is an activator of the mitochondrial permeability transition pore (mPTP) that forms in the
inner mitochondrial membrane upon CYPD binding to ATP synthase [50]. GC-induced mPTP
opening was found to promote mitochondrial depolarization and ROS production, as well as
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the accumulation of oligomeric tau adjacent to damaged mitochondria, in hippocampal neurons
in vitro and in vivo (Figure 1) [47]. Both mitochondrial damage and tau oligomerization were
prevented by administration of the CYPD inhibitor cyclosporin A or by CYPD knockdown. Intrigu-
ingly, administration of mito-apocynin, a mitochondria-targeted compound that inhibits mPTP
opening and ROS production, prevented GC-induced mitochondrial damage, tau phosphoryla-
tion/oligomerization, and downstream synapse and dendrite loss in the hippocampus and cortex
of mice [47]. It is notable that CYPD protein levels are also elevated in AD post-mortem brain tis-
sue [51] and in an ex vivo model of AD mitochondrial dysfunction, SH-SY5Y cytoplasmic hybrid
(cybrid) cells, wherein endogenous mitochondria are replaced by mitochondria from AD patients
[52]. Cybrid cells recapitulate key changes observed in the AD brain, including increased expres-
sion of markers associated with oxidative stress, inflammation, and apoptosis, and higher levels
of oligomeric tau [52]. We and others have found that treatment of AD cybrid cells with CYPD/
mPTP inhibitors [47,53] or with the GR antagonist mifepristone [47] effectively normalizes mitochon-
drial function and associated tau pathology to the level of non-AD control cybrids, demonstrating
that mitochondrial damage, and mPTP opening in particular, can induce tau pathogenesis in the
context of both AD and GR signaling.

Chronic stress and GCs induce pathogenic tau spreading
Another feature of tau pathology in AD is its stereotypical propagation between brain regions, be-
ginning as pre-tangle structures in the locus coeruleus, then spreading through the entorhinal
cortex, hippocampus, and finally the neocortex [54]. The identification of early tau pathology in
the locus coeruleus provides compelling evidence for stress as an initiator of AD pathology be-
cause the locus coeruleus is implicated in arousal and the detection of stressful stimuli and
feeds into the HPA axis [55]. The locus coeruleus is also the main source of norepinephrine in
the brain; it is therefore likely that the interactions between GCs and norepinephrine that occur
as a result of dysregulated feedback between the HPA and locus coeruleus underlie some of
the earliest features of tau pathology resulting from stress [56]. Tau spreading is highly correlated
with cognitive decline [57] and is thus regarded as a key driver of AD progression, leading many
researchers to study the mechanisms of tau secretion and propagation with the hope of slowing
or halting the disease. Tau release occurs through both vesicle- and non-vesicle-based mecha-
nisms [58], and emerging work from our laboratories indicates that chronic stress and elevated
GC levels stimulate tau secretion through both pathways. In a recent study, we showed that
GC exposure promotes the secretion and spreading of vesicle-free tau in murine hippocampal
neurons in vitro and in vivo [59]. This mode of secretion requires GSK3β-mediated tau phos-
phorylation and likely occurs through type 1 unconventional protein secretion (UPS), wherein
phosphorylated/oligomeric tau is directly translocated across the plasma membrane via interac-
tions with lipids and heparin sulfate proteoglycans (Figure 1) [60,61]. Intriguingly, GC-induced tau
spreading in vivo was strongly attenuated by epigallocatechin gallate (EGCG) [59], a polyphenol
component of green tea that inhibits tau oligomerization and secretion via type 1 UPS [60].
These findings provide compelling evidence that type 1 UPS plays an important role in GC-
mediated tau propagation in vivo.

Tau is also secreted in small extracellular vesicles (sEVs), 50–150 nm diameter vesicles that carry
diverse biomolecules (i.e., RNAs, proteins, metabolites, lipids) and mediate intercellular commu-
nication [62]. Proteomic analyses of sEVs isolated from AD patient blood and cerebrospinal fluid
(CSF) have revealed that they carry phosphorylated tau [63] and Aβ oligomers [64], and can be
used to diagnose AD up to 10 years before clinical onset [65,66]. Importantly, sEVs have also
been shown to mediate pathogenic tau spreading in AD mouse models, and drugs that inhibit
sEV release attenuate the development of tau-related pathology and cognitive impairment in
these animals [67–69]. Our recent work demonstrates that the chronic unpredictable stress
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paradigm promotes a dramatic increase in sEV secretion from murine hippocampal and cortical
tissue [70]. Together with previous studies showing that stress-induced tau pathology is detected
across connected areas of hippocampus and cortex [39,71], these findings provide evidence
that stress and GCs stimulate tau spreading through sEVs. Although it remains unclear how
stress/GCs induce sEV release, one potential mechanism is via activation of the neutral
sphingomyelinase 2 (nSMase2/SMPD3) and ceramide synthesis pathway [62,72,73], one of
the major sEV biogenesis pathways (Box 1).

Chronic stress and GCs stimulate Aβ production
In addition to tau tangles, another main neuropathological hallmark of AD is extracellular plaques
composed of Aβ peptides. Pathogenic Aβ is formed through the proteolytic cleavage of amyloid
precursor protein (APP), a member of the APP family that have roles in trans-synaptic adhesion,
dendritic spine complexity, and synaptic plasticity [74]. Non-amyloidogenic cleavage of APP by
α-secretase produces sAPPα, a secreted fragment that promotes prosurvival mechanisms in
neurons, whereas amyloidogenic cleavage by β-secretase (BACE1) produces sAPPβ and is
the rate-limiting step in Aβ peptide production. As with tau pathology, stress and GCs have
been shown to increase Aβ pathogenesis through several mechanisms. For instance, GCs are
reported to stimulate Aβ production and processing via transcriptional upregulation of APP,
BACE1 [75,76], and nicastrin (NCSTN), a component of the γ-secretase proteolytic complex
that is responsible for the final cleavage of the C-terminal C99 fragment of APP into Aβ [77].
GCs also increase APP and BACE1 expression in non-neuronal cells, including astrocytes [78].
Because astrocytes are recruited to the borders of Aβ plaques and have been shown to phago-
cytose and degrade extracellular Aβ, it is also notable that GCs decrease this capacity by down-
regulating their expression of Aβ-degrading proteases (e.g., IDE, MMP9). Interestingly, treatment
with a selective GR antagonist was sufficient to normalize the levels of APP, BACE1, C99,
presenilin 1 subunit of γ-secretase (PSEN1), and IDE to levels observed in age-matched controls
in rats with amyloid pathology induced via intracerebroventricular injection of Aβ [76]. These find-
ings suggest that GCs can drive amyloidogenic processing and block Aβ degradation in the ro-
dent brain even at physiological levels.

GCs, in addition to their transcriptional regulation of APP and its processing enzymes, also pro-
mote Aβ formation through alterations to mitochondria–endoplasmic reticulum (ER) contact
sites (MERCS), which are enriched in the APP processing enzymes BACE1 and PSEN1. In the
human neuroblastoma cell line SH-SY5Y, GCs promote the formation of MERCS through upreg-
ulation of BCL2, leading to BCL2 complex formation withmitochondrial GRs and BCL2-mediated
Box 1. Chronic stress/GCs may induce the release of small extracellular vesicles (sEVs) by activating the
nSMase2/ceramide synthesis pathway, thus contributing to the propagation of AD pathology

sEVs originate as intraluminal vesicles that are released from multivesicular endosomes (MVEs) upon fusion with the
plasma membrane (Figure 1). MVE formation typically occurs through two pathways: the endosomal sorting complex re-
quired for transport (ESCRT), which captures cargo and induces intraluminal vesicle formation through the sequential re-
cruitment of protein complexes (ESCRT-0, -I, -II, -III), and the neutral sphingomyelinase (nSMase2)/ceramide synthesis
pathway, which induces intraluminal vesicle formation through synthesis of the sphingolipid ceramide. This latter pathway
is activated by the proinflammatory cytokines TNF-α [148,149] and IL-1β [150], as well as by several AD-associated
DAMPs including Aβ [151,152], extracellular ATP [153], and reactive oxygen species [154]. Because stress and GCs induce
proinflammatory cytokine release and augment cellular responses to DAMPs, it is highly likely that nSMase2/ceramide-driven
MVE/sEV biogenesis and secretion are amplified by stress/GCs, and thereby contribute to disease spread. Supporting this
concept, ceramide levels are increased in sEVs purified from the blood of patients with depression, and ceramide-containing
sEVs can drive depressive behaviors in mice [155,156]. Furthermore, chronic unpredictable stress increases the secretion of
sEVs frommouse brain tissue [70], suggesting that GCs serve as a direct [157] or indirect stimulus driving sEV secretion and
sEV-mediated spreading of pathology in AD. Multiple nSMase2 inhibitors are under development [158] and have shown
promise in reducing sEV release, as well as amyloid- and tau-related pathology, in AD mouse models [67,69,159].
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interactions between the ER and the mitochondrial proteins PACS2 and mitofusin 2, respectively
[16]. GCs further promote amyloidogenic processing at MERCs through downregulation of
RER1, which facilitates local accumulation of PSEN1 and γ-secretase assembly. GC-induced
MERCS thus serve as sites of APP misprocessing where Aβ peptides are generated and subse-
quently translocated to the mitochondrial matrix, a common site of Aβ accumulation in the early
phases of AD [79] (Figure 2).

Another mechanism by which GCs impact APP processing is through the regulation of APP and
BACE1 subcellular trafficking. Crucial to this process is the GTPase RAB35, a key regulator of
endosomal trafficking that is transcriptionally downregulated by GCs and implicated in tau degra-
dation (discussed in the preceding text) [75]. RAB35 regulates the trafficking of APP and BACE1
out of the endosomal network to distinct subcellular regions (plasma membrane and trans-Golgi
network, respectively) through its effector proteins OCRL and ACAP2 [75]. GC-mediated down-
regulation of RAB35 thus leads to increased accumulation and interaction of BACE1 and APP
within endosomes, thereby facilitating APP cleavage into Aβ (Figure 2). RAB35 levels are also
downregulated during aging [75], indicating a point of mechanistic convergence between stress
and aging, two important AD risk factors.

Finally, as previously mentioned, GCs inhibit both autophagy and endolysosomal protein degra-
dation, further contributing to elevated APP and Aβ levels because both molecules are degraded
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Figure 2. Glucocorticoids (GCs) promote amyloid β (Aβ) production via regulation of APP expression
processing, and trafficking. GCs (top left) transcriptionally upregulate APP, BACE1, and the nicastrin (NCTSN) subuni
of γ-secretase, thereby promoting APP cleavage into Aβ. GCs increase mitochondria–endoplasmic reticulum (ER) contac
sites (MERCS), that are enriched in BACE1 and γ-secretase, to promote Aβ formation and accumulation in mitochondria –

a hallmark of early AD. GC-mediated downregulation of RAB35 inhibits sorting of APP and BACE1 to the plasma
membrane and trans-Golgi network, respectively, thereby promoting their accumulation within endosomes and facilitating
amyloidogenic APP processing and Aβ production. Widespread endolysosomal defects similarly impair the ability of the
cells to degrade APP and Aβ. Abbreviation: GR, glucocorticoid receptor. Figure created with BioRender.
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in part through these pathways [80]. Interestingly, GC-treated microglia, the resident immune
phagocytes of the brain, appear to exhibit intact abilities to phagocytose extracellular Aβ. How-
ever, GC-driven endolysosomal trafficking and degradation defects may underlie the decreased
capacity of these microglia to degrade plaques once they are internalized [81].

As expected based on these cellular impacts, chronic stress paradigms and GC administration
have been found to stimulate Aβ secretion and accelerate the onset of Aβ plaque formation
and cognitive deficits in mouse models of AD-related amyloidogenesis [82–85]. In several of
these models, tau pathology and neuroinflammation were observed concomitantly with amyloid
deposition, providing further evidence that stress and GCs are drivers of these multiple inter-
twined pathogenic mechanisms.

Chronic stress and GCs amplify neuroinflammation
Activation of proinflammatory signaling pathways accompanies Aβ and tau pathology as cardinal
features of AD [86]. Neuroinflammation has a central role in AD pathophysiology, underscored by
genome-wide association studies that identified the innate immune genes TREM2 [87] andCD33
[88] as risk genes for AD. Paradoxically, although GCs are commonly prescribed for their potent
anti-inflammatory effects [89], demonstrated by the widespread use of synthetic corticosteroids
such as prednisone to treat autoimmune disorders, accumulating evidence suggests that chronic
elevation of GCs potentiates inflammatory signaling and that neuroinflammation is a key feature of
stress-related brain pathology [90–92]. Proponents of the 'glucocorticoid resistance model' dis-
count the role of GCs in driving proinflammatory pathways [93], and instead suggest that activa-
tion of these pathways reflects insufficient GC signaling through GR downregulation. However,
emerging evidence [94,95] indicates that GR expression levels and/or activation do not necessar-
ily correlate with proinflammatory gene expression, suggesting that inflammation is not simply a
consequence of GC resistance.

Chronic stress and GCs prime brain cell sensitivity to AD-associated damage-associated molecular
patterns (DAMPs)
Ongoing research efforts are directed towards identifying the mechanisms by which stress/GCs
promote neuroinflammation, and the role of such inflammatory signaling in AD development and
progression. Multiple studies demonstrate that GCs 'prime' brain cells for proinflammatory signal-
ing and synergize with other stimuli to activate these signaling pathways. For example, GCs have
been shown to upregulate Toll-like receptor 2 (TLR2) [96,97], which initiates inflammatory signal-
ing in response to DAMPS and pathogen-associatedmolecule patterns (PAMPs) and is activated
by Aβ peptides, tau fibrils, and extracellular ATP in mouse models of AD [98,99]. Several studies
have also demonstrated GC-mediated upregulation of the NLRP3 (nucleotide-binding, leucine-
rich repeat, pyrin domain-containing protein 3) inflammasome [100–102], an intracellular signaling
complex activated by pathogens and other harmful endogenous/exogenous stimuli, including Aβ
and tau fibrils [103]. GCs have also been shown to augment the expression of P2Y2R, a
purinergic receptor that activates p38 MAPK signaling upon detection of damage-associated ex-
tracellular ATP, thereby promoting proinflammatory gene expression [104]. It is thus probable
that stress/GC-mediated upregulation of TLR2, the NLRP3 inflammasome, and P2Y2R primes
neurons and glia for activation by Aβ, tau, and other AD-associated DAMPs, thereby amplifying
AD-related neuroinflammation (Figure 3). Supporting this concept, GCs were found to augment
the effects of another inflammatory agent, lipopolysaccharide (LPS), on activation of the MAPK/
NF-κB proinflammatory pathway in the rat brain [94,105]. Interestingly, a different study found
that administration of a selective NLRP3 inhibitor rescued GC-induced impairment of long-term
potentiation (LTP), a form of synaptic strengthening that underlies learning and memory, in both
wild-type rats and an AD transgenic rat model (McGill-R-Thy1-APP) [106]. Given that learning
8 Trends in Neurosciences, Month 2024, Vol. xx, No. xx
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Figure 3. Chronic stress/glucocorticoid (GC) exposure primes brain cell sensitivity to Alzheimer's disease (AD)-
associated damage-associated molecular patterns (DAMPs), thereby driving neuroinflammation. (1) The GC/
GR complex transcriptionally upregulates the DAMP-sensing receptors TLR2 and P2Y2R and the NLRP3 inflammasome.
(2) Primed brain cells rapidly recognize AD-associated DAMPs [e.g., amyloid β (Aβ) and extracellular ATP] via TLR2, P2Y2R,
and P2XR7. P2XR7 activates primed NLRP3 inflammasome, facilitating the cleavage and secretion of proinflammatory cyto-
kines. (3) Signaling through TLR2 and P2Y2R drives proinflammatory gene expression programs. Autocrine and paracrine sig-
naling by proinflammatory cytokines potentiates AD-associated neuroinflammation and glial activation. Abbreviations: GR,
glucocorticoid receptor; PAMP, pathogen-associated molecular pattern. Figure created with BioRender.
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and memory deficits are early clinical features of AD, these findings offer insight into how inflam-
matory signaling may contribute to stress/GC-induced cognitive decline in AD.

Chronic stress and GCs induce glial dysfunction
Glia play diverse roles in the central nervous system (CNS), including contributing to immune re-
sponses crucial for the maintenance of health and homeostasis in the brain. Microglia are the res-
ident immune cells of the brain and have important roles in immune surveillance, including
cytokine production as well as phagocytosis of pathogens, dead cells, debris, and neuronal syn-
apses, among other roles [107,108]. In constantly surveilling the environment for PAMPs and
DAMPs, microglia undergo rapid cellular expansion and phenotypic changes, and adopt an
ameboid-like morphology to phagocytose material upon PAMP/DAMP recognition. Chronic
stress and GC exposure can induce these morphological changes, thereby increasing microglia
number (identified by IBA1+, CD11b, or CX3CR1+ immunoreactivity) and soma size, and de-
creasing branch complexity [107,109–111]. For instance, in mouse studies, in response to
chronic social defeat stress (i.e., repeat exposure to aggressor conspecifics) and chronic unpre-
dictable stress, microglia were found to upregulate markers associated with microglial activation
(IBA1, CD11b, CD68, CD86, TLR4, and CD14) [111–113] in various brain areas including the
amygdala, prefrontal cortex, and hippocampus. In response to chronic unpredictable stress, mi-
croglia in the rat hippocampus upregulate HMGB1, a DAMP recognized by TLRs that propagate
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immune activation [114]. Microglia also secrete inflammatory cytokines that amplify neuroinflam-
mation through crosstalk with other immune-responsive cells in the brain and periphery. In partic-
ular, repeated social defeat stress has been shown to stimulate microglial release of the cytokines
IL-1β and CCL2, leading to CNS recruitment of monocytes from peripheral circulation (Figure 4)
[108,115]. Paradigms for chronic stress (e.g., social defeat stress, sleep deprivation) and GC el-
evation have also been shown to increase microglial synaptic pruning in rodent medial prefrontal
cortex and hippocampus, resulting in decreased brain volume [109,116]. Notably, pruning by mi-
croglia is implicated in synaptic loss in AD, and this represents another potential mechanism
through which stress/GCs may promote AD pathogenesis. It remains to be examined whether
chronic stress induces a similar profile of microglial gene expression changes as reported for
other drivers of neuroinflammation in AD, such as amyloid plaques (e.g., upregulation of Apoe,
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Figure 4. Chronic stress and glucocorticoid (GC) elevation drive neuroinflammation through immune priming, glial activation, and blood–brain barrier
(BBB) breakdown. Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, leading to chronic elevation of GCs, has broad neuroinflammatory consequences.
Immune priming heightens cellular sensitivity to damage-associated molecular patterns (DAMPs), such as extracellular amyloid β (Aβ) and ATP, that are produced
during Alzheimer's disease (AD) pathogenesis, and potentiates neuroinflammatory signaling through activation of the NLRP3 inflammasome and upregulation of
proinflammatory cytokines and transcriptional programs. Prolonged, maladaptive glial activation contributes to loss of microglial phagocytic function (including inability
to phagocytose Aβ) and loss of synaptic and BBB maintenance by astrocytes. Widespread neuroinflammation has deleterious effects on neurons and glia alike, and
contributes to aberrant synaptic pruning, neuronal cell death, dysfunction of glutamate release and uptake at the synapse, loss of BBB integrity, and defects in
glymphatic clearance. Central nervous system (CNS)-derived cytokines and chemokines, together with BBB dysfunction, permit infiltration of peripheral immune cells
into the CNS, with varied disease-promoting consequences. Abbreviation: p-Tau, phosphorylated tau. Figure created with BioRender.
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Axl, Clec7a, Itgax, and Lgals3 [117]). Moreover, because microglia are highly sensitive and re-
sponsive cells, additional studies will be necessary to understand how other stress-associated
hormones and neurotransmitters impact the activation of these cells. Further information about
microglial responses to chronic stress can be found in earlier reviews [118,119].

In contrast to microglia, which undergo amplification and activation in response to chronic
stress paradigms and GC elevation, astrocytes undergo atrophy and reduced functionality
[120,121]. Among the astrocytic functions inhibited by stress/GCs are synaptic glutamate
clearance, glutamate metabolism, and gap junction-mediated astrocytic signaling [121–123].
Together, these functions regulate glutamatergic synaptic transmission, and their impairment
may contribute to the enhanced excitotoxicity seen in the hippocampus and cortex during
chronic stress/GC elevation (Figure 4) [121,124], as well as in the early stages of AD
[125,126]. Astrocytes also secrete inflammatory cytokines and represent a key source of
stress-induced cytokine secretion in numerous brain regions, including the hippocampus
[127,128]. Indeed, astrocytes appear highly sensitive to inflammatory signaling in this context
and were found to undergo NLRP3-mediated pyroptotic death in the mouse hippocampus fol-
lowing the chronic unpredictable stress paradigm [129]. Decreased astrocyte density and size
are also observed in the hippocampi of patients who receive chronic corticosteroid treatment
as well as in late-stage AD brain tissue, implicating GC-mediated astrocyte dysfunction as a
potential contributing factor to brain atrophy in AD.

Chronic stress and GCs compromise BBB and glymphatic integrity
Breakdown of the BBB is thought to occur during prodromal AD [130], enabling the infiltration of
peripheral immune cells and cytokines into the brain [131] as cells in the neurovascular unit de-
generate and endothelial tight junctions and adherens junctions are lost [132]. Likewise, several
studies indicate that chronic stress may contribute to loss of BBB integrity. For example, in
mice, chronic restraint stress in the form of prolonged housing in a confined space was found
to decrease the expression of the adherens junctions protein VE-cadherin in the amygdala,
whereas chronic social stress led to decreased expression of the tight junction component
claudin-5 in the nucleus accumbens and prefrontal cortex [133,134]. Another investigation of
BBB function in a murine chronic restraint stress model, using real-time two-photon imaging, re-
vealed a decrease in BBB integrity based on permeability to dextran and decreased claudin-5
tight junctions [135]. Stress and GCs also contribute to BBB disruption by stimulating the recruit-
ment of peripheral immune cells into the brain. For instance, chronic restraint stress was demon-
strated to facilitate the infiltration of CD4+ type 17 T helper (Th17)-type T cells into the brain, which
in turn disrupted BBB integrity via secretion of the cytokine IL-17A [136]. Peripheral monocyte re-
cruitment is also facilitated by high GC levels, which promote bone marrow monocyte mobiliza-
tion into the blood, thereby expanding the pool available for recruitment into the brain
parenchyma (Figure 4) [137]. BBB disruption and infiltration of peripheral immune cells, including
neutrophils and both CD4+ and CD8+ (i.e., cytotoxic) T cells, have also been observed in post-
mortem AD brain [127]. Moreover, Th17 T cells and IL-17A are implicated in AD [138] pathophys-
iology, with the former inducing neuronal death and the latter impairing BBB tight junctions and
recruiting peripheral lymphocytes to the brain [139].

Finally, dysregulation of the glymphatic flux system, resulting in impairment of brain interstitial fluid
drainage, occurs following chronic unpredictable stress and treatment with high GC levels [140].
Mechanistically, this impairment is proposed to occur through the loss of aquaporin channels on
astrocytic endfeet, which facilitate water transport across the BBB (Figure 4). Disruption of the
glymphatic system has also been reported in AD, and likely contributes to impaired clearance
of Aβ oligomers and other protein aggregates from the brain [141,142].
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Outstanding questions
AD-associated tau pathology typically
appears first in the locus coeruleus,
the nucleus of the brainstem that initi-
ates the stress response. What is the
timecourse of tau, Aβ, and neuroin-
flammatory pathologies induced by
stress/GCs, and how are they causally
related?

How do stress/GC-induced mitochon-
drial dysfunction and ROS production
stimulate tau pathogenesis and other
AD-related pathologies, and how do
these pathologies in turn impact on mi-
tochondrial function and brain energy
metabolism?

Through what mechanisms do
stress/GCs promote the spreading
of AD pathology through the brain
(e.g., extracellular vesicles, uncon-
ventional secretory pathways)?

GCs, inflammatory cytokines, and sex
hormones all regulate distinct gene
expression programs and have distinct
impacts on AD pathogenesis. How do
these hormones and cytokines interact
to regulate the gene expression
changes underlying AD, and in particu-
lar how does the loss of estrogen in
post-menopausal women alter stress
susceptibility and AD risk?
Concluding remarks and future perspectives
Clinical and epidemiological studies implicate chronic stress and high GC levels in accelerating
the onset and progression of AD, and experiments in animal and cell culture models demonstrate
that stress and GCs drive molecular/cellular processes underlying tau, Aβ, and neuroinflammatory
pathologies. Stress/GCs promote tau pathology by activating kinases and inhibiting molecular
chaperones, degradative pathways, and mitochondrial function. In parallel, stress/GC-mediated
transcriptional upregulation of APP and genes encoding APP processing enzymes, together with
the impairment of endosomal trafficking, contribute to increased Aβ production. Chronic stress
and GCs also drive neuroinflammation, in particular by priming cells to AD-associated DAMPs,
thereby impacting glial function and permeability of the BBB and the blood–CSF barrier to periph-
eral immune cells. Although age is the strongest risk factor for AD [143], the ability of stress/GCs to
synergize with other disease-associated stimuli to exacerbate AD pathogenic mechanisms under-
scores why chronic stress and elevated GCs are factors that accelerate AD pathology.

Current FDA-approved AD therapeutics target the accumulation of Aβ in the brain [144,145];
however, the modest symptomatic improvement offered by these treatments may reflect persis-
tent galvanization of other features of the disease and their amplification by chronic elevation of
the human GC, cortisol. The increasing awareness of the medical research community that AD
onset occurs decades before clinical symptoms, and that adverse life events can promote
CNS degeneration, should fuel the expansion of early and mid-life interventions for stress, includ-
ing lifestyle modification, and of therapeutics for treatment-resistant depression. Because the in-
cidence of AD is higher in females than males [21,146,147], additional research on the crosstalk
between estrogens andGCswill be necessary to understand the relationship between stress and
AD pathogenesis in post-menopausal females (Box 2). Moreover, given the commonmisconcep-
tion that synthetic GCs have predominantly anti-inflammatory properties, it is imperative that fu-
ture studies define the specific contexts in which GCs drive proinflammatory priming and
neuroinflammation (see Outstanding questions). Exploration of the proinflammatory
Box 2. The interplay of estrogens and GCs in sex-specific vulnerability to Alzheimer's disease

Females have a significantly higher incidence of AD than males [21,146]. Although psychosocial and lifestyle factors likely
contribute to this difference, evidence suggests that intrinsic biological factors play a larger role. In particular, the age-depen-
dent loss of the gonadal hormone estrogen, which confers protection against neurodegeneration, appears to be amajor fac-
tor in the increased vulnerability of females to AD [147,160]. In contrast to GCs, estrogen and estrogen-like compounds have
been demonstrated to reduce GSK-3β kinase activation and tau phosphorylation in rats [161] and promote non-
amyloidogenic trafficking of APP in neuronal cell lines and primary cultures from mice, rats, and humans [162]. In addition,
loss of estrogen through ovariectomy in mice impairs the dynamic functions of neuronal mitochondria, and decreases the
levels of proteins necessary for biogenesis, fusion, and mitophagy [163]. Findings in humans further support protection from
age-related bioenergetic changes by estrogen [164,165], which regulates gene expression programs underlying increased
oxidative phosphorylation in female peripheral blood mononuclear cells [166] and decreased ROS production by human
brain endothelial cells [167]. These benefits are reversed in post-menopausal women lacking estrogen [168], potentially in-
creasing their susceptibility to GCs thereafter. There is also broad consensus that estrogens promote immune function
and homeostasis [164], and that loss of estrogens contributes to age-related maladaptive immune responses associated
with neurodegeneration [169]. For example, studies in agedmice demonstrate an age-dependent increase in the expression
of proinflammatory and chemotactic gene programs in the hippocampus, accompanied by findings that proinflammatory cy-
tokine release in response to lipopolysaccharide (LPS) ismore dramatically elevated in ovariectomizedmice [170]. This finding
has been replicated in primary microglia treated with LPS in the presence of selective estrogen-receptor modulators [171].
How the loss of estrogen interacts with GC-mediated neuroimmune priming in the aged brain is unclear and will require fur-
ther investigation. Estrogen may counteract GC-mediated immune priming through transcriptional repression or may
synergize with GCs to coactivate anti-inflammatory gene programs in the brain [172,173]. In either case, the loss of estrogen
could amplify GC-driven augmentation of AD neuroinflammatory pathology. The loss of estrogen in post-menopausal fe-
males may thus increase susceptibility to GC signaling to promote tau and Aβ pathology as well as the neuroinflammatory
signatures of AD, and these mechanisms may combine additively with other modalities of female sex vulnerability, including
genetic sex differences [174–176], differential sensitivity to HPA axis-activating stimuli [147,177], and myriad environmental
factors and societal biases experienced by women [178,179].

12 Trends in Neurosciences, Month 2024, Vol. xx, No. xx

How does chronic stress alter
microglia and astrocyte function and
gene expression throughout the
course of AD (e.g., prodromal, early,
late-stage)?

Chronic stress and GCs regulate the
infiltration of peripheral monocytes
and T cells into the brain. Do other sub-
types of peripheral immune cells enter
the CNS during chronic stress/GC ele-
vation, and, if so, what functions do
they carry out?

Do GR antagonists have therapeutic
efficacy in either early or late-stage
AD?

How do AD risk alleles (e.g., APOE ε4)
and other environmental factors
(e.g., diet, air pollution) interact with
chronic stress to impact on the onset
and progression of AD?
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consequences of chronic GC elevation will have therapeutic relevance not only for AD but also for
other GC-sensitive conditions and diseases.
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