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Cellular communities reveal trajectories  
of brain ageing and Alzheimer’s disease

Gilad Sahar Green1, Masashi Fujita2,10, Hyun-Sik Yang3,4,5,10, Mariko Taga2, Anael Cain1, 
Cristin McCabe6, Natacha Comandante-Lou2, Charles C. White4, Anna K. Schmidtner1, 
Lu Zeng2, Alina Sigalov2, Yangling Wang7, Aviv Regev6,8,9, Hans-Ulrich Klein2, 
Vilas Menon2,11 ✉, David A. Bennett7,11, Naomi Habib1,7,11 ✉ & Philip L. De Jager2,4,11 ✉

Alzheimer’s disease (AD) has recently been associated with diverse cell states1–11, yet 
when and how these states affect the onset of AD remains unclear. Here we used a 
data-driven approach to reconstruct the dynamics of the brain’s cellular environment 
and identified a trajectory leading to AD that is distinct from other ageing-related 
effects. First, we built a comprehensive cell atlas of the aged prefrontal cortex from 
1.65 million single-nucleus RNA-sequencing profiles sampled from 437 older 
individuals, and identified specific glial and neuronal subpopulations associated  
with AD-related traits. Causal modelling then prioritized two distinct lipid-associated 
microglial subpopulations—one drives amyloid-β proteinopathy while the other 
mediates the effect of amyloid-β on tau proteinopathy—as well as an astrocyte 
subpopulation that mediates the effect of tau on cognitive decline. To model the 
dynamics of cellular environments, we devised the BEYOND methodology, which 
identified two distinct trajectories of brain ageing, each defined by coordinated 
progressive changes in certain cellular communities that lead to (1) AD dementia or 
(2) alternative brain ageing. Thus, we provide a cellular foundation for a new 
perspective on AD pathophysiology that informs personalized therapeutic 
development, targeting different cellular communities for individuals on the path  
to AD or to alternative brain ageing.

The molecular characterization of the ageing human brain has 
expanded considerably following advances in high-throughput 
molecular measurements and analytical methods12,13. While analyses of 
autopsied brain samples using bulk tissue profiles can yield molecular 
insights into AD12, they lose critical details of the brain’s intricate cellular 
architecture. Single-cell (scRNA-seq) and single-nucleus (snRNA-seq) 
RNA-sequencing technology has offered a different perspective1–11,14–17, 
highlighting AD-associated changes in expression programs of multi-
ple cell types (glial, neuronal and vascular cells). Specific subpopula-
tions of each cell type have been implicated in AD, and they have been 
organized into multicellular communities of various cell types that 
are involved in AD1.

One major challenge is resolving the sequence of changes in cell 
populations involved in AD, and distinguishing these changes from 
those associated with brain ageing. A second challenge is using 
cross-sectional data captured at autopsy to reconstruct the causal 
chain of events leading to the preclinical phase of asymptomatic 
accumulation of pathology, the appearance of cognitive decline and, 
finally, dementia18. Previous studies have avoided these challenges by 

using a case–control design, focusing on extremes, such as advanced 
stages of AD, to identify cell populations associated with the disease; 
however, such study designs do not capture the heterogeneity of 
clinical symptoms and pathological manifestations found among 
older individuals, which are critical to resolve the cellular changes and 
dynamics found in the early, asymptomatic stages of disease. Here 
we take advantage of the phenotypic diversity of the participants in 
the Religious Order Study and the Rush Memory and Aging Project 
(ROSMAP)19,20—two studies of cognitive ageing with prospectively 
collected brains and deep ante- and post-mortem characterization19,20. 
We sample the entire range of brain states found among older indi-
viduals, including those with AD and with non-AD brain ageing. This 
relatively random sample of older brains enables us to both explore 
the heterogeneity of the older brain and determine the sequence of 
events leading to the most common form of dementia, AD.

Specifically, we built a cellular atlas from RNA profiles of 1.65 million  
nuclei from the dorsolateral prefrontal cortex (DLPFC, BA9) of 437 
ROSMAP participants; these data provide the necessary statistical 
power to investigate cellular changes while accounting for human 
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heterogeneity. We devised a computational framework, BEYOND, to 
align individuals along cellular cascades, enabling us to define two dif-
ferent trajectories that older brains can engage (Fig. 1a): one leading 
to AD and another to alternative brain ageing. These trajectories are 
derived from coordinated changes in distinct cellular communities. 

Finally, within the AD trajectory, we propose a sequence of events in 
which certain microglial and astrocytic subpopulations are prior-
itized as having important roles at different stages of the causal chain 
that starts with the accumulation of amyloid pathology, progresses 
to tau proteinopathy and, ultimately, leads to cognitive decline and 
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Fig. 1 | Cellular atlas of the human aged DLPFC in older individuals.  
a, Overview of the experimental and analytic steps. b,c, Clinicopathologic 
characteristics of the 465 ROSMAP participants. b, Participants’ age of death, 
final cognitive diagnosis and distribution of pathologic hallmarks of AD, Aβ 
(CERAD score) and tau (Braak score) (Methods). Additional details are provided 
in Supplementary Table 1. c, The load of Aβ pathology (x axis) compared to the 
load of tau pathology ( y axis) among participants. Dots and triangles indicate 
female and male participants, respectively, coloured by their rate of cognitive 
decline. d, The ageing-DLPFC atlas. UMAP embedding of 1,649,672 single- 
nucleus RNA profiles from the DLPFC of participants. Major cell types  
are noted; shades highlight some of the 95 different cell subpopulations.  

e, The atlas scale. The number of nuclei per cell type in each participant is shown.  
Dots represent individual participants (n = 465 per cell type). Additional 
quality-control graphs are shown in Extended Data Fig. 1. Exc., excitatory; inh., 
inhibitory; oligodend., oligodendrocytes. f, Cellular diversity. The proportions 
of cell subpopulations across participants are shown. The stacked bar plots 
show cell subpopulation proportions per participant within each major cell 
type, colour coded by cell type and shaded by subpopulations. For the box 
plots in b and e, the box limits show the first and third quartiles, the centre line 
shows the median value, and the whiskers extend to the highest and lowest 
values within 1.5× the distance between the quartiles.
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AD dementia. These insights highlight important therapeutic targets 
for specific stages of AD.

A cell atlas of the aged and AD cortex
To generate a cell atlas capturing the cellular heterogeneity in the 
aged neocortex, we profiled frozen DLPFC tissue samples from 465 
ROSMAP participants19,20 using snRNA-seq21,22; 437 of the samples had 
a sufficient number of nuclei for downstream analyses (Fig. 1a and 
Extended Data Fig. 1a,b). ROSMAP participants do not have dementia 
at enrolment and undergo annual neuropsychological evaluations; 
brains are collected prospectively and characterized using a structured 
neuropathological assessment. Our participants are a relatively rep-
resentative sample of ROSMAP: they span the full spectrum of clinico-
pathological stages of AD and brain ageing found among older adults 
(Fig. 1b,c, Extended Data Fig. 1a,b and Supplementary Table 1). The aver-
age age of death was 89.1 years; 67.3% of the participants are women; 
62.4% of them fulfilled a pathological diagnosis of AD (NIA Reagan  
criteria23,24); 36.3% received a diagnosis of AD dementia; and 26% had 
mild cognitive impairment (MCI) at the time of death. Nuclear prepara-
tion samples from frozen samples from eight participants were pooled, 
and individual nuclei were assigned to their participant of origin by 
genotyping polymorphic sites in the RNA and comparing genotypes 
to the participants’ reference genomes (using demuxlet25; Methods). 
Libraries underwent detailed quality control, including automated 
cell-type classification and cell-type-specific low-quality and doublet 
nucleus filtration (Methods and Extended Data Fig. 1c–j). Ultimately, 
we retained 1,649,672 high-quality nuclear transcriptomes (Fig. 1e,f and 
Extended Data Fig. 1k–m), capturing all brain cell types. The propor-
tions of the major cell classes were largely maintained across individuals 
(Fig. 1e and Extended Data Fig. 1m). Within each cell class we further 
subclustered the nuclei, capturing 95 cell subpopulations (Fig. 1d,f and 
Extended Data Fig. 1m), characterized by distinct expression profiles, 
markers and enriched pathways (Fig. 2, Extended Data Figs. 2–5 and 
Supplementary Table 2). Clusters were tested for coherence and sepa-
rability, and compared to previous annotations (Fig. 2b,d, Extended 
Data Figs. 3 and  5).

Microglial nuclei were partitioned into 16 subpopulations (Fig. 2a,b 
and Extended Data Fig. 2a–c; n = 86,673 nuclei), including proliferative 
(Mic.1), surveilling (Mic.2–5; expressing CX3CR1), reacting (Mic.6–8; 
TMEM163), enhanced-redox (Mic.9–10; FLT1), stress response (Mic.11; 
HSPH1, DNAJB1, NLRP1, expressing heat response and NLRP1 inflam-
masome genes), interferon response (Mic.14; IFI6), inflammatory 
(Mic.15; CCL3/4, NFKB1, IL1B, CD83), SERPINE1-expressing (Mic.16) 
and lipid-associated (Mic.12 and Mic.13; APOE) subpopulations. The 
lipid-associated Mic.12 (CPM) and Mic.13 (PTPRG) subpopulations 
both expressed the AD risk genes APOE and GPNMB, with Mic.13 also 
expressing high levels of SPP1 and TREM2 compared with the other 
subpopulations (Supplementary Table 2). These annotations capture 
and extend previous reports (Fig. 2b and Extended Data Fig. 3a). Spe-
cifically, Mic.13 and Mic.15 (and, to a lower extent, Mic.12) are enriched 
for the mouse DAM2 signature genes11, while Mic.12 and Mic.13 are 
enriched for the human amyloid-β (Aβ)-associated microglial signature, 
and Mic.15 expressed human inflammation and stress signatures1,7,8.

Astrocytes were partitioned into ten subpopulations (Fig. 2c,d and 
Extended Data Fig. 2d–f; n = 228,925 nuclei)—homeostatic-like (Ast.1–2),  
enhanced-mitophagy/translation (Ast.3; PINK1), reactive-like Ast.4 
(GFAP, DPP10, ECM organization and excitatory synaptic genes) and 
Ast.5 (GFAP, SERPINA3, OSMR, axonogenesis and wound healing genes), 
interferon-responding (Ast.7; IFI6) and stress response (Ast.8–10): 
Ast.8, expressing chemical and heat stress, and sterol metabolism 
genes; Ast.9 (DNAJB1, HSPH1), heat and oxidative stress response, tau 
binding and necroptosis; and Ast.10 (SLC38A2), oxidative stress, reac-
tive oxygen species, metallothioneins and zinc ion homeostasis. Our 
astrocyte annotation expands previous reports on the brains of healthy 

individuals and those with AD, and it links mouse and human signatures: 
Ast.4 to fibrous-like astrocytes1; Ast.5 to mouse disease-associated 
astrocytes9; Ast.7 to interferon-responding astrocytes1,6; and Ast.10 
to human AD-elevated astrocytes1 (Extended Data Fig. 3b).

Oligodendrocyte lineage cells were partitioned into 12 subpopu-
lations of mature oligodendrocytes (Oli.1–12; Fig. 2e and Extended 
Data Fig. 2g–i; n = 346,593 nuclei), such as enhanced-translation (Oli.6) 
and stress responding (Oli.7 expressing SLC38A2, IGF1R, QDPR and 
cholesterol biosynthesis genes; Oli.8 expressing SLC38A2, heat and 
oxidative stress response genes, HSPH1, DNAJB1); three subpopulations 
of oligodendrocyte precursor cells (OPC.1–3, n = 60,622 nuclei); com-
mitted oligodendrocyte precursor (n = 556 nuclei) and myelin-forming 
oligodendrocyte (n = 1,801 nuclei) subpopulations. Within the OPCs, 
we also found an enhanced-mitophagy subpopulation (OPC.1; express-
ing PINK1, enriched for oxidative phosphorylation and gene transla-
tion, which had higher expression of AD-risk genes such as APOE and 
CLU), and an axon projection/regeneration-associated subpopulation 
(OPC.3; SERPINA3, OSMR). These annotations capture and further refine 
previous reports1,4,6,26 (Fig. 2e and Extended Data Fig. 3c).

Within the vascular niche (Fig. 2f and Extended Data Figs. 3d and 
4a–c; n = 18,496 nuclei), we identified arterial, venular and capillary 
endothelial cells, arterial smooth muscle cells (SMCs), pericytes and 
meningeal and perivascular fibroblasts; this aligns with and expands 
recent reports3,17 (Fig. 2f and Extended Data Fig. 3d). For example, we 
identified two distinct pericyte subpopulations, Peri.1 and Peri.2, align-
ing with the recently described extracellular matrix (ECM) and trans-
porter pericytes, respectively. We further revealed diversity within the 
capillary endothelial cells (End.1–5), such as End.3, which had a higher 
expression of ECM and angiogenesis genes, and End.5, which expresses 
genes relating to heat- and oxidative stress responses, tau binding and 
necroptosis (HSPH1), as well as AD-risk genes (such as APP and ADAM10).

On the neuronal side, we identified the full range of neuronal classes, 
including 16 subtypes of excitatory neurons (Exc.1–16, n = 647,400) 
and 16 subtypes of inhibitory neurons (Inh.1–16, n = 257,929), captur-
ing excitatory diversity across cortical layers and inhibitory classes 
expressing distinctive neuropeptides, such as somatostatin (SST, Inh.1, 
Inh.5–7) and parvalbumin (PVALB, hereafter PV, Inh.13–16) (Fig. 2g,h and 
Extended Data Fig. 4d–i). Neuronal subtypes were assigned to cortical 
layers, expressed neuropeptides and markers by matching to previ-
ous neuronal annotations from the Allen Brain Map Transcriptomic 
Explorer (Fig. 2g,h, Methods and Extended Data Fig. 5b,c).

Linking cell subpopulations to AD traits
To identify subpopulations associated with AD, we focused on three 
quantitative AD-related traits: (1) neocortical Aβ burden, (2) neocortical 
tau burden and (3) the rate of cognitive decline before death derived 
from up to 20 years of annual neuropsychologic profiles (Methods). 
These outcomes, compared with a categorical measure of AD diag-
nosis, enhanced our statistical power and enabled the assessment of 
the continuum of AD clinicopathologic severity. The primary associa-
tion and subsequent downstream analyses were performed on the 437 
participants with a sufficient number of nuclei profiled by snRNA-seq, 
hereafter referred to as the discovery sample (Fig. 3a, Methods and 
Extended Data Fig. 1b).

For our discovery analysis, we tested the association between the 
three AD-related traits and the proportions of subpopulations (cal-
culated within each cell class) using linear regression controlling for 
age, sex, post-mortem interval and library quality (false-discovery 
rate (FDR)-adjusted P < 0.05; Fig. 3b, Methods and Supplementary 
Table 3). The strongest associations with both Aβ and tau burden 
were found for the two lipid-associated microglial subpopulations 
Mic.12 (APOE+GPNMB+) and Mic.13 (APOE+GPNMB+TREM2+) (Fig. 2a,b). 
The proportion of Mic.13 was also higher in individuals with a higher 
rate of cognitive decline. We also found a strong association for the 
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proportion of the stress-responding Ast.10 and Oli.7 subpopulations 
with a greater tau burden and more rapid cognitive decline. Finally, 
we found two inhibitory neuronal subpopulations that are associated 
with tau burden: PV+ Inh.16 neurons (MEPE+, layers 5–6; Extended Data 
Fig. 5c) increased in proportion while SST+ Inh.6 neurons (RSPO3+KLF5+, 
layers 2–5; Supplementary Table 2) decreased in proportion as the 
pathology burden increased. Thus, this specific subpopulation of PV+ 

neurons may be relatively resilient, while the specific subpopulation 
of SST+ neurons may have enhanced vulnerability in AD relative to all 
other inhibitory neurons, consistent with previous reports1,27.

To validate our findings in a larger and independent set of individu-
als, we used 673 ROSMAP participants with bulk RNA-seq data from the 
DLPFC. They are independent of the discovery sample participants, 
and we refer to them as the replication sample (Fig. 3a). We applied 
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Fig. 2 | Cell subpopulation diversity in DLPFC of aged individuals.  
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the recently developed CelMod method1 to infer the proportion of 
our cell subpopulations in the bulk RNA-seq data, fitting CelMod using 
profiles of the subset of 419 ROSMAP participants (from our 437 partici-
pants in the discovery sample; training sample) with both snRNA-seq 
and bulk RNA-seq data; the proportions of 62 subpopulations were 
predicted with high confidence and were retained for downstream 
analyses (Fig. 3a, Methods and Extended Data Fig. 6a). We replicated 
our top results and found high correlations between the estimated 
effect sizes over all of the subpopulations tested in both the discovery 
(n = 437 snRNA-seq) and replication (n = 673 bulk-inferred) analyses for 
all three traits (Fig. 3c and Extended Data Fig. 6b,c).

Finally, to maximize our statistical power, we performed a 
meta-analysis on the full set of 1,110 participants (n = 437 (discov-
ery) and n = 673 (replication); Fig. 3d, Methods and Supplemen-
tary Table 3). With the increased statistical power, lipid-associated 
Mic.12, Mic.13, stress response Ast.10 and Oli.7, and PV+ Inh.16 
and SST+ Inh.6 neurons had the same or stronger evidence of asso-
ciation with the AD-related traits (Fig. 3d). The meta-analysis also 
identified multiple additional subpopulations to be significantly 
associated with one or more traits, particularly oligodendrocyte and 
excitatory neurons cell subpopulations (Fig. 3d and Extended Data 
Fig. 6c). We therefore obtained a robust set of results prioritizing 
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Fig. 3 | Associating subpopulations with AD-related endophenotypes and 
causality modelling along the AD cascade. a, Overview of analysis and cohorts: 
the discovery analysis includes 437 participants with snRNA-seq data; the 
replication analysis includes 673 non-overlapping participants with CelMod- 
estimated subpopulation proportions from bulk RNA-seq data; and a meta- 
analysis of both datasets. b–d, The association between subpopulation 
proportions and endophenotypes—neocortical Aβ load, neocortical tau load 
and the rate of cognitive decline (linear regression controlled for confounders, 
FDR < 0.05; Methods); we find subpopulations that are significantly associated 
with at least one of the tested traits in one on the cohorts: discovery sample 
(snRNA-seq measurements, n = 437 participants; b); replication sample (bulk 
RNA estimations, n = 673 participants; c); and meta-analysis of discovery and 
replication samples (n = 1,110 participants; d). The colour scale shows the 
association effect size, indicating the direction and strength from negative 

(green) to positive (purple) associations. e, The causal modelling framework 
for positioning a subpopulation’s effect upstream of an endophenotype, 
mediating the effect of one endophenotype on another, or mediating the effect 
of a different subpopulation on an endophenotype. f–i, Causal mediation 
models positioning Mic.12, Mic.13 and Ast.10 within the Aβ→tau→cognitive 
decline AD cascade, indicating direct and mediated effects, as well as the 
proportion of effect mediated. The numbers of participants were as follows: 
n = 432 (f–h) and n = 433 (i). j, SEM positioning Mic.12, Mic.13, Ast.10 and Oli.7 
within the AD cascade. Integration of all of the independent mediation results 
(f–i; Extended Data Fig. 6d–h) in a SEM. The arrows show the association 
directionality and relative strength, and indicate whether association was 
replicated in the replication sample (solid, P < 0.05) or not (dashed). The  
letter indicates the guiding mediation model. Nobs, number of observations 
(participants); r.m.s.e.a., root mean square error of approximation.
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specific neocortical cell subpopulations across different cell types in  
relation to AD.

Causal modelling of glia in the AD cascade
Next, we used statistically rigorous methods with an established set 
of priors to propose a putative causal chain of events that relates spe-
cific subpopulations to specific stages of the AD cascade. We used 
mediation modelling, leveraging the widely accepted cascade of AD 
progression: Aβ accumulation occurs first, followed by pathogenic 
tau aggregation and finally cognitive decline28–30. We used the strong 
genetic risk factor APOE ε4 as an anchor as it is present at birth. We 
first performed causal mediation analysis to quantify the direct and 
mediated (indirect) effects of subpopulation proportions on our AD 
traits; we then followed with structural equation modelling to assess 
the entire proposed AD cascade (Fig. 3e and Methods). We focused 
on the top robustly associated subpopulations (FDR < 0.01) with two 
or more AD-related traits: lipid-associated Mic.12, Mic.13 and stress 
response-related Ast.10 and Oli.7.

Our model placed Mic.12, Mic.13, Ast.10 and Oli.7 subpopulations at 
specific points along the AD cascade: (1) Mic.12 upstream of Aβ (Fig. 3f); 
(2) Mic.13 downstream of Aβ and Mic.12, but upstream of tau and cog-
nitive decline (Fig. 3g and Extended Data Fig. 6d–f); (3) Ast.10 down-
stream of tau and Mic.13, but upstream of cognitive decline (Fig. 3h,i and 
Extended Data Fig. 6g); and (4) Oli.7 downstream of Ast.10 (Extended 
Data Fig. 6h). We found that Mic.12 had a strong association with age 
(P = 2.8 × 10−5) and might therefore represent an age-dependent micro-
glial dysfunction leading to poor Aβ clearance, given its position in the 
model. The proportion of Mic.13 mediated 32% of the strong association 
between Aβ and tau (Fig. 3g), yet tau mediated most of the association 
between Mic.13 and cognitive decline (62%). This suggests that the 
strong influence of Mic.13 on cognitive decline occurs mostly through 
tau-dependent mechanisms (Extended Data Fig. 6f). In contrast to 
Mic.12, Mic.13 was not associated with age but was associated with the 
genetic risk factor APOE ε4 (Extended Data Fig. 6e). Furthermore, there 
was an association between Mic.13 and Ast.10 even after adjusting for 
tau, suggesting that these two populations may interact separately 
from tau-related processes (Fig. 3h). Finally, Ast.10 mediated 8.4% of 
the strong tau–cognitive-decline association (Fig. 3i); notably, Ast.10 
explained an additional 2.5% of the variance in cognitive decline not 
related to AD pathology. This suggests that Ast.10 might serve as a point 
of convergence for tau-dependent and tau-independent mechanisms 
leading to cognitive decline.

Synthesizing the above findings, we constructed a structural equa-
tion model (SEM) integrating Mic.12, Mic.13, Ast.10, Oli.7 and AD 
endophenotypes into a single model of the AD cascade (compara-
tive fit index (CFI) = 1.00, Tucker Lewis index (TLI) = 1.00; Fig. 3j and  
Methods). We then validated the SEM using the replication sample 
(n = 605 individuals) and reproduced all of the relationships outlined 
in our snRNA-seq model except for one (Extended Data Fig. 6i), dem-
onstrating the robustness of our results and indicating that our model-
ling strategy has derived plausible causal pathways aligning specific 
cell subpopulations with key AD endophenotypes. We endorse the 
limitation of such causal inference models derived from brain autopsy 
samples; thus, we do not exclude the possibility that other, as yet 
unmeasured, factors contribute to the AD cascade. Nonetheless, the 
mediation and SEM analyses provide a strong set of hypotheses for 
future mechanistic testing.

Two disease-associated microglial states
Our model proposes that Mic.12 and Mic.13 have causal roles in the 
proteinopathies that define AD. Compared with other microglial cells, 
both subpopulations have a higher expression of the AD susceptibility 
genes APOE and GPNMB, and share multiple enriched pathways, such as 

increased expression of foam-cell differentiation, cholesterol storage, 
lipid metabolic/catabolic process and decreased glial cell migration 
genes (Fig. 4a). However, these two microglial subpopulations are 
distinct: Mic.12 had higher expression of genes linked to the regula-
tion of endocytic vesicles (for example, PELI1 and PELI2) and major 
histocompatibility complex (MHC) class II genes (such as HLA-DRA), 
while Mic.13 upregulated pathways related to cell junction, adhesion 
and extracellular matrix (ECM) organization (for example, ADAM10, 
TGFBR1, SMAD3 and PPARG), genes involved in negative regulation of 
immune system processes, and the AD susceptibility genes ADAM10 and 
TREM2 (Fig. 4b,c, Extended Data Fig. 7a and Supplementary Table 2). 
We also found an upregulation of genes linked to exocytosis (for Mic.13, 
SCIN, WIPF3) and phagocytosis (for Mic.12 and 13, PRKCE and MSR1; for 
Mic.13, WIPF3 and PPARG; Fig. 4c).

To validate the existence of the Mic.12 and Mic.13 subpopulations, 
we performed single-molecule RNA fluorescence in situ hybridization 
(smFISH) in an independent sample of 15 DLPFC brain slices from the 
New York Brain Bank (8 AD, 1 MCI and 6 non-impaired individuals). 
We used selected RNA markers—Mic.12 (CPM), Mic.13 (TPRG1) and 
macrophages (MRC1)—along with immunofluorescence staining for 
the myeloid protein IBA1, DAPI to stain nuclei and the anti-phospho 
Tau antibody AT8 (Methods). Using automated image segmentation  
(Methods), we found that DAPI+IBA1+ cells expressing high levels of 
the Mic.12 marker CPM are distinct from those with high expression 
of the Mic.13 marker TPRG1, validating that Mic.12 and Mic.13 are 
distinct microglial populations (Fig. 4d,e, Extended Data Fig. 7b–d 
and Supplementary Table 4). Next, we evaluated the association of 
Mic.12 and Mic.13 with tau burden. The AT8-based tau burden was 
associated with AD status within our samples (Fig. 4f), and we found 
that it was associated with the proportion of Mic.12 (CPM+IBA1+ cells; 
t = 3.2, P = 0.0066) and Mic.13 (TPRG1+IBA1+ cells; t = 2.8, P = 0.014) 
(Fig. 4f and Methods), consistent with our transcriptomic results  
(Fig. 3).

Finally, to test for functional differences between these two micro-
glial subpopulations, we analysed morphological measures captured 
from our images (CellProfiler31; Methods). We observed significantly 
reduced compactness—a measure of cell membrane ramification—
among both the Mic.12 and Mic.13 subpopulations compared with 
all other microglia (FDR < 1 × 10−4; Fig. 4g, Methods and Extended 
Data Fig. 7c). We also found increased eccentricity—a measure of cell  
elongation—for Mic.12 only (FDR < 0.05, Fig. 4g and Methods). To fur-
ther explore the morphological features of these two subpopulations, 
we repurposed scores derived from a standard neuropathologic micro-
glial classification system that are available for ROSMAP participants: 
microglia are manually scored from stage I (highly ramified) to stage III 
(dense cytoplasm and retracted processes, deemed to be activated)32. 
The proportion of activated microglia (PAM) was previously found to be 
associated with tau burden and other AD traits32. In total, 91 participants 
had both snRNA-seq data and a PAM score for the midfrontal cortex, and 
we found that both Mic.12 and Mic.13 have a strong positive association 
with the PAM score, while other microglia have a negative association 
(Fig. 4h and Methods). Yet, the association between Mic.12 and PAM is 
attenuated when adjusting for Mic.13, suggesting that Mic.13 may be 
the primary driver of this association (Fig. 4h). We therefore link the 
Mic.13 subpopulation, expressing AD risk genes (such as APOE, GPNMB 
and TREM2) and the DAM2 signature11, to morphologically defined acti-
vated (stage-III, PAM) microglia32, consistent with our morphological 
analysis of Mic.13 cells (Fig. 4g).

Distinct cellular paths of brain ageing
We next used our data to address the heterogeneity observed among 
older individuals. While we are limited by the lack of longitudinal 
molecular brain measurements (as specimens are obtained at autopsy 
and we cannot capture temporal dynamics within an individual), 
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rigorous methodologies can infer dynamics by considering that each 
participant represents one timepoint along one of the trajectories that 
an ageing brain can follow. We therefore devised a conceptual-analytic 
framework that we call BEYOND (Fig. 5a): an integrative approach to 
identify trajectories of cellular changes in high-dimensional data, 
to relate these trajectories to clinicopathological outcomes and 
to accurately align participants along each trajectory. BEYOND builds 
a cellular landscape manifold that captures the diversity of observed 
cellular environments, with each participant as a single point in the 
high-dimensional manifold (that can be visualized in low dimensions; 
Fig. 5b and Extended Data Fig. 8a). It then reconstructs trajectories of 
change along the manifold using similarities in the cellular environ-
ments across participants (Fig. 5b,c). Next, it assesses whether the 
trajectories are associated with AD-related traits, matching them 
to potential disease states (Fig. 5d–f). Finally, BEYOND assigns cell 
subpopulations to multicellular communities with similar dynamics 
and abundance by integrative clustering (Fig. 5a).

When applying BEYOND, we identified two distinct trajectories of 
cellular change in the ageing DLPFC, starting from a shared point in 
the cellular manifold (Fig. 5b and Supplementary Table 5). BEYOND 
assigned a trajectory probability and pseudotime ordering for each 
participant along these two trajectories that can be used to quantify 
the dynamics of various traits and subpopulation proportions. Along 
each axis, we found that certain subpopulations appear to under-
lie the trajectories (Fig. 5c, Extended Data Fig. 8b and Supplemen-
tary Table 5). For example, the disease-associated subpopulations 
Mic.12, Mic.13, Ast.10 and Oli.7 all increase in proportion along one 
axis, while other subpopulations of reactive glial cells, such as Ast.5 
and OPC.3, increase along a different axis. These divergent cellu-
lar patterns are robust to both the embedding algorithm and to the 
number of cell subpopulations used as input (Extended Data Fig. 8c). 
The two trajectories of cellular change and pseudotime assignment 
were robust to different algorithms, comparing Palantir33 and VIA34 
(Methods, Extended Data Fig. 8d–g and Supplementary Table 5).  
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are shown in Extended Data Fig. 7a. d–g, Validation using RNAscope and 
immunohistochemistry images of independent DLPFC brain samples.  
d, Validation of distinct microglial cells expressing the Mic.12 or Mic.13 markers. 
Representative RNAscope images (out of 27,892 images) showing microglia/
myeloid cells (green, anti-IBA1 immunofluorescence), nuclei (blue, DAPI), and 
RNAscope targeting CPM (cyan, Mic.12 marker), TPRG1 (red, Mic.13 marker)  
and MRC1 (magenta, macrophage marker). The arrows indicate examples of 
CPMhigh, TPRG1high and MRC1high cells positive for a single marker. snRNA-seq 
marker expression and additional images are provided in Extended Data 

Fig. 7b,c. e, The expression distributions of marker genes for Mic.12 and Mic.13 
measured using snRNA-seq (left) and smFISH (right) analysis of IBA1+ cells. The 
dot colour shows the subpopulation annotation (Methods). f, Association of 
Mic.12 and Mic.13 RNAscope proportions with tau-tangle pathology load 
quantified by immunohistochemistry using anti-phosphorylated Tau antibody 
AT8 (as the total area occupied; Methods). Dots are coloured by participant 
clinical diagnosis. The error bands show the 95% confidence intervals.  
g, Association of Mic.12, Mic.13 and macrophage RNAscope proportions with 
morphological features captured in the same smFISH images (Methods).  
The colour scale indicates the effect size. h, Association of snRNA-seq Mic.12 
and Mic.13 proportions to previous neuropathologic activated microglia 
classification (PAM)32. The PAM score is the square root of stage III activated 
macrophage-appearance microglial density proportion (Methods). The colour 
scale shows the association effect size between snRNA-seq proportions to PAM 
score (histopathology). Right, associations with corrected proportions of 
Mic.12 and Mic.13 (corrected to Mic.13 and Mic.12 proportions, respectively).
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f Replication: bulk predicted cellular landscape and trajectories
(673 participants, 62 subpopulations)
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Fig. 5 | Modelling the cellular landscape manifold uncovered distinct 
trajectories of brain ageing leading to AD or ABA. a, Schematics of the 
BEYOND algorithm: representing participants by their cellular environments 
(cellular compositions, step 1), aligning participants along trajectories of 
cellular change (step 2), inferring subpopulation and trait dynamics (step 3) 
and grouping of cellular communities (step 4). b, The structure of the cellular 
landscape manifold captured by BEYOND for the discovery sample. A 2D 
PHATE embedding of each participant (individual dots) is shown based on 
similarity of their cellular compositions (Methods). Dots are coloured by  
the difference in participants’ assigned trajectory probabilities. See also 
Extended Data Fig. 8a,d–f. c, Distinct patterns of subpopulation proportions 
along the cellular landscape manifold. The participants are coloured by the 
locally smoothed proportions of each subpopulation in the 2D embedding, 
showing distinct patterns for different subpopulations for representative 
examples along the cellular manifold. See also Extended Data Fig. 8b,c.  

d,e, Distinct patterns and dynamics of AD traits along the prAD and ABA 
trajectories, showing for neocortical Aβ, neocortical tau and cognitive 
decline distinct patterns in the cellular landscape manifold per AD trait.  
The plots are coloured by the locally smoothed density values of the trait  
per participant (embedded as in b) (d); and distinct trait dynamics along the 
pseudotime in each inferred trajectory (e; Methods). The error bands show 
the 95% confidence intervals. See also Extended Data Fig. 8g,h. f, Validation 
of the cellular landscape, trajectories and dynamics results by applying 
BEYOND to the independent replication sample (n = 673 participants) using 
only the 62 well-predicted subpopulations (FDR < 0.01; Extended Data 
Figs. 6a and 8i,j). For the replication manifold, two inferred trajectories of 
cellular changes (as in b) (top left); distinct densities for key subpopulations 
(as in c) (bottom left); and distinct AD-trait dynamics along the two directions 
(as in e), similar to the patterns over the discovery manifold (right) are shown. 
The error bands show the 95% confidence intervals.
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VIA predicted an additional minor trajectory suggesting potential addi-
tional diversity in cellular trajectories within ageing brains (Extended  
Data Fig. 8d).

We next related the pseudotime and probabilities of belonging to 
each of the two trajectories to the participants’ clinicopathological 
characteristics (Fig. 5d,e, Extended Data Fig. 8h and Supplementary 
Table 5). Matching the observed cellular changes along the trajectories 
(Fig. 5c), we found one of the two trajectories to be strongly related 
to AD; we named it progression to AD (hereafter, prAD), capturing a 
monotonous increase in neocortical Aβ and tau burden as well as an 
increase in the rate of cognitive decline (Fig. 5d,e). We named the other 
trajectory alternative brain ageing (ABA), as it captured individuals 
with a constant level of Aβ, low/no neocortical tau and a slower rate 
of cognitive decline with a variable pattern (Fig. 5d,e). The variability 
in the pattern of decline along the ABA trajectory may indicate that 
it is influenced by other neuropathologies contributing to cognitive 
decline and/or resistance mechanisms that are, as yet, unappreciated.

We validated our identification of the two distinct trajectories that 
capture different disease courses by applying the BEYOND methodol-
ogy to the replication sample (n = 673 independent ROSMAP partici-
pants with bulk-inferred proportions for only 62 subpopulations; Fig. 3a 
and Methods). These data recapitulated the two main trajectories and 
confirmed the association of the prAD trajectory with AD-related traits 
(Fig. 5f and Extended Data Fig. 8i–j). Our ability to replicate these find-
ings in an independent set of participants, with only a partial set of 
subpopulations, highlights the robustness of our findings. BEYOND 
was therefore able to reconstruct a timeline that captures the con-
tinuous changes along a trajectory leading to AD, and a second major 
trajectory of ABA. Notably, individuals along the ABA trajectory are not 
completely free from cognitive decline, but the difference in cellular 
composition between the prAD and ABA trajectories suggests that they 
may need to be considered separately in preclinical and clinical studies.

Dynamics of multicellular communities
To map coordinated changes in the brain’s cellular environment under-
lying the prAD and ABA trajectories, we defined multicellular com-
munities (Fig. 5a, Methods and Supplementary Table 5); we previously 
used correlations in the proportion of cell subpopulations to define 
such communities1. Here, we refined the concept by also leveraging 
the coordinated patterns of change among cell subpopulations along 
our two trajectories: some subpopulations changed in proportion 
predominantly along one trajectory or followed a sequence along one 
trajectory, such as early (Mic.12 and Mic.13), mid (Ast.3, OPC.1 and Oli.6) 
and late (Oli.7, Ast.10) changes along prAD (Fig. 6a and Extended Data 
Fig. 9a). This is implemented in BEYOND, which assigns cell subpopu-
lations to multicellular communities by integrative clustering using 
two properties quantifying different aspects of coordinated change:  
(1) co-occurrences of subpopulations across individuals (similar to 
ref. 1) and (2) shared patterns of subpopulation dynamics along all 
trajectories (Fig. 5a and Methods). The clustering revealed three cel-
lular communities (C1–C3), which further clustered to subcommunities 
(C1.1–1.2 and C2.1–2.3; Fig. 6b and Extended Data Fig. 9b).

The healthy community C1 was composed of subpopulations that 
decreased in frequency along both trajectories (Fig. 6b,c and Extended 
Data Fig. 9c). Subcommunity C1.2 included subpopulations of homeo-
static glia (for example, Ast.1, Ast.2, Mic.2, Oli.1, OPC.2 as well as End.2), 
while C1.1 consisted primarily of neurons. The prAD C2 community 
increased in proportion along the prAD trajectory but not the ABA 
trajectory (Fig. 6b,c). This was refined into three subcommunities: 
a neuronal subcommunity C2.1 (for example, Inh.16), the mid-prAD 
C2.2 community (for example, the enhanced-mitophagy and transla-
tion Ast.3, OPC.1, Oli.6 and Mic.12), and the late-prAD C2.3 community 
that included the disease-associated subpopulations, Mic.13, Ast.10 
and Oli.7, as well as Ast.9, Mic.11 and End.5, among others (Fig. 6b,c). 

Finally, we identified the ABA reactive C3 community, which included 
the reactive-like subpopulations Ast.5, OPC.3, Mic.6-7, Oli.4 and Peri.1 
(Figs. 2 and Fig. 6b,c and Extended Data Fig. 9c). We validated these 
results in the replication sample (n = 673 independent participants 
with bulk-inferred proportions; Fig. 3a and Methods), highlighting 
the robustness of our proposed cellular communities (Extended  
Data Fig. 9d).

Within each cellular community, we found enrichment of specific 
functions. For example, there are upregulated translation, mitochon-
drial and mitophagy pathways, chaperone-mediated autophagy, oxi-
dative phosphorylation, as well as regulation of neurotransmitter 
transport and glutamate secretion in the mid-prAD community C2.2 
(Ast.3, OPC.1 and partially Oli.6). In the prAD-late community C2.3 (Ast.9, 
Ast.10, Oli.7, Mic.11 and End.5), there is upregulation of stress-response 
pathways, such as metal ion and heat and oxidative stress (Fig. 6c). 
Overall, we note a progression starting with lipid-associated/inflamma-
tion, followed by altered glucose metabolism/mitochondrial/synaptic 
function and ending with reactive oxygen species and stress responses 
along the prAD trajectory (Fig. 6c).

We next associated AD traits to a summary score for each community 
and found that the C2 and subcommunity C2.3 proportions increase 
with the accumulation of neocortical Aβ and tau as well as worsen-
ing cognitive decline, whereas C1 and its subcommunity C1.1 become 
depleted (Fig. 6d and Methods). Thus, the reconstruction of the dynam-
ics of cellular environment in ageing brains expands our perspective 
beyond the trait-association analysis of individual cell subpopulations 
(Fig. 3): it highlights possible transitions in the composition of cellular 
communities at different stages on the trajectory to AD.

To validate our results, we analysed spatial transcriptomics (Visium 
platform; Methods) data for DLPFC sections from ten ROSMAP par-
ticipants from our discovery cohort (Extended Data Fig. 9e and Sup-
plementary Table 6). We focused on three distinct cell subpopulations 
of interest: Mic.13, Ast.10 (community C2) and Ast.5 (community C3). 
Each subpopulation was localized and quantified across the brain slices 
by the combined expression of selected marker genes (Fig. 6e and 
Methods). Mic.13 and Ast.10, of which the proportions are coordinated 
in the snRNA-seq data (Fig. 6a,b), were found to be co-localized in tis-
sue sections of participants assigned to the prAD trajectory and not 
in the other participants (FDR < 0.01; Fig. 6f, Methods and Extended 
Data Fig. 9f). Finally, we evaluated the presence of the two astrocyte 
subpopulations that increase specifically along one of our projected 
trajectories, Ast.10 (prAD) and Ast.5 (ABA) (Fig. 6a). While we did not 
have enough spatial transcriptomics data from participants in the 
advanced ABA trajectory (Extended Data Fig. 9e), the Ast.10 signature 
was significantly (FDR < 0.01) higher compared with the expression 
of the Ast.5 signature among participants from the prAD trajectory 
(FDR < 0.01; Fig. 6g and Extended Data Fig. 9g). This provides additional 
validation of our proposed trajectories, which will need to be evaluated 
further in larger collections of samples.

These findings confirm the existence of distinct cell subpopulations 
in the human cortex, and they suggest that these multicellular com-
munities may be topologically coherent. Overall, we therefore present 
evidence of distinct cellular cascades in the older brain; some of these 
are specific to the sequence of events leading to AD (prAD trajectory) 
and appear to be largely absent from the portion of ageing individuals 
who are following another cellular path of brain ageing (ABA trajectory).

Discussion
Here, we present insights into the cellular and molecular cascades 
leading to AD and brain ageing using a large-scale, high-resolution 
cell atlas of 437 ROSMAP participants (1.65 million cells assigned to 
95 cell subpopulations) and an algorithmic approach, BEYOND. Our 
work addresses fundamental open questions in human ageing and 
AD. First, we identified two distinct trajectories distinguishing prAD 
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from ABA. While participants on the prAD trajectory had increasing 
levels of neocortical Aβ and tau burden as well as accelerated cognitive 
decline, ABA participants had a low and constant Aβ burden, limited 
tau pathology and varying rates of cognitive decline. Previous stud-
ies have associated cells and pathways with AD1–11,14–17, consistent with 

our associations, but their case–control study design could neither 
infer dynamic changes in cellular subpopulations nor decouple AD 
from other aspects of brain ageing. Second, our reconstruction of 
pseudotemporal cellular dynamics advances our understanding of the 
sequence of events leading to AD and ABA. We highlight a switch from 
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from ten ROSMAP participants from the discovery sample. e, Joint densities 

of Mic.13 and Ast.10 marker gene expression on representative brain slices. 
See also Extended Data Fig. 9e. f, Intraparticipant spatial co-localization of 
Mic.13 and Ast.10, showing the correlation between signature levels per 
Visium spot (dot) for an example prAD-assigned participant (left); and all 
intraparticipant correlations (by trajectory assignment) (right). The dot 
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corrected; Extended Data Fig. 9f). g, Trajectory-specific enrichment of  
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a homeostatic cellular environment to either a disease-associated envi-
ronment in prAD (for example, Mic.13, Ast.10, Oli.7) or to a reactive-like 
environment in ABA (for example, Ast.5, OPC.3). Third, individual sub-
populations do not contribute by themselves: we identified multi-
cellular communities within which the subpopulations share unique 
dynamics and molecular pathways, providing a more comprehensive 
set of interacting cellular targets for therapeutic development. Fourth, 
mediation modelling, using the key cellular subpopulations Mic.12, 
Mic.13 and Ast.10, proposed where, in the cascade of events linking Aβ 
and tau proteinopathies to cognitive decline, they may exert their puta-
tive causal role. All of these results were replicated in an independent 
sample of 673 ROSMAP participants and further validated by smFISH, 
immunofluorescence and spatial transcriptomics.

We can now suggest the following sequence of events underlying the 
prAD trajectory. At the early stages of the sequence of events leading 
to AD, we note a decrease in a homeostatic cellular community and an 
increase in the lipid-associated APOE+GPNMB+ Mic.12 subpopulation; 
these cells are influenced by age and predicted to directly contribute 
to the accumulation of Aβ proteinopathy. Increasing Aβ deposition is 
known to contribute to the accumulation of tau proteinopathy, and 
we find that the APOE+GPNMB+TREM2+ Mic.13 subpopulation mediates 
this effect of Aβ (Figs. 3 and 6). Notably, Mic.13 is also influenced by  
APOE ε4. The accumulation of tau proteinopathy is closely linked to 
the onset of cognitive decline in older adults, and our model proposes 
a key role for the Ast.10 subpopulation in mediating this toxic effect 
of tau. Along with Ast.10, at this stage of the AD cascade, we observed 
an increase in multiple subpopulations that are part of the prAD-late 
community (Ast.10, Oli.7, Ast.9, Mic.11 and others), all upregulating vari-
ous stress response genes, suggesting coordinated functional changes 
across multiple cell types leading to cognitive dysfunction. Notably, our 
model predicts that not only tau but also Mic.13 abundance affects the 
proportion of Ast.10 independent of tau, suggesting that the propor-
tion of this astrocyte subpopulation may be a point of convergence for 
different processes leading to cognitive dysfunction.

While Mic.12 offers a good target for the prevention of Aβ accumu-
lation enhancing therapeutic options centred on anti-Aβ antibodies, 
averting the polarization of microglia and astrocytes into Mic.13 and 
Ast.10, respectively, opens new routes for interventions into prevent-
ing the symptomatic manifestations of AD—cognitive impairment and 
dementia—that are the key clinical targets. While these cell subpopula-
tions that we prioritize echo the transcriptomic characteristics of glial 
subpopulations that have been reported previously as associated with 
AD in case–control analyses1,2,6,10,14,16, our study refines the distinction 
between these subpopulations and, importantly, provides specific 
hypotheses as to which elements of the AD cascade each astrocytic and 
microglial subpopulation contributes to: our results are actionable as 
we propose molecularly specific hypotheses. Moreover, we highlight 
the relative vulnerability of specific SST+ neuronal subpopulation as 
previously indicated1, and prioritize oligodendroglia, vascular and 
other cell subpopulations within coordinated cellular communities 
that will require further investigation.

Methodologically, our research solves critical challenges in the study 
of molecular processes involved in slowly progressive diseases such 
as AD. First, we show that rigorous statistical methodologies, such as 
mediation analysis, enable us to propose likely causal drivers despite 
the limitations of cross-sectional post-mortem datasets and simplify-
ing assumptions in our modelling (Fig. 3). Furthermore, we were able 
to predict cellular compositions from bulk RNA-seq (using CelMod1) 
for different cell types, and these inferred cell subpopulation propor-
tions created a robust, independent replication dataset that confirmed 
our results and enhanced our statistical power when deployed in a 
meta-analysis combining snRNA-seq and bulk RNA-seq data (Figs. 3 
and 5). Finally, the BEYOND strategy facilitated the data-driven recon-
struction of disease trajectories, independent of clinicopathologic phe-
notypes such that unbiased analyses can then relate these trajectories 

to AD-related traits (Fig. 5); this is an important extension of previous 
methods that integrate pathologies to infer disease pseudotime35. 
Moreover, BEYOND provided a refined characterization of the cellu-
lar communities found in the older brain (Fig. 6), some of which may 
become targets of therapeutic development. The BEYOND approach 
can be generalized by integrating data across brain regions and data 
modalities. Thus, our study provides a conceptual framework applica-
ble to study any dynamic process with coordinated changes in cellular 
environments.

The relatively large sample size of our study enabled robust and novel 
discoveries, yet larger sample sizes of genetically and pathologically 
diverse individuals across brain regions are necessary to identify addi-
tional, minor trajectories that might exist and to better characterize 
the ABA trajectory. Moreover, additional data modalities on a large 
scale (for example, protein expression, post-transcriptional modifica-
tions and spatial information) will help to refine our models. Our study 
highlights that AD is a disease of the whole brain environment where 
we may need to modulate cellular communities, not singular cell sub-
populations, to restore homeostasis and preserve cognitive function. 
We have generated precise hypotheses as to where in the sequence of 
events to AD a particular subpopulation or community may have a role, 
informing future therapeutic development and clinical trial design. 
Moreover, we highlight the need for partitioning of individuals in terms 
of their likelihood of being on the prAD or the ABA trajectory: given 
that these trajectories are based on diverging cellular environments, 
an individual’s response to a therapeutic intervention could be quite 
different depending on their cellular trajectory. Furthermore, ignor-
ing this heterogeneity will reduce the statistical power of AD studies, 
as including individuals not on the prAD trajectory will add noise to 
a study. We have therefore provided a cellular foundation for a new 
perspective on AD pathophysiology in which a pathologic cellular 
community becomes the true target of therapeutic development, and 
the shared molecular signals of this community provide an important 
substrate for the development of interventions.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-024-07871-6.

1. Cain, A. et al. Multicellular communities are perturbed in the aging human brain and 
Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).

2. Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, 
and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385 (2023).

3. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s 
risk. Nature 603, 885–892 (2022).

4. Pandey, S. et al. Disease-associated oligodendrocyte responses across neurodegenerative 
diseases. Cell Rep. 40, 111189 (2022).

5. Luquez, T. et al. Cell type-specific changes identified by single-cell transcriptomics in 
Alzheimer’s disease. Genome Med. 14, 136 (2022).

6. Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific 
transcriptional changes in Alzheimer’s disease. Neuron 110, 1788–1805 (2022).

7. Tuddenham, J. F. et al. A cross-disease human microglial framework identifies disease- 
enriched subsets and tool compounds for microglial polarization. Preprint at bioRxiv 
https://doi.org/10.1101/2022.06.04.494709 (2022).

8. Gerrits, E. et al. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s 
disease. Acta Neuropathol. 141, 681–696 (2021).

9. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. 
Neurosci. 23, 701–706 (2020).

10. Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s 
disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 
(2019).

11. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of 
Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

12. Mostafavi, S. et al. A molecular network of the aging human brain provides insights into the 
pathology and cognitive decline of Alzheimer’s disease. Nat. Neurosci. 21, 811–819 (2018).

13. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in 
late-onset Alzheimer’s disease. Cell 153, 707–720 (2013).

https://doi.org/10.1038/s41586-024-07871-6
https://doi.org/10.1101/2022.06.04.494709


Nature | Vol 633 | 19 September 2024 | 645

14. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 
332–337 (2019).

15. Lau, S.-F., Cao, H., Fu, A. K. Y. & Ip, N. Y. Single-nucleus transcriptome analysis reveals 
dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s 
disease. Proc. Natl Acad. Sci. USA 117, 25800–25809 (2020).

16. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent 
and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 
(2020).

17. Garcia, F. J. et al. Single-cell dissection of the human cerebrovasculature in health and 
disease. Nature 603, 893–899 (2022).

18. Dubois, B. et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 
9, 1118–1127 (2010).

19. Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. Overview and findings from 
the religious orders study. Curr. Alzheimer Res. 9, 628–645 (2012).

20. Bennett, D. A. et al. Overview and findings from the Rush Memory and Aging Project. Curr. 
Alzheimer Res. 9, 646–663 (2012).

21. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 
14, 955–958 (2017).

22. Habib, N. et al. Div-Seq: single nucleus RNA-seq reveals dynamics of rare adult newborn 
neurons. Science 353, 925–928 (2016).

23. Bennett, D. A. et al. Neuropathology of older persons without cognitive impairment from 
two community-based studies. Neurology 66, 1837–1844 (2006).

24. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic 
Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Consensus 
recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol. 
Aging 18, S1–S2 (1997).

25. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic 
variation. Nat. Biotechnol. 36, 89–94 (2018).

26. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central 
nervous system. Science 352, 1326–1329 (2016).

27. Waller, R., Mandeya, M., Viney, E., Simpson, J. E. & Wharton, S. B. Histological 
characterization of interneurons in Alzheimer’s disease reveals a loss of somatostatin 
interneurons in the temporal cortex. Neuropathology 40, 336–346 (2020).

28. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s 
disease. N. Engl. J. Med. 367, 795–804 (2012).

29. Jack, C. R. et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s 
disease. Alzheimers Dement. 14, 535–562 (2018).

30. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO 
Mol. Med. 8, 595–608 (2016).

31. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying 
cell phenotypes. Genome Biol. 7, R100 (2006).

32. Felsky, D. et al. Neuropathological correlates and genetic architecture of microglial 
activation in elderly human brain. Nat. Commun. 10, 409 (2019).

33. Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. 
Nat. Biotechnol. 37, 451–460 (2019).

34. Stassen, S. V., Yip, G. G. K., Wong, K. K. Y., Ho, J. W. K. & Tsia, K. K. Generalized and scalable 
trajectory inference in single-cell omics data with VIA. Nat. Commun. 12, 5528 (2021).

35. Iturria-Medina, Y. et al. Unified epigenomic, transcriptomic, proteomic, and metabolomic 
taxonomy of Alzheimer’s disease progression and heterogeneity. Sci. Adv. 8, eabo6764 
(2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this 
article under a publishing agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2024



Article
Methods

Experimental design: study participants, AD traits and ethics
Data were derived from individuals enrolled in one of two longitudinal 
clinical–pathologic cohort studies of ageing and dementia, the Reli-
gious Orders Study (ROS)19 and the Rush Memory and Aging Project 
(MAP)20, collectively referred to as ROSMAP. All of the participants are 
without known dementia at enrolment, have annual clinical evalua-
tions and agree in advance to brain donation at death. At death, the 
brains undergo a quantitative neuropathologic assessment, and the 
participant’s rate of cognitive decline is calculated from the longitu-
dinal cognitive measures that include up to 25 yearly evaluations36. 
Each study was approved by an Institutional Review Board of Rush 
University Medical Center. All of the participants signed an informed 
consent, Anatomic Gift Act and repository consent. For this study, 
we selected 465 participants, blinded to their neuropathologic and 
clinical traits, and based on availability of frozen pathologic material 
from the dorsolateral prefrontal cortex (DLPFC, BA9), including only 
participants with RNA integrity number (RIN) > 5 and post-mortem 
interval (PMI) < 24 h, as in our previous studies1. After defining our 
cell subpopulations using data from all participants, we excluded 28 
participants without whole-genome sequencing (WGS) data or with 
shallow sequencing resulting in a low number of nuclei within the 
library, retaining 437 participants for disease associations and sta-
tistical analysis (Extended Data Fig. 1b), each with at least 868 nuclei 
assigned (Extended Data Fig. 1k). Our study cohort includes diverse 
individuals across the full range of the pathological and clinical stages 
of AD. The demographic and clinicopathologic characteristics are 
described in Fig. 1, Supplementary Table 1 and Extended Data Fig. 1.

Pathological measures were collected as part of the ROSMAP cohorts 
(previously described37–39). We focused our analysis on three quan-
titative AD-related traits, which have a larger statistical power com-
pared to discrete classifications. (1) Rate of cognitive decline: uniform 
structured clinical evaluations, including a comprehensive cognitive 
assessment, are administered annually to the ROS and MAP partici-
pants. The ROS and MAP methods of assessing cognition have been 
extensively summarized in previous publications40–42. Scores from 
19 cognitive performance tests common in both studies, 17 of which 
were used to obtain a summary measure for global cognition as well as 
measures for five cognitive domains of episodic memory, visuospatial 
ability, perceptual speed, semantic memory and working memory. 
The summary measure for global cognition is calculated by averag-
ing the standardized scores of the 17 tests, and the summary measure 
for each domain is calculated similarly by averaging the standardized 
scores of the tests specific to that domain. To obtain a measurement 
of cognitive decline, the annual global cognitive scores are modelled 
longitudinally with a mixed effects model, adjusting for age, sex and 
education, providing person-specific random slopes of decline (which 
we refer to as cognitive decline). Further details of the statistical meth-
odology have been previously described43. (2) Aβ and tau pathology 
burden: quantification and estimation of the burden of parenchy-
mal deposition of Aβ and the density of abnormally phosphorylated 
tau-positive neurofibrillary tangles levels present at death (which we 
refer to as Aβ and tau pathology, respectively). Tissue was dissected 
from eight regions of the brain: the hippocampus, entorhinal cortex, 
anterior cingulate cortex, midfrontal cortex, superior frontal cortex, 
inferior temporal cortex, angular gyrus and calcarine cortex. Sections 
(20 µm) from each region were stained with antibodies for the Aβ and 
tau protein, and quantified using image analysis and stereology. Meas-
urements were summarized to provide a global measure of Aβ and tau 
burdens. For the trait association, causality prediction and dynamics 
modelling analyses, we used the measurements of Aβ and tau in the 
midfrontal cortex (referred to as neocortical Aβ and -tau). The load 
of these pathologies at the midfrontal cortex are a potentially better 
proxy for the pathology in the DLPFC brain region compared with the 

pathology load across the entire brain. Furthermore, we note that we 
are assessing cellular changes in the fresh-frozen DLPFC samples from 
one hemisphere of each brain in relation to the measures of cortical 
Aβ and tau burdens measured in the midfrontal cortex of the opposite, 
fixed hemisphere in which the standard, structured neuropathologic 
assessment is conducted. Moreover, we use in our analysis measures 
quantifying final cognitive diagnosis44, Braak stage23,45, CERAD score23,46 
and NIA-Reagan criteria23,24.

Nucleus isolation and single-nucleus RNA library preparation
To increase library throughput and reduce batch effects and price, 
we profiled single nuclei in pooled batches of samples. Each batch 
of samples for library construction consisted of eight participants, 
except batch B63, which comprised seven participants. Despite random 
assignment of samples to batches, they were balanced for clinical and 
pathological diagnosis and for sex (Extended Data Fig. 1a). DLPFC tissue 
specimens were received frozen from the Rush Alzheimer’s Disease 
Center. We observed variability in the morphology of these tissue speci-
mens with differing amounts of grey and white matter and presence of 
attached meninges. Working on ice throughout, we carefully dissected 
to remove white matter and meninges when present. The following 
steps were also conducted on ice: about 50–100 mg of grey matter 
tissue was transferred into the dounce homogenizer (Sigma-Aldrich, 
D8938) with 2 ml of NP40 lysis buffer (0.1% NP40, 10 mM Tris pH 8.0, 
146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, 40 U ml−1 of RNase inhibitor 
(Takara, 2313B)). Tissue was gently dounced 25 times with pestle A, 
followed by 25 times with pestle B while on ice, then transferred to a 
15 ml conical tube. Then, 3 ml of PBS + 0.01% BSA (NEB, B9000S) and 
40 U ml−1 of RNase inhibitor were added to a final volume of 5 ml and 
then immediately centrifuged with a swinging-bucket rotor at 500g for 
5 min at 4 °C. The samples were processed two at a time, the superna-
tant was removed and the pellets were left on ice while processing the 
remaining tissues to complete a batch of eight samples. The nuclei pel-
lets were then resuspended in 500 ml of PBS + 0.01% BSA and 40 U ml−1 
of RNase inhibitor. Nuclei were filtered through 20 µm preseparation 
filters (Miltenyi, 130-101-812) and counted using the Nexcelom Cel-
lometer Vision and a 2.5 µg µl−1 API stain at 1:1 dilution with cellometer 
cell counting chamber (Nexcelom, CHT4-SD100-002). In total, 5,000 
nuclei from each of 8 participants were then pooled into one sample, 
and the 40,000 nuclei in around 15–30 µl volume were loaded into two 
channels on the 10x scRNA-seq platform using the Chromium Single 
Cell 3’ Reagent Kits version 3. Libraries were generated according to 
the manufacturer’s protocol. In brief, single nuclei were partitioned 
into nl-scale gel beads in emulsion (GEMs) in the Chromium control-
ler instrument, where cDNAs from the same cell shares a common 10x 
barcode from the bead. Amplified cDNA is measured by Qubit HS DNA 
assay (Thermo Fisher Scientific, Q32851) and quality assessed using 
the BioAnalyzer (Agilent, 5067-4626). This WTA (whole-transcriptome 
amplified) material was diluted to <8 ng ml−1 and processed through 
v3 library construction, and resulting libraries were quantified again 
using the Qubit and BioAnalzyer systems. Libraries from four channels 
were pooled and sequenced on one lane of Illumina HiSeqX by The 
Broad Institute’s Genomics Platform, for a target coverage of around 
1 million reads per channel. The same libraries of batches B10–B63 
were resequenced at The New York Genome Center using Illumina 
NovaSeq 6000. Sequencing data from both Broad Institute and  
New York Genome Center were used for analysis.

Preprocessing and quality control steps for snRNA-seq data
For each of the 127 pooled libraries, we performed the following steps: 
(1) library alignment and background noise removal; (2) demultiplex-
ing; (3) application of a normalization and clustering pipeline; (4) clas-
sification of nuclei for cell types; (5) removal of low-quality nuclei using 
a cell-type-specific threshold; (6) detection of doublets for removal. 
Further details of each step are provided below.



Library alignment and background noise removal. Libraries were 
aligned to the GRCh38 pre-mRNA transcriptome and unique molecu-
lar identifier (UMI)-collapsing were inferred using the CellRanger47 
toolkit (v.6.0.0, chemistry V3, 10x Genomics). To control for technical 
artifacts of background ambient RNA molecules, we ran CellBender48 
remove-background (v.0.2.0) utility over the gene expression matri-
ces generated by CellRanger. In brief, CellBender is an unsupervised 
method for inferring empty- and cell-containing droplets, learning the 
background RNA distribution of the empty droplets, and removal of 
such technical background noise. We therefore retrieve uncontami-
nated cell-containing droplets (cuda flag set, epochs=300, learning 
rate=1e-5, z-dim=50). Each of the 127 libraries was processed while 
setting the number of expected cells according to the number of nuclei 
estimated by CellRanger.

Demultiplexing. We demultiplexed nuclei and inferred participants of 
origin in our pooled libraries using available genotype data of the par-
ticipants (WGS or arrays). On the basis of the participants’ polymorphic 
sites and each nucleus’ genotype data obtained from the snRNA-seq 
reads, we assigned each nucleus back to its original participant using 
the demuxlet25 software (v.0.1-beta). From the WGS-based VCF file of 
1,196 ROS/MAP individuals, we extracted single-nucleotide polymor-
phisms (SNPs) that were in transcribed regions, passed a filter of GATK, 
and at least one of the eight individuals had its alternative allele. The 
extracted SNP genotype data were fed to demuxlet along with a BAM file 
generated by CellRanger. For libraries in which not all eight individuals 
had previously been genotyped, we used freemuxlet (https://github.
com/statgen/popscle; v.0.1-beta), which clusters droplets on the basis 
of SNPs in snRNA-seq reads and generates a VCF file of snRNA-seq-based 
genotypes of the clusters. The number of clusters was specified to be 
eight. The snRNA-seq-based VCF file was filtered for genotype qual-
ity > 30 and compared with available WGS genotypes using the bcftools 
gtcheck command. Each WGS-genotyped individual was assigned to 
one of droplet clusters by visually inspecting a heat map of the number 
of discordant SNP sites between snRNA-seq and WGS. The above two 
procedures converged to a table that mapped droplet barcodes onto 
inferred individuals. After demultiplexing, we included data for 465 
individuals for the generation of the cell atlas and 437 individuals pass-
ing quality thresholds, with sufficient number of nuclei assigned (nuclei 
per participant: minimum = 868, median = 3,590, maximum = 11,530; 
Extended Data Fig. 1k) for statistical analyses, including the trait  
associations, mediation modelling and BEYOND analysis.

Normalization and clustering pipeline. The following pipeline was 
executed on the RNA count matrix: normalization and scaling (Seurat 
package (v.4)49, SCTransform, variable.features.n=2000, conserve.
memory=TRUE), dimensionality reduction (Seurat, RunPCA, npcs=30), 
construction of shared neighbour graph (Seurat, FindNeighbors, 
dims=1:30) and Louvain community detection clustering (Seurat, 
FindClusters, Resolution=0.2, algorithm=1).

Automatic classification of cell types. We automatically classified  
nuclei into one of the following eight major cell types: excitatory neu-
rons, inhibitory neurons, astrocytes, microglia, oligodendrocytes, 
OPCs, endothelial and pericytes. The automatic annotation of nuclei 
was done by a weighted ElasticNet-regularized logistic regression classi-
fier, fitted over our previous cell atlas of the human ageing DLPFC from 
24 individuals1 with a total of 182,739 nuclei (Extended Data Fig. 1c). The 
gene count matrix of the previous atlas1 was log normalized (Seurat, 
NormalizeData) and scaled (Seurat, ScaleData, method=vst) over the 
top 700 variable features (Seurat, FindVariableFeatures, excluding 
non-coding non-annotated loci with a pattern of ^(AL|AC|LINC)\\d+).

To select the optimal regularization parameter we applied ten-
fold cross-validation (glmnet package50,51, cv.glmnet) over randomly 
selected 75% of the data. To ensure the capture of rare cell types such 

as pericytes, we weighed samples as 1/nk for the number of nuclei of the 
cell type present in the training set. We selected the ElasticNet mixing 
parameter of α = 0.25 (to increase the sparsity of the fitted model) by 
evaluating test accuracy over the remaining 25% of the data. The fitted 
model used only 121 features and achieved a test accuracy of 99.95.

Removal of low-quality cells. Low-quality nuclei were identified by 
the total number of UMIs (#UMIs) and the number of unique genes 
(#Genes). As different brain cell types have inherently different RNA 
quantities, we learned cell-type-specific thresholds over these pa-
rameters. Thresholds were optimized based on hand annotation of 
10 pooled libraries and applied to all 127 libraries to classify low-quality 
cells, and remove such cells from the downstream analysis (Extended 
Data Fig. 1d). Clusters of the 10 pooled libraries were manually curated 
to low- and high-quality clusters based on the #UMIs and #Genes dis-
tributions (Seurat, VlnPlot). We then selected the cell-type-specific 
thresholds as the median of all optimal #UMIs and #Genes parameter 
pairs, scored using the harmonic mean of the precision and recall. 
#UMIs and #Genes thresholds were as follows: excitatory neurons, 
2,232 and 1,916; inhibitory neurons, 800 and 100; astrocytes, 800 and 
616; microglia, 400 and 253; oligodendrocytes, 400 and 253; OPCs, 
695 and 253; vascular cells, 400 and 253; and pericyte cells, 400 and 
100, respectively (Extended Data Fig. 1e,f). Low-quality clusters were 
removed as well by a Soft-SVM classifier fitted over the same 10 pooled 
libraries and using the (1) proportion of nuclei annotated as low quality 
(by #UMIs and #Genes threshold); (2) average entropy of cell-type pre-
diction, and (3) the proportion of doublets by the demuxlet algorithm.

Doublet detection. Between-sample doublets were identified by 
the demuxlet algorithm, based on the sample barcodes (Extended 
Data Fig. 1g). Within-sample doublets were predicted in silico based 
on their RNA profiles. To predict doublets, we ran DoubletFinder52 
(DoubletFinder_v3, pN=0.5, pK=75/(1.5*(#nuclei in library)), nExp=0, 
sct=T) over each of the libraries (Extended Data Fig. 1h). Thresholds for 
DoubletFinder predictions were determined separately for each library, 
based on the maximal Matthew’s correlation coefficient compared to 
the demuxlet-identified doublets (Extended Data Fig. 1i). Furthermore, 
as DoubletFinder is not designed to identify doublets of the same cell 
type, we modified it to simulate doublets from parent nuclei of different 
cell types, inferred based on the cell-type classification (https://github.
com/GreenGilad/DoubletFinder). Using high-resolution clustering 
of the nuclei (Seurat, FindClusters, Resolution=1.5) we expanded and 
marked as a doublet any nuclei predicted to be a demultiplexed doublet, 
a DoubletFinder doublet or belonging to a cluster consisting of more 
than 70% DoubletFinder doublets.

Unified UMAP space. To compute a UMAP embedding consisting of 
all nuclei, we created a Seurat object over a subpopulation of nuclei 
and projected the remaining nuclei onto the UMAP space computed 
for the subpopulation. As, at the time of writing, Seurat is limited in the 
counts matrix size, we were unable to create a single 1.65-million-nuclei 
large object. We randomly sampled 30 out of 127 libraries and created a 
single Seurat object consisting of 400,000 nuclei. We then followed a 
similar pipeline of normalizing, scaling, principal component analysis 
(PCA) and UMAP embedding as described above (using 4,000 variable 
features and a PCA space of 50 dimensions). These PCA and UMAP 
spaces are referred to as reference spaces.

The remaining nuclei were then projected as follows. Each library 
was normalized and scaled using only the variable genes used by the 
reference (Seurat, SCTransform, specifying residual.features as the 
reference variable genes). The scaled data were then projected onto 
the reference PC space using the reference’s feature loadings. Now that 
both sets are embedded in the same PC space, the remaining nuclei 
were projected onto the reference’s UMAP space (Seurat, ProjectUMAP, 
setting reference and query reductions as ‘pca’).

https://github.com/statgen/popscle
https://github.com/statgen/popscle
https://github.com/GreenGilad/DoubletFinder
https://github.com/GreenGilad/DoubletFinder
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Subclustering analysis
On the basis of the cell-type classification, we partitioned nuclei into 
subsets of the different cell classes, and we performed the subcluster-
ing analysis separately per cell type. Endothelial and pericyte cells 
were analysed together as part of the vascular niche, and OPCs and 
oligodendrocytes were analysed together as part of the Oligoden-
droglia. For each cell class, we performed the following analysis steps:  
(1) removed genes expressed in fewer than 15 nuclei as well as non-coding 
non-annotated genes (pattern=^(AC\\d+{3}|AL\\d+{3}|AP\\d+{3}|LINC\\
d+{3})); (2) removed cells with more than 10% mitochondrial RNA 
(Seurat, PercentageFeatureSet, pattern=‘^MT-’); and (3) removed any 
residual doublet cells that DoubletFinder did not detect. In the case 
of oligodendrocytes and OPCs, we did not remove nuclei predicted 
as oligodendrocyte–OPC doublets.

We iteratively ran the normalization and clustering pipeline as 
described for each library to remove additional low-quality or dou-
blet nuclei, with the following parameters: (1) SCTransform method 
with variable.features.n = 4000 (for most cells) and n=2000 in the 
vascular niche subset; (2) RunPCA with npcs=50; (3) FindNeighbors 
with dims=1:50, FindClusters with Resolution=1.5, algorithm=4 (Lei-
den), method=igraph; and (4) RunUMAP with dims=1:50, min.dist=0.1. 
After each such run, we removed clusters with low-quality cells or a high 
percentage of doublet cells (following the guidelines described above). 
To validate the doublet annotations, we plotted the expression level 
of canonical cell-type markers, and small clusters expressing multiple 
markers of multiple cell types were also removed.

After cleaning the nuclei per cell type, we performed the subcluster-
ing analysis per cell type. For each cell type the subclustering was per-
formed over multiple resolutions (Seurat FindClusters, algorithm=4, 
method=igraph), and the resolution was determined by the (1) dif-
ferential gene expression per cluster (Seurat, FindAllMarkers, test.
use=negbinom); (2) functional annotations of the differential signa-
tures; and (3) the proportions of clusters across individuals. Clusters 
that did not have differential genes or clusters specific to a single 
individual were united with the neighbouring cluster with a similar 
RNA profile (based on Seurat BuildClusterTree). These steps were 
done separately for the endothelial-, mural- (pericytes and SMCs) 
and fibroblasts cells making up the vascular niche subset, as well as 
for the oligodendrocytes and OPC cells making up the oligodendro-
glia subset.

Owing to Seurat’s current counts matrix size limitation, excitatory 
neurons were split into two major sets (one consisting of upper cortical 
layer 2–4 pyramidal neurons, CUX2+ nuclei and the other consisting 
of all others deeper cortical layer pyramidal neurons, referred to as 
CUX2−). Clean-up and subclustering analysis were performed for each 
subset separately. Neuronal clusters at the borders were then reclus-
tered to avoid misclassifications due to the split.

Clustering quality, comparison to published datasets and 
neuronal subtype classification
Clustering quality was tested by evaluating cluster identity agreement 
within the shared nearest-neighbour graphs. For each cell type, we 
conducted a pairwise comparison across subclusters, showing the 
fraction of shared nearest neighbours, shared within a cluster and 
between clusters. Moreover, we compared our cell subpopulations 
with recently published human and mouse annotations by comput-
ing gene signature scores (Seurat, AddModuleScore; see Extended 
Data Fig. 3a–c; the genes used in each signature can be found in the 
‘Code availability’ section). We then evaluated a signature’s enrich-
ment in each subpopulation using a Wilcoxon rank-sum test (wilcox.
test method, x=within subpopulation signature values, y=between 
subpopulations signature values, alternative=greater). P values were 
corrected for multiple hypothesis testing using the Benjamini–Hoch-
berg procedure. For neuronal cells, we predicted the class membership 

of each of our snRNA-seq nuclei profiles using singleR53 package.  
We fitted the classifier separately for inhibitory and excitatory neurons 
using the published dataset of the Brain Cell Types Database from the 
Allen Brain Atlas, human atlas of M1 cortical region mapped by 10x 
genomics (https://celltypes.brain-map.org/rnaseq/human_m1_10x). 
Each nucleus was labelled by the maximum prediction value (using 
pruned.labels output), and accordingly assigned to cortical layers, 
markers and neuropeptide expression.

Differential expression and functional annotation
Within a given cell class subpopulation, differentially expressed genes 
(DEGs) were computed between each cluster and the rest using a nega-
tive binomial test and controlling for the post-mortem interval and 
participants’ batch (Seurat FindAllMarkers, test.use=negbinom, latent.
vars=batch, pmi). In the case of excitatory neurons, as we were not able 
to create a single Seurat object to facilitate all cells, we partitioned 
genes into six groups. We then merged CUX2+ and CUX2− cells, taking a 
single group of genes at a time and running the negative binomial test as 
above. After merging the results, we corrected for multiple-hypothesis 
testing in the same manner as is performed by Seurat.

Functional annotation was inferred by (1) identifying statistically 
significant enriched gene pathways and gene sets in the upregu-
lated and downregulated differential gene signatures and (2) group-
ing them based on their similarities. We identified upregulated and 
downregulated pathways using clusterProfiler54 (compareCluster, 
formula=id~cluster+direction) using KEGG (fun=enrichKEGG, 
organism=hsa), Reactome (fun=enrichPathway) and GO (fun=enrichGo, 
OrgDb=org.Hs.eg.db, ont=BP,MF,CC). We set the background universe 
gene set to the set of all genes present in the data. Redundancy between 
GO terms were removed (ClusterProfiler, simplify).

To better understand the functionality captured by the pathways 
and overcome the issue of redundancy within the databases—where 
multiple different enriched pathways capture the same sets of dif-
ferential genes and therefore probably reflect the same enriched 
function—we clustered the inferred upregulated or downregulated 
pathways of a given subpopulation. Given a list of pathways, we first 
computed two one-hot encoding matrices of pathways over genes: 
an evidence matrix and a prior matrix, both sharing the same rows 
(pathways). The columns of the evidence matrix are the union of all 
DEGs found for the particular subpopulation and take a value of 1 at 
place i,j if and only if DEG j is part of pathway i. The columns of the 
prior matrix are the union of all genes that are part of the pathways 
of the particular subpopulation, and take a value of 1 at place i,j if and 
only if gene j is part of pathway i. Both matrices were then converted 
into pathways pairwise similarity matrices (simplifyEnrichment55, 
term_similarity, method=kappa). We used the kappa coefficient as the 
measure of similarity to consider the chance of a given gene to be asso-
ciated with two different pathways. The partitioning of the pathways 
was done over the joint adjacency matrix being the element-wise aver-
age of the prior and evidence similarity matrices using the binary-cut 
algorithm (simplifyEnrichment, cluster_terms, method=binary_
cut). The partitioning cut-off passed to the algorithm was adjusted 
manually based on the visual inspection of the joined adjacency  
matrix.

Computation of subpopulation proportions
We divided the subpopulations according to the following seven major 
cell type groups: excitatory neurons, inhibitory neurons, astrocytes, 
microglia (which included monocytes and macrophages), oligoden-
drocytes, OPCs and vascular niche (which included endothelial cells, 
pericytes, SMC and fibroblasts). Rare subpopulations of erythro-
cytes, CD8+ T cells, NK cells and neutrophils, for which we have low 
total abundances, were not included. This resulted in a final set of 91 
subpopulations used for the statistical analysis. We then calculated for 
every participant the subpopulation proportion within the relevant 

https://celltypes.brain-map.org/rnaseq/human_m1_10x


cell type group, to create the subpopulation proportion matrix whose 
rows represent participants and columns represent subpopulations:

P
n

Σ n
[ ] =ds

ds

k C s ds∈ ( )

for d a participant, s a subpopulation, C(s) the set of all subpopula-
tions in the cell type of s and nds the number of nuclei of subpopulation 
s in participant d. We refer to the row [P]d as the cellular environment of 
participant d. A column [P].,s is the vector of subpopulation proportions 
for subpopulation s across all participants. The rows and columns of P 
were used for association and causality prediction analyses as well as 
the BEYOND analysis (see sections below).

Statistical analysis associating subpopulations to AD-related 
traits
Statistical associations between traits and subpopulations were tested 
by regressing traits on the square-root proportions of the subpopula-
tion: Ptrait = [ ] s.  for subpopulation s and P the proportions matrix 
(defined in the section above). To remove potential confounding 
effects, we adjusted for (1) age at death, sex and post-mortem interval, 
and (2) snRNA-seq library quality reflected by the number of cells cap-
tured and total genes detected for each participant. The results were 
corrected for multiple-hypothesis testing by calculating the FDR 
(p.adjust, method=BH) within each tested trait. We applied a similar 
approach when associating CelMod predicted subpopulation propor-
tion (see the section below) and AD-related traits, using RIN scores as 
the measure of library quality. To integrate the statistical associations 
calculated over the discovery snRNA-seq and the replication 
bulk-predicted datasets, we applied a meta-analysis approach using a 
weighted z-statistic56:
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Meta-analysis results were then corrected for multiple-hypothesis 
testing (p.adjust, method=BH).

Inferring cell-state proportions from bulk RNA-seq. We used 
bulk RNA-seq data generated from DLPFC of 1,092 samples. As des-
cribed previously57, RNA-seq data were generated in three sessions:  
(1) 10 batches of 739 participants were sequenced at the Broad Institute, 
using Qiagen’s miRNeasy Mini Kit and RNase-free DNase set. RNA was 
quantified using Nanodrop and RNA quality was evaluated using the 
Agilent Bioanalyzer. Samples with RIN score > 5 and quantity thresh-
old > 5 µg were submitted for library construction. Sequencing was 
conducted using the Illumina HiSeq2000 system with 2 × 101 bp reads 
for a targeted coverage of 50 million paired reads. (2) Two batches 
of 124 participants were sequenced at the New York Genome Center,  
using the KAPA Stranded RNA-seq kit with RiboErase. Sequencing was 
performed on the Illumina NovaSeq 6000 system using 2 × 100 bp 
reads targeting 30 million paired reads per sample. (3) One batch of 
229 samples was sequenced at the Rush Alzheimer’s Disease Center, 
using the Chemagic RNA tissue kit, with RNA quality number calculated 
using the Fragment Analyzer. A total of 500 ng total RNA was used to 
generate the RNA-seq library, after rRNA depletion with RIbogold. 
Libraries were sequenced on the Illumina NovaSeq 6000 system with 
2 × 150 bp reads at 40–50 million reads per sample.

RNA-seq reads were aligned to the GRCh38 human genome and 
gene-level counts were normalized to transcripts per million (TPM). 
Outlier samples were removed based on MDS plots and quantiles of 
expression profiles, and genes with median TPM < 10 were filtered out 
to reduce technical noise. log2-transformed TPM values in the expres-
sion matrix were included in a linear regression model with the fol-
lowing covariates: age at death, sex, batch, library size, percentage of 

coding bases, percentage of aligned reads, percentage of ribosomal 
bases, percentage of UTR bases, median 5′ to 3′ bias, median CV cover-
age, post-mortem interval and study index (ROS or MAP).

We used the CelMod1 package (https://github.com/MenonLab/
Celmod) to infer cell subpopulation proportions from the residuals 
of the bulk RNA-seq data, for participants without snRNA-seq pro-
files. As described previously, CelMod uses a consensus regression 
model trained on matched snRNA-seq proportions and bulk RNA-seq to 
extrapolate cell subpopulation proportions to samples with only bulk 
RNA-seq available. In brief, the approach builds a regression model for 
each bulk RNA-seq gene using the cell type proportions as the predictor 
variable. Genes are then ranked by goodness-of-fit for each cell type, 
and the mean of the top genes is used as the prediction for the propor-
tion of a given cell type in samples having only bulk data. The only free 
parameter—the number of genes used in the consensus—is determined 
by a fivefold cross-validation of the training set. Notably, CelMod is 
not run simultaneously for all cell subpopulations but, rather, for the 
subpopulations within each broad cell class separately to reduce the 
effects of noise that may result when trying to estimate the proportion 
of many cell subsets at the same time.

With a total of 419 overlapping participants between the snRNA-seq 
and bulk RNA-seq samples, we fitted a CelMod model using 315 (75%) 
participants. The remaining 104 participants were kept as the hold-out 
set to assess the reliability of the predictions. Similar to the trait asso-
ciations above, we applied CelMod to the proportions square-root. To 
reduce the sensitivity of to the specific selection of training samples, 
we trained an ensemble of 100 CelMod models, each fitted over a dif-
ferent random train–test split (setting seeds 1 to 100). We averaged a 
participant’s predicted subpopulation proportion, obtaining a single 
estimated subpopulation proportion for each participant. After run-
ning CelMod on each major cell type group separately, we calculated the 
Spearman correlation of the (averaged) predicted proportion versus 
the snRNA-seq proportion on the holdout set. This per-cell type Spear-
man correlation provides an estimate of the reliability of the prediction 
for each subpopulation. Only subpopulations for which correlation 
was positive and significant (FDR < 0.01) were considered to be reli-
able and used in downstream analysis. The same ensemble strategy 
was used to obtain subpopulation predicted proportions of the 673 
replication sample participants (participants with bulk RNA-seq but 
no snRNA-seq data).

Causal modelling
In this section, we focused on the most robust subpopulation–AD trait 
associations by selecting those with the association FDR < 0.01 with 
at least two tested AD traits: Mic.12, Mic.13, Ast10 and Oli.7. We first 
assessed the association of APOE ε4, the strongest genetic risk fac-
tor of AD, with the identified key cell states. Subsequently, we tested 
whether AD endophenotypes (starting with Aβ) mediate the observed 
APOE ε4–cell state association. This step uses APOE ε4 as the genetic 
anchor that guides the direction of effect, leveraging the fact that the 
genetic variation is not subject to reverse causation58. We then built 
on the widely accepted causal chain of AD pathogenesis that starts 
with Aβ, leading to tau accumulation and cognitive decline28–30, and 
performed a series of causal mediation analyses to determine the 
most plausible location of each cell state in the core sequence of AD 
(Aβ→tau→cognitive decline). In mediation models, we used AD endo-
phenotypes and square-rooted cell state proportions as continuous 
variables and performed causal mediation analyses using a nonpara-
metric bootstrap option with 10,000 simulations in the R mediation 
package59. We then constructed a SEM based on the mediation analyses 
using the R lavaan package60. We first calculated the residuals of each 
variable by regressing age, sex, PMI, the estimated number of cells 
(per individual) and the number of detected genes (per individual). 
An exception was cognitive decline, as this variable has already been 
residualized against demographic covariates (random slope from 

https://github.com/MenonLab/Celmod
https://github.com/MenonLab/Celmod
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linear mixed effect model, adjusting for baseline age, sex and years of  
education)43. We did not allow cognitive decline to be the parent (causal) 
node, as cognitive decline is a symptom rather than the cause of AD 
pathophysiology and cellular environment changes. To replicate our 
findings in an independent set of individuals, we repeated the same 
procedure, using the CelMod-predicted cell subpopulation propor-
tions data from ROSMAP participants who did not contribute to the 
quality-controlled snRNA data (replication sample).

BEYOND analysis
The BEYOND strategy is composed of four major steps: (1) learning the 
cellular landscape manifold; (2) identifying axes of cellular change; 
(3) fitting subpopulation and trait dynamics; and (4) grouping sub-
populations into cellular communities. To implement this strategy, we 
used the subpopulation proportion matrix (see above). We represent 
a participant’s cellular environment by its compositional profile of 
subpopulations (that is, matrix rows). The cellular landscape is thus rep-
resented by the vector space spanned by the columns of the matrix. For 
convenience, we stored the proportion matrix as an AnnData61 object.

To perform steps 1 and 2, we also clustered the participants based 
on their cellular environments. We computed their k-neighbourhood 
(scanpy, scanpy.pp.neighbours, n_neighbors=10, use_rep=“X”, 
metric=“cosine”) and then clustered using the Leiden community 
detection algorithm (scanpy, scanpy.tl.leiden, Resolution=0.25). We 
further refined cluster #0 (scanpy, scanpy.tl.leiden, Resolution=0.75, 
restrict_to=“0”). This provided the participant’s clustering assignment 
seen in Extended Data Fig. 8a.

Step 1: learning the cellular landscape manifold. We embedded 
cellular environments using three manifold learning algorithms:  
(1) PHATE (scanpy, external.tl.phate, k=10, n_components=3, a=40, 
knn_dist=euclidean, mds_dist=euclidean, mds_solver=smacof); UMAP62 
(scanpy, tl.umap, maxiter=3000, spread=3); and t-SNE63 (scanpy, tl.tsne, 
n_pcs=0, use_rep=“X”, learning_rate=100). To better visualize the main 
area of the landscape, we also computed a 2D PHATE embedding exclud-
ing participants of clusters 9 and 10 (scanpy, external.tl.phate, k=15, 
n_components=2, a=100, knn_dist=euclidean, mds_dist=correlation, 
mds_solver=smacof).

Step 2: identifying axes of cellular change. To robustly identify  
and model axes of cellular change, we performed a pseudotime analysis 
using two algorithms: Palantir33 and VIA34. In brief, Palantir projects the 
input data onto a multidimensional diffusion space and constructs 
a neighbouring graph. It then iteratively refines the shortest paths 
from a user-defined starting point to each given datapoint, defining 
this relative distance as the pseudotime. Lastly, it constructs a Markov 
chain using the neighbouring graph and inferring directionality by 
the pseudotime. Palantir defines trajectories as the terminal states 
of the Markov chain and trajectory probabilities as the probability 
of a given datapoint to reach each of the terminal states. VIA begins 
by representing the input data as a cluster graph. It computes the 
pseudotime using a two-step procedure: first as the expected hitting 
time for a lazy-teleporting random walk along the undirected cluster 
graph starting from a user-defined starting point, and then refines it by 
running Markov chain Monte Carlo (MCMC) simulations. VIA defines 
trajectories by consensus voting on terminal states and trajectory 
probabilities as the visitation frequencies under the lazy-teleporting 
MCMC simulations.

We ran Palantir over the cellular landscape excluding participant 
clusters 9 and 10 (Palantir, run_diffusion_maps and determine_mul-
tiscale_ space, n_components=5, knn=50; Palantir, run_palantir, 
knn=30, max_iterations=100, scale_components=F, n_jobs=1, use_
early_cell_as_start=F). As VIA was designed to model trajectories in 
disconnected graphs, we ran it over the full cellular landscape of all 437 
participants (VIA, knn = 20, too_big_factor=0.2 and 0.075, small_pop=5, 

preserve_disconnected=True). For both algorithms we provided the 
same starting point, which was calculated as the medoid participant 
of participant clusters 1 and 3. Participants of these clusters exhibit 
high proportions of homeostatic glial subpopulations.

Step 3: fitting and plotting dynamics. Dynamics were computed by 
regressing the feature values over the pseudotime in a specific trajec-
tory using a generalized additive model, similarly to the strategy used 
by both Palantir33 and VIA34. Features used were participants’ traits, 
subpopulation proportions or community proportions. We then used 
the fitted model to predict the final dynamics over equidistant pseu-
dotime values. In detail, we spline-fitted a generalized additive model 
for feature y in trajectory j:

y s T j~ (ps ), weighted by and where ps ≤ ps( )i i ij i

where i is a participant, j is a trajectory, psi is the pseudotime of par-
ticipant i, ps(j) is the terminal pseudotime of trajectory j and Tij the 
trajectory probability matrix of participant i in trajectory j (mgcv64, 
gam, formula = y ~ s(ps), weights = T.,j). The final dynamics were pre-
dicted over equidistant pseudotime values in the range [0, ps(j)] (mgcv 
predict.gam, se.fit=TRUE). When plotting the dynamics we presented 
the predicted feature values over the equidistant pseudotime values, 
as well as a confidence interval area of predicted value ±2 × s.e., as 
retrieved from predict.gam.

Step 4: constructing cellular communities. Partitioning of subpop-
ulations into cellular communities was done using two sorts of meas-
ures: (1) similarity in subpopulation dynamics and (2) co-occurrences 
of subpopulations across participants. Similarities of dynamics were 
calculated using a weighted adaptive RBF kernel over the z-scored 
dynamics matrix, computed as follows: we represented each subpop-
ulation s by its dynamics along both trajectories Rx ∈s

t t+1 2  for t1  
and t2 the number of equidistant pseudotime values used for the pre-
dicted dynamics (see section above). We obtained ∼xs by centring and 
standardizing xs: ∼x x x x= ( − mean( ))/s.d.( )s s s s . We then computed M,  
the Mahalanobis distance between every two subpopulations, as 
M x x W x x= ( − ) ( − )sk s k s k

⊤  for W, a diagonal matrix of which the first t1  
diagonal values are 1/t1 and the rest 1/t2 (that is, equally weighing both 
trajectories). Lastly, we calculated the adjacency matrix as 

⊤A M σσ= exp(− / )dyn , where the division is performed element-wise 
and clipped to zero values smaller than 10−4. σ is the vector of local 
densities at each subpopulation calculated as σ NΣ M=s k s sk∈ ( )  and  

s( )N  is the set of 5-nearest neighbours of s according to M. The 
co-occurrence matrix Aco was calculated as the pairwise spearman 
correlation matrix of subpopulation proportions across all participants 
(stats, cor, use=pairwise.complete.obs, method=spearman). That is, 
A P P[ ] = cor([ ] , [ ] )sk s kco . .  for P the subpopulation proportions matrix 

defined in the sections above.
We used the Leiden community detection algorithm over the 

multiplexed 3-layered graph induced by the matrices Adyn, Aco after 
zeroing negative correlations and −Aco after zeroing positive cor-
relations (optimise_partition_multiplex method, leidenalg Python 
package60,61), with layers weighted as 1, 1, −1, respectively. We used the 
RBERVertexPartition partitioning model62,63, specifying the resolu-
tion parameter for each layer as the value maximizing the modularity 
(resolution_profile method, leidenalg Python package, partition_
type=RBERVertexPartition, resolution_range=[10−2, 10], number_ 
iterations=−1). We further refined communities based on the dendro-
gram calculated within each community based on the dendrogram 
calculated within each community using Adyn + Aco.

Once subpopulations were partitioned into cellular communities, 
we assigned participants with a community proportion by averaging 
the normalized subpopulation proportions, and further normalization 
such that community proportions for every participant sum to one. 



Community dynamics along trajectories were calculated using the 
same procedure as used for traits or subpopulation dynamics.

smFISH quantification and analysis
RNAscope experiment. The RNAscope Multiplex Fluorescent Rea-
gent Kit v2 (ACD, 323100) was used to perform the RNAscope experi-
ments on 15 individuals from the New York Brain Bank (6 cognitively 
unimpaired, no AD; 1 mild cognitive impairment, MCI; 8 AD). 6 µM 
paraffin-embedded tissue sections were deparaffinized with CitriSolv 
Clearing Agent (Decon Laboratories, 1601) for 20 min at room tempera-
ture, followed by an ethanol series (100%, 100%, 70%) for 30 s each. The 
slides were then put in distilled water for 1 min at room temperature. 
The slides were then incubated with hydrogen peroxide for 10 min at 
room temperature, then washed with distilled water twice to stop the 
hydrogen peroxide reaction. Antigen retrieval was performed with 
pH 6.0 citrate (Sigma-Aldrich, C9999) and heating with a microwave 
for 25 min at 400 W. After 5 min in tap water, the slides were immersed 
in 100% ethanol for 1 min. Once the slides had fully dried at room tem-
perature, the Super Pap Pen Liquid Blocker (Newcomer Supply, 6505) 
was used for drawing a hydrophobic barrier around the tissue section. 
The slides were blocked for 30 min at room temperature using the 
RNAscope Co-Detection Antibody Diluent.

All of the slides were stained with IBA1, a microglial marker (Wako, 
01127991) diluted in RNAscope Co-Detection Antibody Diluent at 1:50 
and incubated for 2 h at room temperature. The slides were then washed 
with PBS-T (PBS + 0.1% Tween-20) and then submerged in 10% neutral 
buffered formalin (Sigma-Aldrich, HT5011) for 1 h at room temperature. 
After washing with PBS-T, the slides were treated with RNAscope pro-
tease plus and incubated for 40 min at 40 °C in the RNAscope HybEz 
II oven. After washing with distilled water, RNAscope probe mix was 
added to the slides and incubated for 2 h at 40 °C. Finally, the slides  
were washed with the RNAscope wash buffer and incubated with  
5× SSC (Sigma-Aldrich, S6639-1L) overnight at room temperature. 
The next day, the slides were washed with RNAscope wash buffer and 
incubated with AMP1 for 30 min at 40 °C. The slides were washed twice 
with wash buffer and AMP2 was added and incubated for 30 min at 
40 °C. After washing, AMP3 was added and incubated for 15 min at 
40 °C. After 15 min of incubation at 40 °C with HRP-C1, the slides were 
washed and Opal 570, diluted in TSA diluent buffer (1:700) and incu-
bated for 30 min at 40 °C. The slides were then washed and, finally, 
an HRP blocker was added for 15 min. This HRP/Opal/block process 
was repeated using HRP-C2, HRP-C3 and HRP-C4 depending on the 
channel of the original probes, and Opal 690) dye. TSA-DIG reagent 
was used after HRP-C4 and incubated for 30 min at room temperature 
then blocked with HRP blocker and washed with PBS-T. The secondary 
antibody (Thermo Fisher Scientific, A11055) for the IBA1 staining was 
diluted in co-detection antibody diluent at 1:500 and then incubated for 
30 min at room temperature. After washing with PBS-T, the slides were 
incubated with Opal Polaris 780 dye prepared in the antibody diluent/
block at 1:700 for 30 min at room temperature. The slides were washed 
with PBS-T and the lipofuscin autofluorescence was quenched using 
Trueblack (Biotium, 23007) for 2 min at room temperature and DAPI 
was added to stain the nucleus. All of the slides were mounted using the 
Prolong Gold (Thermo Fisher Scientific, P36934). The RNAscope probes 
used in this experiment were as follows: TPRG1-C1 (ACD, 1047171-C1), 
MRC1-C3 (ACD, 583921-C3) and CPM-C2 (444811-C2).

Immunohistochemistry. 6 µM paraffin-embedded tissue sections were 
deparaffinized using CitriSolv Clearing Agent (Decon Laboratories, 
1601) for 20 min at room temperature, followed by an ethanol series 
(100%, 100%, 70%) for 30 s to 1 min each. The slides were then put in 
distilled water for 1 min at room temperature. Antigen retrieval was 
performed with pH 6.0 citrate (Sigma-Aldrich, C9999) and heated with 
a microwave for 25 min at 400 W. After a 5 min immersion in tap water, 
the slides were blocked using 3% BSA for 30 min and incubated with 

pTau AT8 primary antibody (Invitrogen, MN1020) overnight at 4 °C. The 
secondary antibody (Thermo Fisher Scientific, A32787) for the pTau 
staining was diluted in PBS at 1:500 and then incubated for 1 h at room 
temperature. After washing with PBS, the lipofuscin autofluorescence 
was quenched using Trueblack (Biotium, 23007) for 2 min at room 
temperature. The slides were mounted using the Prolong Gold with 
Dapi (Thermo Fisher Scientific, P36941). This staining was done on a 
sister section for each section on which RNAscope data were generated.

Image signal quantification. For all slides, images were acquired 
using the Nikon Eclipse Ni-E immunofluorescence microscope at a 
magnification of ×40, and approximately 30 pictures were acquired 
per individual. The captured images were analysed using CellProfiler31 
software. An extensive pipeline has been developed to automatically 
segment the microglia and detect transcripts (CPM, MRC1 and TPRG1) 
expressed by IBA1+ cells12. DAPI was defined as the primary object using 
the IdentifyPrimaryObjects module. For IBA1+ cell segmentation, the 
module EnhanceOrSuppressFeatures was used to enhance the IBA1 
signal and to detect the ramification. IBA1+ cells were also defined as the 
primary object and, using the RelateObjects module, only IBA1+DAPI+ 
cells were selected. To segment the transcript signals (dots), we used 
the EnhanceOrSuppressFeatures module with Speckles as the feature 
type, and the RelateObjects module was used to relate the transcripts 
signals (CPM, TPRG1 and MRC1) to IBA1+DAPI+ cells. The morphology 
(eccentricity and compactness) of IBA1+DAPI+ cells was measured using 
the MeasureObjectSizeShape module and the intensity of each tran-
script as well as IBA1 was measured using the MeasureObjectIntensity 
module. The data were exported in Excel format using ExportToSpread-
sh. For the quantification of pTau (AT8), 35–40 images per individual 
were captured at ×20 magnification, in a zigzag pattern to cover all six 
cortical layers. Images were analysed with the Cellprofiler31 software, 
where tangles and pTau plaques were size-filtered. The area occupied 
measurement was used for the analysis.

We assigned microglial subpopulations to the smFISH data based 
on the expression of the marker genes CPM, TPRG1 and MRC1. A cell 
was classified as a myeloid cell if it was IBA1+DAPI+. None myeloid cells 
were excluded from further analysis. Cells were then assigned to one 
of five categories: Mic.13 (TPRG1>5 and MRC1<10), Mic.12 (TPRG1<2, 
CPM>5 and MRC1<5), macrophage (MRC1≥ 5), other myeloid (TPRG1<2, 
CPM<2 and MRC1<3) or none if none of the above criteria were met. 
Cells assigned as ‘none’ represent insufficient evidence of classifying 
or not classifying as Mic.12, Mic.13 or macrophages. Once classes were 
assigned, subpopulation proportions were calculated for each of the 
RNAscope participants across all five categories.

Spatial transcriptomics analysis
We profiled ten samples of ROSMAP participants using spatial tran-
scriptomics (Visium), including 4 samples predicted to be in the prAD 
trajectory and 2 samples predicted to be in the ABA trajectory, and 4 
predicted to be in the early pseudotime (unassigned to prAD nor ABA).

Visium data generation. For spatial transcriptomics analysis with 
Visium combined with immunofluorescence, the cerebral cortex and 
the underlying white matter of fresh frozen brain tissue were obtained 
from the ROS and MAP cohorts. Tissues were dissected on dry ice to 
be prepared into a tissue size of 10 × 10 mm2 in cryoembedding matrix 
(OCT) and sectioned at 10 µm thickness in duplicate onto a spatial 
transcriptomics slide with capture probes. The sections were selected 
based on an RIN greater than 6. The sections were fixed with cold 100% 
ethanol for 30 min and stained with thioflavin S for 8 min at room tem-
perature (Sigma-Aldrich, T1892). After serial washing with the wash 
buffer, the slides were incubated in TrueBlack for 2 min to quench the 
autofluorescence from the lipofuscin. The sections were scanned using 
the Nikon ECLIPSE immunofluorescence microscope at magnifica-
tion ×20. The tissue sections were then permeabilized to induce cDNA 
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synthesis, and a cDNA library was generated. Subsequently, libraries 
were sequenced and aligned with the bright-field images using the 
Space Ranger software.

Visium spot-level data processing and cortical layer annotations. 
For each sample, we loaded the CellRanger output h5 file using Seurat 
(v.4.1.4) for a per-spot gene quantification and visualization. For quality 
control, we removed spots with less than 500 expressed genes or with 
more than 30% mitochondrial RNA, and normalized the data (Seurat, 
SCTransform). Cortical layer annotation was obtained by clustering 
the spatial transcriptomics spots into 7 clusters. First, 35 PCs were cal-
culated using the intersection of the top 10,000 highly variable genes 
and 2,500 cortical layer marker genes from a recent publication65. Next, 
Harmony66 was used to normalize the PCA embeddings across tissue 
sections. The BayesSpace67 method was then used to cluster spots, with 
the smoothing parameter gamma set to 2. After layer annotations, we 
removed spots classified as white matter from the rest of the analysis.

Markov affinity-based graph imputation of Visium spots. To over-
come data sparsity, we used MAGIC68 (Markov affinity-based graph 
Imputation of cells) to denoise the data. We first normalized the raw 
count data such that the sum of expression values for each spot sums 
to 1 (phateR, library.size.normalize). Using the square-root transfor-
mation of the normalized matrix as an input, we then ran MAGIC on all 
genes expressed in at least 10 spots (parameters, knn=5, t=3).

Subpopulation spatial density estimation on Visium-profiled tis-
sues. We first defined the glial subpopulations of interests using marker 
genes as proxy for each of their signatures: Ast.10 (SMTN+SLC38A2+), 
Mic.13 (TREM2+GPNMB+) and Ast.5 (SERPINA3N+OSMR+). To visualize 
the spatial distribution for spots enriched in each of these signatures, 
we calculated and visualized the joint density distribution for each set 
for markers by kernel density estimation over the spatial coordinates 
and weighted by the scaled gene expression (Nebulosa v.1.8.0). For 
each markers pair, Nebulosa calculates the joint density by multiply-
ing their densities.

Spatial transcriptomics statistical associations. To score the abun-
dance of a given glial subpopulation at the spot level, we summed 
the MAGIC-imputed expression of each marker pair in each spot. To 
assess the spatial coordination of Mic.13 and Ast.10, we calculated 
the Pearson correlation between the abundance scores of Ast.10 and 
Mic.13 within each of the participants, tested for the significance of 
the correlation being strictly positive (cor.test, method=pearson, 
alternative=“greater”) and corrected for multiple hypothesis testing 
(FDR, p.adjust, method=BH). Comparison between the prAD and ABA 
participant groups was performed using one-sided t-tests, testing that 
the difference in means is greater than zero (t.test, x=prAD participant 
correlations, y=ABA participant correlations, alternative=“greater”). 
To evaluate the shift between Ast.10 and Ast.5 enrichment within prAD- 
and ABA participants we compared within individual expression levels. 
For prAD participants we tested whether Ast.10 levels were strictly 
greater than Ast.5 levels (one-sided t-test, x=Ast.10 levels, y=Ast.5 levels, 
alternative=“greater”), while, for ABA participants, we tested whether 
Ast.5 levels were strictly greater than Ast.10 levels (one-sided t-test, 
x=Ast.5 levels, y=Ast.10 levels, alternative=“greater”). Results were 
corrected for multiple hypothesis testing (FDR, p.adjust, method=BH). 
Comparison between the prAD and ABA participant groups was done 
over the log-ratio of Ast.10 to Ast.5, and comparing the mean between 
the groups using a one-sided t-test (x=prAD participants’ log(Ast.10/
Ast.5), y=ABA participants’ log(Ast.10/Ast.5), alternative=“greater”).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
snRNA-seq data and analysis output are available at the AD Knowledge 
Portal (https://adknowledgeportal.org). The AD Knowledge Portal is 
a platform for accessing data, analyses and tools generated by the 
Accelerating Medicines Partnership (AMP-AD) Target Discovery Pro-
gram and other National Institute on Aging (NIA)-supported programs 
to enable open-science practices and accelerate translational learn-
ing. The data, analyses and tools are shared early in the research cycle 
without a publication embargo on secondary use. Data are available 
for general research use according to the following requirements for 
data access and data attribution (https://adknowledgeportal.org/
DataAccess/Instructions). Access to the content described in this Arti-
cle is available online: the Synapse database for raw and processed 
snRNA-seq data (https://www.synapse.org/#!Synapse:syn31512863); 
the online portal for data browsing (https://github.com/naomiha-
biblab/BEYOND_DLPFC); the Synapse database for bulk RNA-seq data-
set (https://www.synapse.org/#!Synapse:syn3388564); and the Synapse 
database for the spatial transcriptomics (Visium) dataset (https://www.
synapse.org/#!Synapse:syn62110225). Other ROSMAP resources can 
be requested at the RADC Resource Sharing Hub (https://www.radc.
rush.edu). Source data are provided with this paper.

Code availability
The complete code base used in this study is available at GitHub (https://
github.com/naomihabiblab/BEYOND_DLPFC) and includes library-level 
snRNA-seq analysis to remove background RNA, quality control 
steps, cell type classification and doublet annotation; cell-type-level 
snRNA-seq analysis to remove low-quality data, subclustering analysis 
and functional annotations; BEYOND algorithmic approach of visual-
izing the cellular landscape, fitting subpopulation and trait dynamics, 
and defining cellular communities; additional analyses presented in 
this study, such as CelMod fitting and trait associations, causal model-
ling and validations (smFISH, pTau and morphology analysis, as well as 
spatial transcriptomics subpopulation co-localization analysis); code 
for generating the Figures and Extended Data Figures; a guide to repro-
duce the graphs presented in the study from the Supplementary Tables.
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Extended Data Fig. 1 | snRNA-seq libraries preprocessing and quality 
controls (QCs). (a) Distributions across batches of: sex, cognitive diagnosis, 
Braak stage and CERAD score. (b) QC pipeline selecting 465 participants for 
cell atlas and 437 participants for downstream analysis including snRNA-seq 
libraries with a sufficient number of robustly assigned nuclei. (c) UMAP 
embeddings of two example snRNA-seq libraries prior to any QCs. Dot colour: 
predicted cell type (left) and prediction uncertainty (Shannon entropy, right). 
(d) Example snRNA-seq library manually curated for cells of low-quality 
libraries. Based on the manual curation of 10 such libraries, cell-type-specific 
low-quality thresholds over the number of UMIs (#UMI) and the number of 
unique genes (#Genes) were chosen. (e,f) Distributions of (e) # UMI and (f) 
#Genes threshold for low quality nuclei per cell type in the manually curated 
libraries, indicating selected thresholds. (g-i) Detection of doublet cells.  
UMAP embedding of example library annotated by (g) demultiplexing doublet 

annotation (demuxlet algorithm), or (h) DoubletFinder doublet-likelihood 
scores. (i) Distribution of the Matthews correlation coefficient (MCC) scores, 
reflecting prediction sensitivity, specificity and precision, for a range of 
thresholds over the DoubletFinder scores, per library (separate line, top), and 
the maximizing threshold chosen per library (dots, bottom). ( j) UMAP 
embedding of the example library (in c) post-QCs, coloured by cell-type 
prediction. (k) Distribution of number of nuclei per participant. Dash line = 
minimum number of nuclei for a participant in the Discovery sample. (l) The 
average number of UMIs per cell type in each participant; Dots: individual 
participants (n = 465 participants per cell type). (m) Number of nuclei per cell 
type and participant: absolute (left) and proportions (right). Coloured by cell 
classes. Box: 1st and 3rd quartile, line: median, whiskers extend from box to the 
highest and lowest values within 1.5 times the distance between the quartiles.
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Extended Data Fig. 3 | Comparison of glial subpopulation to previously 
defined gene signatures. Heatmap of previous signature genes (rows)  
for cell subpopulations (columns) of (a) microglia, (b) astrocytes and  
(c) oligodendroglia, separated by signature and split by reference source. 
Colour-scale: row scaled expression out of expressing cells. Genes defined in 

multiple signatures appear multiple times. (d) Comparison of previous gene 
signatures to subpopulations of the vascular niche. Scaled mean signature 
score of published gene signatures (columns) within each subpopulation (rows).  
(*) = Significantly enriched signatures (U-test, FDR<0.01). Published signatures 
from1,3,17.
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Extended Data Fig. 4 | Vascular niche- and neuronal subpopulation diversity. 
(a,d,g) Subpopulation proportions across participants for (a) vascular niche 
cells, (d) inhibitory neurons and (g) excitatory neurons. Dots: 465 individual 
participants, box: 1st and 3rd quartiles, line: median, whiskers extend to the 
highest and lowest values within 1.5 times the distance between the quartiles. 
(b,e,h) QC measures. Distributions of number of UMIs and number of Genes 

detected for each subpopulation of (b) vascular niche, (e) inhibitory neurons 
and (h) excitatory neurons. (c,f,i) Selected markers and top differentially 
expressed genes between subpopulations. Gene expression (columns) across 
subpopulations (rows) of (c) vascular niche, (f) inhibitory neurons and (i) 
excitatory neurons. Dot colour: mean expression in expressing cells. Dot size: 
percent of cells expressing the gene.
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Extended Data Fig. 5 | Clustering quality and neuronal subtypes 
annotations. (a) Quality measures of clustering showing the cohesion  
within each cluster and separation between clusters. For each cluster (row) 
showing the distribution of shared nearest neighbours assigned to other 
clusters (columns) For each cell class. Coloured by the fraction of shared 
nearest neighbours. Rows and columns are sorted by the cluster number.  

(b-c) Classification of (b) excitatory and (c) inhibitory neuronal cells, by 
previous annotations provided by the Allen Brain Map. Heatmaps of the 
percentage of cells from each of our clusters assigned to each of the provided 
annotations (Methods) linking neuronal sub-types to marker genes of 
inhibitory and excitatory neurons and to cortical layers (colour bar).
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Extended Data Fig. 6 | CelMod predictions and endophenotype associations. 
(a) Evaluation of CelMod prediction of subpopulation proportions in bulk RNA 
samples with matching snRNA-seq measurements in the same participant 
(n = 419 samples). Spearman correlation between snRNA-seq (actual) and 
CelMod bulk-predicted proportions, over the held-out set (test set) of 
participants (Methods). * = FDR corrected p-value. (b) Comparison of the 
estimated effect sizes regressing endophenotypes on subpopulation 
proportions, for the snRNA-seq (Discovery cohort, x-axis) and the bulk 
predictions (Replication cohort, y-axis). n = 419. The Spearman correlation 
between the effect sizes and FDR corrected p-value are shown for each 
comparison. (c) Associating subpopulation proportions to endophenotypes: 
CERAD score, Braak stage and AD dementia (linear regression controlled for 

cofounders, FDR<0.05, Methods), showing subpopulations significantly 
associated with at least one of the tested traits in one on the cohorts: Discovery 
(left, n = 437), Replication (centre, n = 673) and the meta-analysis of both 
cohorts (right, n = 1,110). Colour scale: t-stat. (d-h) Causal mediation models 
which together with Fig. 3f–i position Mic.12, Mic.13, Ast.10 and Oli.7 within the 
Aβ→tau→cognitive decline AD cascade, indicating direct and mediated effects, 
as well as proportion of effect mediated. Number of participants: (d,e,g) 
n = 432, (f) n = 413, (h) n = 433. (i) Validation of the structural equation model 
(SEM; as in Fig. 3j) in the CelMod predicted subpopulation proportions of  
the Replication cohort. Arrows show association directionality and relative 
strength.
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Extended Data Fig. 7 | smFISH quantification analysis. (a) Gene expression 
(columns) across microglial subpopulations (rows) for selected differential 
genes and known markers. Dot colour: column-scaled mean expression of 
expressing cells. Dot size: percentage of expressing cells. (b) Gene expression 
of markers used for smFISH across microglial subpopulations. Dot colour and 
size as in (a). (c) A gallery of representative RNAscope smFISH data showing 

split channels by marker: CPMhigh Mic.12, TPRG1high Mic.13, and a MRC1high 
macrophage, together with IBA1 (green) and DAPI (blue) staining. (d) Bivariate 
expression distributions in snRNA-seq (top) and smFISH (bottom), coloured by 
assigned snRNA-seq subpopulations (top) predicted assignment in smFISH 
data (bottom, Methods).
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Extended Data Fig. 8 | Robustness of cellular landscape modelling by 
BEYOND. (a) 3D PHATE embedding of all 437 snRNA-seq participants, coloured 
by clustering of participants based on their cellular environments (Methods). 
(b) Distinct patterns of subpopulations along the cellular landscape manifold, 
showing additional subpopulations to those of Fig. 5c. Participants (dots)  
are coloured by the locally smoothed proportion of each subpopulation.  
(c) Robustness of the cellular landscape to the embedding method and set  
of subpopulations used in BEYOND. Participants are coloured by the locally 
smoothed subpopulation proportion. (d-e) Visualizing fitted pseudotime, 
trajectories and Shannon entropy of trajectory probabilities outputted by:  
(d) VIA (n = 437 participants), and (e) Palantir algorithms (n = 386, excluding 
participant-clusters #9 and #10 in a).(f) Robustness of trajectories and 
pseudotime predictions using different algorithms (over the overlapping 
n = 386 participants). (Top) Pseudotime assigned for each individual by Palantir 

compared to VIA. (Bottom) Trajectory probabilities Pearson correlations. 
Corrected for multiple hypothesis testing (BH). (g) Participants’ trajectory 
probabilities entropy drop along pseudotime, in the Palantir model. Dots are 
coloured by prAD minus ABA trajectory probabilities. The grey area indicates  
a pseudotime range (0, 0.11) in which the two trajectories are not well 
separated. (h) Trait-dynamics of AD-related traits along the pseudotime in each 
of the inferred trajectories, showing the datapoints used in fitted curves and 
error bands showing 0.95 CI (Methods). n = 386 participants. As in Fig. 5f.  
(i-j) Validation of cellular landscapes and trajectories using the Replication 
cohort (n = 673 non-overlapping participants, with the 62 reliable CelMod bulk-
predicted subpopulations proportions to represent cellular environments).  
(i) The Palantir model over replication landscape as in (e). ( j) Trajectory 
probabilities entropy drop as in (g) but over the replication landscape.
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Extended Data Fig. 9 | Cellular dynamics and communities. (a) Distinct 
patterns of subpopulation dynamics, as Fig. 6a with datapoints used to fit  
the curves. Dots are participants (n = 386). Error bands: 0.95 CI. (b) Graph of 
multi-cellular communities. Nodes: Subpopulations. Edges: co-occurrences 
(Spearman correlation, green-purple scale) or dynamics similarity (white-red 
scale). Excluding edges of low similarity (correlation (−0.2, +0.4), dynamics 
(−0.2, +0.2)) for visualization. See Fig. 6b. (c) Distinct dynamic patterns for 
cellular communities across trajectories. Whole-community dynamics of 
community proportion along pseudotime in each trajectories. Dots are 
individual participants (n = 386). See Fig. 6c. Error bands: 0.95 CI. (d) Validation 
in the Replication cohort of coordinated subpopulation dynamics along 
trajectories. Presented as in Fig. 6a, but over the replication landscape.  
Error bands: 0.95 CI. (e-g) Spatial transcriptomics (ST, Visum, Methods) 
validations of cellular communities. Dots are individual participants (n = 637). 
(e) Discovery cohort participants included in ST validations (n = 10), and their 

assignment to trajectories (annotated as: Early, prAD or ABA). 2D PHATE 
embedding as in Fig. 5b. (f) Pearson correlation between Mic.13 and Ast.10 
gene signature expression across the Visium spots for each of the participants, 
grouped by their trajectory assignment. Dots: signature expression in visium 
spots. Line: regression line. Error bands: 0.95 CI of regression line. P-value: 
one-sided T-test (positive association), FDR corrected for multiple hypothesis, 
dot fill colour indicates significance of correlation. (g) Divergent association  
of Ast.10 and Ast.5 between the two trajectories. Distribution of Ast.10 and 
Ast.5 gene signature expression for each participant (n = 10), grouped by their 
trajectory assignment. Per participant, significance of the differences of 
means were tested by one-sided t-test: (1) for prAD participants: Ast.10 levels 
being strictly higher than Ast.5 levels, and (2) for ABA participants: Ast.5 levels 
being significantly higher than Ast.10 levels (Methods). Significance level is 
shown by the dot fill colour.
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Immunofluorescence images were captured with Nikon Eclipse Ni-E. cDNA libraries were assesed and sequenced with the provided software 
of Agilent BioAnalyzer, 10X Genomics (chemistry V3, Visium), Illumina HiSeqX and Illumina NovaSeq 6000. 

General: R (v4.2.3) with publicly available packages, python (v3.9.16) 
snRNA-seq analysis: CellRanger (v6.0.0.0), CellBender (v0.2.0, download date 01-March-2021); Demuxlet (v0.1-beta), Freemuxlet (v0.1-beta), 
Seurat (v4.1.0), DoubletFinder (https://github.com/GreenGilad/DoubletFinder/tree/scalable_DoubletFinder), 
BEYOND analysis: scanpy (v1.9.3), anndata (python, v0.9.2), AnnData (r, v0.7.5.6), Palantir (v1.3.0), VIA (pyvia, v0.1.88, in an independent 
conda environment with python v3.7) 
RNAscope image analysis: Images were analyzed using our automated image processing pipeline, which is based on CellProfiler and 
CellProfiler Analyst, and includes algorithms for cell identification and segmentation, intensity measurement and morphologic feature 
extraction. 
Spatial transcriptomics analysis: Seurat (v4.1.4), Rmagic (v2.0.3), SpaceRanger (v1) 
Other analyses: CelMod (v0.0.0.9), mgcv (v1.8.42), clusterProfiler (v4.6.2) 
Visualization: ggplot2 (v3.4.2), ComplexHeatmap (v2.14.0), ggnewscale (v0.4.9), gg3D (v0.0.0.9), Nebulosa (v1.14.0) 
GITHUB for all code: https://github.com/naomihabiblab/BEYOND_DLPFC 
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Synapse database for snRNA-seq data (raw sequenced libraries, processed cell-type Seurat objects, cell-subpopulation mapping) https://www.synapse.org/#! 
Synapse:syn31512863. 
Synapse database for bulk RNA-seq dataset https://www.synapse.org/#!Synapse:syn3388564. 
Other ROSMAP resources can be requested at the RADC Resource Sharing Hub at: https://www.radc.rush.edu. 
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We report the sex of each participant as detailed in Supplementary Table 1. Participants' sex was considered in analysis - 
controlled for when evaluating association of Alzheimer's Disease endophenotypes. 

For this study, we selected 465 participants, blind to their neuropathologic and clinical traits, age and sex, and based on 
availability of frozen pathologic material from the Dorsolateral Prefrontal Cortex (DLPFC), including only participants with 
RIN>5 and post mortem interval (PMI) <24 hours. Our study cohort includes diverse individuals across the full range of the 
pathological and clinical stages of AD. The demographic and clinicopathologic characteristics are described in Supplementary 
Table 1. 

Data were derived from subjects enrolled in one of two longitudinal clinical-pathologic cohort studies of aging and dementia, 
the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP), collectively referred to as ROSMAP. All 
participants are without know dementia at enrollment and have annual clinical evaluations and agree in advance to brain 
donation at death. All participants signed an informed consent, Anatomic Gift Act, and repository consent. Selection of 
ROSMAP participants for this study was done blind to any clinical-pathologic characterization, in an effort to obtain a 
representative sample of the aged human diversity (as represented within the ROSMAP studies) 

Each study was approved by an Institutional Review Board of Rush University Medical Center. 

Single nucleus RNA-seq sample size of 465 ROSMAP participants (Discovery sample) to capture a wide range of clinical-pathological diversity 
and enable sufficient statistical power for associations with disease traits. Bulk RNA-seq sample size of 1,092 ROSMAP participants was based 
on available data. Immunohistochemistry/smFISH sample size 15 NY brain bank samples (6 no-AD controls, 1 MCI, 8 AD). Spatial 
transcriptomics (visium) - 10 samples out of the Discovery sample. 

We excluded 28 of the 465 participants from statistical and association analyses since they had missing genome sequencing data for the 
assignment of nuclei or had insufficient number of assigned nuclei. 

Each sample in our Discovery cohort was profiled by two nuclei libraries (technical replicates) that were combined for the analysis. Our 
findings were replicated in an independent set of 673 participants (biological replicates) profiled by bulk RNA-seq (not included in our 
Discovery cohort profiled by snRNA-seq). These additional samples were used to validate the association of cell subpopulations with disease 
traits, mediation analysis and causality modeling, as well as the BEYOND landscape and cellular trajectories. We reported the results that were 
successfully replicated in both the discovery snRNA-seq cohort and the replication cohort. The immunohistochemistry/smFISH was conducted 
on independent 15 samples from a different brain bank (not profiled by snRNA or bulk RNA). 

Each batch of samples for library construction consisted of 8 participants, that were randomly selected from the cohort. The batches were 
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balanced for clinical and pathological diagnosis as well as participant sex, and did not have significant technical biases, as seen in Extended 
Data Fig. 1a. 

Investigators were blind to any clinical- pathological- and demographical information of the participants during the snRNA-seq, spatial- 
transcriptomics and immunohistochemistry experimental phase. The data processing and basic atlas analysis were done blind to all 
participant information and pathologies, including: snRNA-seq quality control steps and sub-clustering, immunohistochemistry quantification 
of marker genes and anti-phospho Tau antibody AT8, as well as cell subpopulation quantification on spatial transcriptomics data. 

Iba1 antibody (Wako, catalog # 011-27991, lot #LEG4278). Iba1 was used at 1/100 dilution. 
RNAscope probes: Hs-TPRG1-C1 (ACD, catalog # 1047171-C1, Lot #210548), Hs-CPM-C2 (ACD, catalog # 444811-C2, Lot#22108A), 

Hs-MRC1-C3 (ACD, catalog # 583921-C3, Lot#22108A). pTau AT8 primary antibody (Invitrogen, catalog MN1020). pTau AT8 at 1/300 
dilution. The secondary antibodies used for Iba1 and pTau were Alexa Fluor 488 Donkey anti-Goat IgG(H+L) (Dilution 1/500, Ref: 
A11055, Lot 2747580) and Alexa Fluor 647 Donkey anti-mouse IgG(H+L) (Dilution 1/500, Ref: A31571, Lot 2555690) from Invitrogen. 

Iba1 and pTau AT8 antibody specificity has been confirmed on human post-mortem brain tissues by co-staining with other microglia 
markers and on healthy brain tissue. Furthermore, Iba1 antibody was cited in more than 1250 papers in 2021. 
The specificity of the RNAscope probes was validated by ACD. pTau AT8 (Invitrogen, MN1020) has been cited by 905 papers in total, 
including 469 papers for immunohistochemistry. The purity of the antibody is >95% as determined by SDS-PAGE, and its specificity 
was also validated in our laboratory by co-staining with Thioflavin S and other anti-pTau antibodies such as the PHF1 antibody. The 
antibody stained clear neurofibrillary tangles as well as neuropil threads. The dilution of this antibody has been determined by serial 
dilution ranging from 1/50 to 1/1000. The specificity of the secondary antibodies has been determined by staining secondary 
antibodies alone, and we did not detect any signals. 

nature portfolio | reporting sum
m

ary 
M

arch 2021 

http://creativecommons.org/licenses/by/4.0/

	Cellular communities reveal trajectories of brain ageing and Alzheimer’s disease
	A cell atlas of the aged and AD cortex
	Linking cell subpopulations to AD traits
	Causal modelling of glia in the AD cascade
	Two disease-associated microglial states
	Distinct cellular paths of brain ageing
	Dynamics of multicellular communities
	Discussion
	Online content
	Fig. 1 Cellular atlas of the human aged DLPFC in older individuals.
	Fig. 2 Cell subpopulation diversity in DLPFC of aged individuals.
	Fig. 3 Associating subpopulations with AD-related endophenotypes and causality modelling along the AD cascade.
	Fig. 4 Distinct AD associated Mic.
	Fig. 5 Modelling the cellular landscape manifold uncovered distinct trajectories of brain ageing leading to AD or ABA.
	Fig. 6 Distinct multicellular communities change along each trajectory of brain ageing.
	Extended Data Fig. 1 snRNA-seq libraries preprocessing and quality controls (QCs).
	Extended Data Fig. 2 Glial subpopulation diversity.
	Extended Data Fig. 3 Comparison of glial subpopulation to previously defined gene signatures.
	Extended Data Fig. 4 Vascular niche- and neuronal subpopulation diversity.
	Extended Data Fig. 5 Clustering quality and neuronal subtypes annotations.
	Extended Data Fig. 6 CelMod predictions and endophenotype associations.
	Extended Data Fig. 7 smFISH quantification analysis.
	Extended Data Fig. 8 Robustness of cellular landscape modelling by BEYOND.
	Extended Data Fig. 9 Cellular dynamics and communities.

	SpringerNature_Nature_7871_ESM1.pdf
	Statistics
	Software and code
	Data
	Human research participants
	Field-specific reporting
	Life sciences study design
	Reporting for specific materials, systems and methods
	Antibodies





