nature neuroscience

Resource

https://doi.org/10.1038/s41593-024-01764-7

A cross-diseaseresource ofliving human
microgliaidentifies disease-enriched
subsets and tool compounds recapitulating

microglial states

Received: 14 December 2023

Accepted: 13 August 2024

Published online: 15 October 2024

% Check for updates

John F. Tuddenham"?**?°, Mariko Taga"*?°, Verena Haage"?°, Victoria S. Marshe',
Tina Roostaei', Charles White', Annie J. Lee', Masashi Fujita', Anthony Khairallah',
Ya Zhang', Gilad Green®, Bradley Hyman®, Matthew Frosch’, Sarah Hopp®®,
Thomas G. Beach'’, Geidy E. Serrano'®, John Corboy", Naomi Habib?®,
Hans-Ulrich Klein'#, Rajesh Kumar Soni'?, Andrew F. Teic
Richard A. Hickman, Roy N. Alcalay'*', Neil Shneider'*", Julie Schneider™,

41314
h*=%,

Peter A. Sims>', David A. Bennett'®, Marta Olah'?°, Vilas Menon"*° &
Philip L. De Jager'?°=

Human microglia play a pivotal role in neurological diseases, but we still have
anincomplete understanding of microglial heterogeneity, which limits the
development of targeted therapies directly modulating their state or function.
Here, we use single-cell RNA sequencing to profile 215,680 live human microglia
from 74 donors across diverse neurological diseases and CNS regions. We
observe acentral divide between oxidative and heterocyclic metabolismand
identify microglial subsets associated with antigen presentation, motility

and proliferation. Specific subsets are enriched in susceptibility genes for
neurodegenerative diseases or the disease-associated microglial signature. We
validate subtypes in situ with an RNAscope-immunofluorescence pipeline and
high-dimensional MERFISH. We also leverage our dataset as a classification
resource, finding that induced pluripotent stem cell model systems capture
substantial in vivo heterogeneity. Finally, we identify and validate compounds
that recapitulate certain subtypes in vitro, including camptothecin, which
downregulates the signature of disease-enriched subtypes and upregulates a
signature previously associated with Alzheimer’s disease.

Microglia, the resident parenchymal myeloid population of the CNS',
canrapidly disengage from key homeostatic functions to fulfill differ-
entspecializedroles, such as antigen presentation, pathogen response
and synaptic pruning?’. They play pivotal roles in CNS development?
and diseasesincluding Alzheimer’s disease (AD)* and multiple sclerosis
(MS)°. We are only beginning to understand their spatial, temporal and
functional complexity, particularly in humans, as muchof the published
profiling work has been performed in mice®’. Structured evaluations

of human microglial heterogeneity at the single-cell level have only
recently been applied to a limited set of contexts**™*, Further, most
of these studies analyzed only a modest number of samples or used
single-nucleus profiling, which may have differential sensitivity to
capture genes when compared to single-cell approaches, especially
in microglia'®”. As a result, our understanding of the range of states
that live human microglia can attain, as well as their trajectories of
state transition, remains limited. Analyzing data captured in different
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Fig.1| Overview of our cross-disease sample collection, datageneration
approach, downstream analyses and validation. We sampled awide array
of neurological diseases and CNS regions (Supplementary Table 1) from a mix
of autopsy samples and surgical resections. We isolated live brain CD45" cells
fromatotal of 74 donors of both sexes. Single-cell suspensions were loaded
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directly onto the 10x Chromium controller. Resulting libraries were sequenced
onanlllumina HiSeq 4000. The lower part of the figure outlines our analyses
and validation efforts, including disease and functional relevance of microglial
subtypes, insitu validation, in vitro recapitulation of subtype phenotypes, and
annotation of other datasets using our data as a reference.

contexts in a single framework is essential to interpret results across
diseases and studies.

Inthis study, we aimed to (1) generate a broad reference of micro-
glial transcriptional profiles across neurodegenerative diseases that
would capture as much of the diversity of microglial states as possible
and (2) illustrate the utility of this resource to annotate model systems
andidentify tool compounds for modulating human microglial states.
The studyis not designed to identify microglial populations associated
with agiven disease; that type of effort would require a different study
design involving a single brain region and profiling of only one set of
participants with a diagnosis and one set of reference participants
without that diagnosis. Using cold, enzyme-free, mechanical disso-
ciation, which has been demonstrated to optimally preserve native

microglial transcriptional profiles'®'?, we purified live CD45" cells and
collected single-cell RNA sequencing (scRNA-seq) datafromadiverse
set of CNS regions and clinicopathologic states affecting both men
and women. We identified 12 microglial subpopulations represented
acrossall diseases and regions; importantly, our study was not designed
to characterize microgliain a particular disease, but rather to sample
as many different conditions as possible and to profile them using a
single experimental and analytic pipeline. We propose trajectories of
cell-state transitions between microglial subsets in our dataset, iden-
tifying a central metabolic shift between oxidative and heterocyclic
metabolism, microglial subsets enriched for disease genes, microglial
subsets that express high levels of the disease-associated microglial
(DAM) transcriptional program®and subsets associated withimmune
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activation. Given the plasticity of microglia, we suspect that they can
differentiate into these populationsin adults, after the cell is commit-
ted to amicroglial fate, and that they can switch signatures depending
on the changes occurring in their microenvironment. Using our new
subset signatures, we optimized ajoint protein-RNA staining protocol
to localize microglial subsets in situ and demonstrate morphological
shiftsassociated with expression of selected hallmark genes; in paral-
lel, we also used a multiplexed MERFISH approach to independently
validate our subsets in brain tissue sections using a larger number of
genes. We also used our new resource to classify microglia profiled
in previous studies and evaluated the degree of microglial diversity
foundininduced pluripotent stem (iPS) cell-derived microglial model
systems. Finally, we leveraged the Connectivity Map (CMAP)**?' to
identify chemical perturbations predicted to drive subtype-specific
signatures and cell-state transitions, and we validated these predictions
invitroatthe RNA and protein levels. Ultimately, we provide aresource
that explores human microglial heterogeneity across regions and dis-
easesand aseries of tools for classifying, evaluating and manipulating
microglial model systems, bringing us closer to the goal of microglial
modulationin humans.

Overview of our samples and analytical approach
Our sample collection encompasses fresh autopsy samples from
individuals with both early-onset and late-onset AD, mild cognitive
impairment (MCI), amyotrophiclateral sclerosis (ALS), frontotemporal
dementia (FTD), Parkinson’s disease (PD), progressive supranuclear
palsy (PSP), diffuse Lewy body disease (DLBD), MS, Huntington’s dis-
ease (HD) and stroke, as well as samples from an individual without
adiagnosis of neurological disease (Fig. 1). Our cohort also includes
surgical resections fromindividuals with temporal lobe epilepsy and a
dysembryoplastic neuroepithelial tumor. These samples were derived
from a wide array of brain regions: anterior watershed white matter,
frontal cortex (BA9/46), primary motor cortex (BA4), temporal cortex
(BA20/21), occipital cortex (BA17/18/19), hippocampus, thalamus,
substantia nigra, facial motor nucleus and spinal cord. As our workflow
limited the number of regions that could be processed in parallel for
each brain, we chose BA9 as a reference in most cases and sampled
other regions where possible. As individuals without any diagnosed
pathology (‘controls’) rarely come to autopsy, only one was available
for sampling during the study. Our workflow included the use of a previ-
ously reported cold, enzyme-free mechanical dissociation approach
for isolation of live human microglia and leukocytes*?* followed by
scRNA-seq of the freshly sorted live cells using the droplet-based 10x
Genomics Chromium platform. Further details on the demographic
and clinical characteristics of our donors, as well as details regarding
our cell hashing strategy, can be found in Supplementary Table 1.

After rigorous preprocessing and quality control (QC), we retained
225,382 individual transcriptomes from 74 donors. As the samples
in our dataset encompassed a broad set of disease conditions, brain
regions and chemistry versions for the 10x Genomics Chromium plat-
form, we applied algorithms for batch correction and normalization
with the goal of identifying microglial states that are conserved across
conditions. To separate microglia from non-microglial populations, we
used the Seurat package in R to perform Louvain clustering, choosing
aresolution where distinct cell types could be identified by canonical
markers. In this initial clustering step (Extended Data Fig. 1), small
numbers (<5%) of adaptive immune cells, monocytes, erythrocytes
and other nonimmune populations segregated from our microglia
and were not further analyzed.

Microglial subpopulations and signature genes

Afterisolating the myeloid cells insilico, we then subclustered themto
generate ashared reference model across all regions and diseases. After
selectingamodel where all pairs of clusters had less than 20% of ambig-
uous assignment of cells using multilayer perceptron classification

(Methods) and retaining clusters with >100 cells, we arrived ata popu-
lation structure consisting of 12 distinct clusters (Fig. 2a). The mean
number of unique molecular identifiers (UMlIs) and genes detected
in microglia was similar across batches, technologies and clusters
(Extended Data Fig. 2a-f and Supplementary Table 1), and post hoc
computational cluster validation supported the stability of this cluster
structure (Extended Data Fig. 2g). We first confirmed the microglial
identity of our clusters by evaluating a set of core microglial genes®** %
as well as monocyte (S100A8, VCAN) and macrophage (SELL, EMILIN2
and GDA) genes (Fig. 2b). Notably, all 12 clusters expressed AIF1 and
CIQA, well-validated markers of microglial identity in the brain; how-
ever, some microglia-specific murine marker genes, such as HEXB”,
are expressed at low levels or are inconsistent in our human data. We
also examined proposed markers (LYVEI, MS4A7 and CD163) of the
border-associated macrophage (BAM) subset recently reported in
mice®®?’, and no cluster appears to be predominantly composed of
BAM:-like cells, althoughitisimpossible to rule out the possibility that
BAM:-lineage cells may have entered the CNS microenvironment and
downregulated lineage-defining genes during the infiltration.

Next, we performed pairwise differential expression analyses to
define the genes that best differentiated our microglial subgroups
fromeach other (Methods and Supplementary Table 2). Representative
distinguishing genes are shownin Fig. 2c. The clusters are numberedin
descending order based on their size, with cluster 1 having the largest
number of cells and cluster 12 the least. Clusters 1,2 and 3 are the most
abundant clusters in most individuals (Extended Data Fig. 3). Genes
upregulatedin cluster 1(thelargest cluster) include disease genes such
as ITPR2 and SORL1, as well as transcription factors and RNA-binding
proteins,suchasthoseencoded by MEF2A, RUNXIand CELF1.Cluster 6is,
transcriptionally, the closest to cluster 1, expressing high levels of
SRGAP2 and QKI,which encodes an RNA-binding protein that regulates
microglial phagocytosisin the context of demyelination®**.. In contrast,
clusters4and 9, which are transcriptionally adjacent to cluster 2, have
anoverlappingset of enriched genes, including CIQA, TYROBP,ITM2B,
GPXI and FCERIG. Thus, the broadest division in microglial subtypes
appearstobebetween clusters 2,4 and 9 (represented on the left side of
our low-dimensional embedding for visualization) and1,5,6 and 7 (on
therightside of the same embedding; Fig. 2a). The marker expression
profile of cluster 3 suggests that it is intermediate between clusters 1
and 2, and clusters 2and 3 are more enriched in genes associated with
classicalhomeostatic-active states’ (CX3CRI, FCGRIA and P2RY12). This
suggests that clusters 2and 3 may be closest to the classic description
of ‘homeostatic’ microglia, while cluster 1and its closely related family
areadivergent branch of microglial differentiation. Notably, clusters
2and 3 have relatively few differentially upregulated genes compared
toall other microglial clusters. Interestingly, cluster 5appearstobean
alternative intermediate state between clusters1and 2, as it expresses
CX3CRI1 alongside QKIand MEF2A.

Clusters 8 and 10 are located between these broad families but
aremore homologousto 2,4 and 9. Cluster 8isenriched in CXCR4 and
SRGN, while cluster 10 is enriched in HLA-C, CD74 (encoding a protein
that plays animportant role in antigen presentation) and CYBA. Clus-
ter 11 also shares some transcriptomic homology with 2, 4 and 9 but
is distinguished by enrichment in SPP1 and LGALSI. Finally, cluster
12 expresses MKI67 and PCNA, suggesting a proliferative phenotype.

The DAM state® has been clearly defined in mouse models, but
results in human studies have been mixed******, The lack of clarity
around the possible presence and/or role of DAM genes in humans
may stem from technical differences between studies and the rela-
tively small numbers of microglia profiled in studies to date. In addi-
tion, the proposed transition from homeostatic to DAMI, an initial
TREM2-independent state, then to DAM2, a later, TREM2-dependent
state, has been under-explored in humans. We reasoned that sepa-
rately examining the enrichment of signatures associated with both
DAM sub-states might allow us to delineate the distribution of human
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Fig.2|Microglial subtypes are defined by distinct marker genes and
shared expression programes. a, Visual representation of the 12 microglial
subtypes. A hex-binned uniform manifold approximation and projection
(UMAP) plot presents microglial subsets: other cells are shown in Extended
DataFig. 1. Each hexagonis colored by the majority cluster identity among all
cells aggregated (mean of 50 cells per hexagon). b, Expression levels of genes
delineating different myeloid identities. The legend (above d) summarizes the
selected gene sets, which are color coded on the left side. In b-e, each column
presents data from a cluster of cells (microglial subtypes colored asinaand
monocytes (Mo)), and each row represents the level of expression of agene. The
size of the circle represents the percentage of cells in each cluster that express
the gene. The color of the circle represents z-scored gene expression. Genes
were chosen for association with microglial, macrophage, BAM or monocytic

identity. ¢, Subtype-enriched marker genes. Marker genes, selected by pairwise
differential expression testing with MAST, delineate broad microglial families
with overlapping gene expression programs and small clusters with strongly
distinguishing marker genes. Hierarchical clustering with complete linkage on
the expression of genesis shown by the dendrogram at the top of the figure.

d, Expression level of DAM gene sets and homeostatic genes across microglial
subsets. e, Heat map of DAM gene-set enrichment. Enrichment of DAM subtype
signature genesin upregulated (for DAM1/DAM2, in red) or downregulated
(homeostatic, in blue) genes associated with each cluster is shown. Each
columnis one microglial subtype. Enrichment was tested by false discovery rate
(FDR)-corrected hypergeometric test. See also Supplementary Table 2. FACS,
fluorescence-activated cell sorting.

microgliaalong this proposed DAM trajectory. Markers for both DAM
subsets, as well as homeostatic genes downregulated in the DAM pro-
gression, are shown in Fig. 2d. We hypothesized that, if a DAM subset
existed in our dataset, it would likely be a small, distinct subset pri-
marily enriched in the DAM2 signature due to the predominance of
autopsy tissue from late-stage neurodegenerative disease among
our data. Indeed, cluster 11, representing 1% of our microglia, showed
strong enrichment for the DAM2 signature. However, as seenin Fig. 2e,
the situation is complex: the DAM signature genes are expressed in
four different microglial clusters showing different combinations of
DAMI1 and DAM2 enrichment, with the DAML1 signature being most
enriched in cluster 9. We note that cluster 10, the CD74"¢" cluster that
we had highlighted in our prior report as showing DAM enrichment*,
also showed significant enrichment in the DAM2 signature, albeit at
lower level than cluster 11. Notably, clusters 10 and 11 both showed
substantial downregulation of the homeostatic microglial signature
identified in the original DAM publication®, while cluster 9 did not

demonstrate significant downregulation of the homeostatic gene set,
suggesting that clusters 10 and 11 are further along the trajectory of
divergence fromthe homeostatic microglial phenotype. Our datasug-
gest that, in humans, there may be distinct microglial subgroups with
different combinations of DAM-related transcriptional programs that
fulfill different functions, rather than a single linear DAM trajectory.
Finally, itisimportant to note that the different populations associated
with the DAM-like response are minor fractions of the total number
of microglia that we have profiled, which provides a possible reason
for the difficulty in conclusively identifying these subpopulations in
previous human studies.

Axes of metabolic and functional variation across
microglial subtypes

After characterizing our microglial subgroups, we next evaluated
inter-cluster relatedness using a post hoc machine learning approach
leveraging a multilayer perceptron classifier to examine the homology
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Fig. 3| Microglia display acomplex trajectory of state transition with with rrvgo. Parent terms are shown in white, overlaid over child terms. GO
several primary axes. a, A central metabolic divide separates divergent subtype annotation for clusters 1/6 and clusters 4/9 revealed a metabolic shift between
families. Constellation diagram demonstrates relationships between clusters the two groups: clusters 4/9 showed enrichment of oxidative phosphorylation,
by way of post hoc classification. Each pair of distinct clusters was used to train catabolism and protein metabolism, as well as general immune response, while
amultilayer perceptron 50 times using fivefold cross-validation to obtain a clusters 1/6 demonstrated upregulation of heterocyclic and nitrogen-containing
classification for every cell. Cells that were classified to the same cluster less compound metabolism alongside transcriptional regulation. b,c, Clusters 8 and
than 40 times were considered ambiguous. The fraction of ambiguous cells 10 shared asignature of interferon-gamma signaling and antigen presentation
determines the width of the connecting lines in the diagram. Each node is asingle but differed in other pathways. Reactome annotation of clusters 8 and 10
cluster, with size scaled in proportion to the number of cells contained therein. aggregated by group highlights shared enrichment for T cell interaction and
Notably, even closely related clusters can be reliably distinguished over 85% of interferon-gamma signaling (purple in cluster 8 and blue in cluster 10). Cluster
the time. Cluster 3, which has few distinct marker genes, has the most ‘central’ 10 showed upregulation of complement signaling (purple) and MHC class I/11
expression profile, with close relationships to the cluster 2/4 family and the antigen presentation (green), while cluster 8 showed upregulation of chaperone
1/6/7 family. Cluster Srepresents another intermediate step between the 2/4 and steroid signaling (blue) and interleukin signaling (green). See also Extended
and 1/6/7 families. GO annotation was performed with topGO and summarized DataFig. 4.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Resource

https://doi.org/10.1038/s41593-024-01764-7

of gene expression programs between cells assigned to different clus-
ters®*. We visualize these results in a constellation diagram (middle
of Fig. 3a), whichindicates both the proportion of ambiguously clas-
sified cells between every pair of clusters (edge thickness) and the
total number of cells in each cluster (size of nodes)****. A central
questionin microglial biology is how different subtypes may branch
off from core homeostatic phenotypes, and whether trajectories of
microglial state transition are linear or characterized by critical bifur-
cation points. Based on our analysis, cluster 3 exhibited the most
‘central’ gene expression profile, with the greatest overlap with other
clusters. As expected, clusters 2 and 4 showed substantial homology
to one another, as did clusters 1 and 6. Notably, cluster 5, another
prospective intermediate state, showed overlap with both clusters
1and 2, with stronger similarity to cluster 1. This suggests a degree
of continuous transition between extremes of gene expression in
either directionalong this central division. To explore the functional
relevance of this division, we used topGO to conduct Gene Ontology
(GO)***# analysis on the top differentially expressed genes in each
cluster and summarized results with rrvgo®. As shown on the left
and right sides of Fig. 3a, the most heavily enriched terms along the
left (clusters 4 and 9) side of our population structure are related
to metabolism, particularly oxidative phosphorylation, catabolism
and peptide metabolism, and immune response and localization. In
contrast, theright side (clusters1and 6) of our population structure
shows enrichment of alternative metabolic pathways, including het-
erocyclic metabolism and nitrogen-containing compound metabolism
as well as transcriptional regulation. Intriguingly, the intermediate
cluster 5 showed strong association with motility (Extended Data
Fig.4a). This highlights a central divide in metabolism and function,
suggesting ahomeostatic-active phenotypein clusters 2,4 and 9 that
transitions to different metabolic and functional phenotypesin clus-
ters1,6and 7 of our structure, with intermediate states that may play
different functional roles. Cluster 9, which has a partially overlapping
transcriptional signature with cluster 4, is the most closely related to
cluster 12, which shows enrichment for proliferation and oxidative
phosphorylation (Extended Data Fig. 4b). Cluster 9 also showed sub-
stantial transcriptomic similarity to cluster 11, which is enriched for
lipid processing and beta-amyloid clearance (Extended Data Fig. 4c),
consistent with the proposed role of TREM2 in this signature® and
confirming the continuum of DAM transitional states identified in
our earlier analysis (Fig. 2e).

Clusters 8and 10, whose signatures suggest substantial microglial
activation, are clearly distinguishable from other clusters, although
they maintain arelationship to the central cluster 3. To explore this axis,
we annotated clusters using ClusterProfiler to perform Reactome*®*
pathway analysis (Fig. 3b,c). Some overlap was present between these
two clusters, as both clusters contained genes associated with antigen
presentation, interferon signaling and T cell interaction. However,
cluster 10 exhibited stronger association with both class I and class I
major histocompatibility complex (MHC) signaling and complement
signaling. In contrast, cluster 8, which expressed significant levels of
early response genes, showed upregulation of pathways associated
with chaperone signaling, steroid response, interleukin signaling
(particularly /L4/IL10/IL13), and the senescence-associated secretory
phenotype. These phenotypic differences were also recapitulated with
GO annotation (Extended Data Fig. 4d).

Thus, this analysis highlights the divergent nature of the micro-
glial differentiation program, suggesting that there are at least three
distinct tracks of microglial subtype specification that emerge from
the most basal microglial state, including a central metabolic divide,
an axis of immunological activation, and a trajectory that contains
elements of the DAM signature identified in murine model systems.
These tracks appear to be nonlinear and different paths of transition
may exist between terminal states, a result that is consistent with an
ancillary pseudotime analysis leveraging the Monocle3 algorithm**

that defines a complex trajectory (Extended Data Fig. 4e). Inaddition,
consistent representation of clusters across donors, regions and dis-
eases (Extended Data Fig. 3a,b) supports the conceptual framework
of our trajectory analyses, as this shared representation supports the
ideathat we are examining an actual biological continuity rather than
identifying state shifts that result from differences in disease or region.
Indeed, our findings here parallel findings from studies of microglia
in mice that have hinted at nonlinear trajectories in disease states,
either with regard to early branching points**™*® or partially overlap-
ping terminal phenotypes that arise in similar disease contexts®*>*°.
However, further dissection of the trajectories in human data that
we describe here will be challenging due to the difficulty of profiling
human samples along a continuous pathway toward disease and may
ultimately require careful cohort design and new tools for tracking
patterns of state transition in individual cells. Notably, the results of
our analyses further underscore the robust nature of our population
structure, aseven clusters with substantial overlap of gene expression
signatures still comprise cells that are robustly distinguishable with
more than 85% accuracy. Starting from this overall framework, further
work in vitro and in situ will be required to confirm our observations
and to understand the importance of functional and metabolic shifts
in health and disease.

Annotating disease and trait associations of
distinct microglial subsets

Toillustrate variation in microglial composition in our brain tissue
samples, we report the proportion of different microglial subtypesin
each disease, region and individual (Fig. 4 and Extended Data Fig. 3).
First, we note that most clusters are present in each individual, albeit
at different frequencies (Extended Data Fig. 3a). The most common
microglial subtypesin mostindividuals were clusters1to 6, suggesting
that these subtypes capture ahomeostatic spectrum and that neuro-
degenerative diseases involve small shifts toward distinct microglial
states. Notably, grouping samples by region (Fig. 4a,b) or diagnosis
(Fig. 4c,d), demonstrated that even with different numbers of cells
from different regions and diagnoses, we see a similar distribution of
cell populations across diseases and regions. As substantial statistical
power is needed for comparison of samples with complicated combi-
nations of region, disease, age and sex. Much larger datasets will be
needed to directly identify disease associations; our dataset was not
designed for this purpose.

However, the depth and quality of our sequencing data enabled
usto pursue gene enrichment analyses toimplicate certain subsetsin
different diseases. For MS, we utilized a recent publication from the
International Multiple Sclerosis Genetics Consortium that identified
a comprehensive set of 551 MS susceptibility genes>’. We found that
clustersontheright side of our microglial cloud, specifically clusters 5
and 6, were significantly enriched in MS susceptibility genes, highlight-
ing a possible role of one arm of our microglial differentiation tree in
MS susceptibility (Fig. 5a). Next, we explored the genome-wide asso-
ciation study (GWAS) catalog®, a curated database containing single
nucleotide polymorphism (SNP)-trait associations from GWAS studies.
AsseeninFig.5b, werecapitulated the enrichment of MSin cluster 6in
this database, although cluster 5did not pass the threshold for signifi-
canceinthisanalysis. Clusters1and 6 also showed enrichment for other
neurodegenerative and neuropsychiatric disease genes, including AD,
PD and depression. Similarly, cluster 10 showed enrichment for MS and
schizophrenia. The strong complement expression foundin cluster 10
aligns with previous reports of the role of complement-related genes
in schizophrenia®. Finally, cluster 8, the CXCR4-enriched cluster, has
a set of disease associations that suggest a role in conditions charac-
terized by neuroinflammatory signaling but not neurodegenerative
diseases. Interestingly, we found no substantial enrichment of dis-
ease genes associated with stroke, seizure, ALS/FTD or glioma. This
may be due either to aless important role of microglia in the primary
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Fig. 4 |Human microglial subsets are found across diseases and regions.
a-d, Microglial subsets are broadly represented across diseases and regions.
Ontheleft (aand c), each bar shows the proportion of each cluster among all
microgliafromagiven disease. On the right (b and d), UMAP plots are split
by disease. Plots are color coded in accordance with Fig. 2a. Most subsets
arerepresented across all diseases and all regions, albeit in slightly different

numbers, although larger sample sizes would be required to statistically assess
differences in abundance. LOAD, late-onset AD; EOAD, early-onset AD; Ctrl,
control; TLE, temporal lobe epilepsy; DNET, dysembryoplastic neuroepithelial
tumor; BA, Brodmann area; AWS, anterior watershed; OC, occipital cortex;
TNC, temporal neocortex; H, hippocampus; TH, thalamus; SC, spinal cord;

SN, substantia nigra; FN, facial nucleus. See also Extended Data Fig. 3.

pathogenesis of these diseases or to less extensive GWAS annotation
of these diseases.

To complement these analyses, we repeated our earlier analysis*
evaluating AD-related traits more thoroughly. We leveraged associa-
tions with traits fromalarge analysis of bulk cortical (BA9) RNA-seq data
from 1,092 participants in the ROSMAP*** cohorts (Supplementary
Table 3); theseindividuals do not overlap with the ROSMAP participants
included in our microglial dataset. These bulk RNA-seq data contain
transcripts fromall parenchymal cells, including microglia. To evaluate

the enrichment of microglial clusters for genes associated with each
trait, we calculated the overlap of cluster-specific signature genes with
genesets that were significantly positively or negatively associated with
each of these traits (Fig. 5c). Clusters1and 6, the right side of the micro-
glial cloud, were enriched for genes that are positively correlated with
amyloid-beta pathology, tau tangle pathology, and both a clinical and
pathological diagnosis of AD. Consistent with these results, they were
alsoenriched for genes negatively correlated with the slope of cognitive
decline where a larger negative number indicates worsening cognitive
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Fig. 5| Disease annotation implicates specific microglial families in disease.
a, Clusters 5 and 6 are enriched in GWAS-derived MS susceptibility genes.

The yaxis of the bar plot shows the different clusters, ranked in descending
order of the negative log-transformed Pvalues on the x axis. Enrichment of MS
susceptibility genes in upregulated gene lists associated with each cluster was
tested with the hypergeometric test using a Benjamini-Hochberg correction.
Barsarecoloredifthey have an FDR < 0.01. b, Clusters1and 6 are enriched in
genes associated with neurodegenerative diseases. Enrichment analysis of
genes associated with each disease in the GWAS catalog was performed with
same parameters. Diseases are listed on the y axis, and negative log-transformed

Pvalues are shown for combinations of clusters and traits where they have an
FDR < 0.01. Coloration of squares corresponds to P-value magnitude: larger
Pvalues correspond to darker blue squares, whereas smaller Pvalues correspond
to yellow coloration. ¢, Clusters 1and 6 correlate with clinical and pathological
traits in AD. In this case, enrichment was performed separately for both the genes
positively and negatively correlated with each trait in upregulated genes for each
cluster. Coloration of each box relates to the strength and directionality of each
association. Red (positive numbers) corresponds to genes upregulated with the
trait, while blue corresponds to genes downregulated in relation to the trait.

See also Supplementary Table 3.
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Fig. 6 | Insitu confirmation of microglial population structure with joint
immunofluorescence-RNAscope with automated segmentation. a, CD74
demarcates a small,immunologically active subset, while CXCR4 delineates
adistinctimmunologically active subset. The size of the circle represents the
percentage of cellsin each cluster that express the gene, and the color of the
circle represents z-scored gene expression. CD74is overexpressed in cluster 10,
while CXCR4is primarily expressed in cluster 8. b, Representative images showing
CD74 and CXCR4in IBA1" microglia. RNAscope staining for CD74 (red) and CXCR4
(pink) in IBA1" microglial cells (green) in human cortical brainslices, with nuclear
DAPI staining (blue). In the same field of view, microglia with different levels of
CD74 and with or without expression of CXCR4 can be observed (arrowheads
point to representative microglia). ¢, Separating single in situ cells using CD74
expression thresholds adapted from scRNA-seq identified similar proportions
across technologies. The proportion of cells, along the y axis, that express low,
medium or high levels of CD74, along the x axis, in scCRNA-seq is shown in yellow,

while insitu results (area-adjusted CD74 expression binned on thresholds from
scRNA-seq) are shown in blue. d, CXCR4' cells matched the expected distribution
within CD74 expression classes. CD74 expression class, as described in ¢, is shown
onthexaxis, and count of CXCR4" cells is shown on the y axis. CXCR4" microglial
cells areidentified in situ and most fall into the CD74™ class, confirming our
scRNA-seq findings. e, GPXI and SPPI delineate the DAM axis and extremes in
homeostatic-active families. f, Representative images from our joint staining
protocol for GPXIand SPPI. Staining as in b, except that RNAscope SPPI is pink
and GPX1isred. g, Separating single in situ cells on the basis of GPXI expression
thresholds borrowed from scRNA-seq also identified similar proportions across
technologies. Analysis performed as in c but using GPX1 expression data.

h, Gradated expression of both SPPI and GPX1. Individual cells are plotted as
single dots, where the axes represent area-adjusted expression of GPXI (x) or
SPPI1 (y).See also Extended Data Fig. 5and Supplementary Tables 4 and 5.

IHC, immunohistochemistry.

dysfunction. In contrast, clusters 2, 4,9 and 10 were enriched in genes
negatively correlated with tau and amyloid pathology, and clusters 4 and
9wereenrichedingenes positively correlated with the slope of cognitive
decline. Further, our DAM2" cluster 11was enriched for genes positively
associated with AD and amyloid pathology, but not tau pathology. This
clusteralsoshowed enrichment for genes negatively correlated with cog-
nitive decline. Our results strongly suggest that the human cortexinADis
enriched for genes defining clusters1and 6; this could occur either from
anincrease in the proportion of these subtypes in AD cortical tissue or
fromthe enhanced expression of these signature genes in the microglia
ofthe AD cortex. It alsoimplicates cluster 11 more modestly, suggesting
anarrower contribution toamyloid rather than tau proteinopathy. Nota-
bly, several molecular pathologies that we evaluated—including cerebral
amyloid angiopathy, arteriolar sclerosis, cerebrovascular disease and
TDP-43 pathology—showed no enrichment with any of our clusters.
Cluster 12 showed enrichment trends akin to clusters 2,4, 9 and 10,
perhaps because of the heavy overrepresentation of genes associated
with oxidative phosphorylation. Overall, by leveraging indirect disease
annotation, weidentify afamily of microglial subtypes that are strongly
enriched ingenes associated with neurodegenerative diseases and asso-
ciated with AD traits in anindependent ROSMAP cohort.

Identifying microglial subsetsin situ

Having identified microglial subgroups from dissociated cells, we
sought to validate their existence in situ. We had previously done this
with immunofluorescence**¢, but the range of potential antibody
markers is limited. Thus, we first optimized a co-detection workflow
that merged anti-IBAlstaining (IBAlis a ubiquitous marker of myeloid
cellsinthebrain at the protein level), with Advanced Cell Diagnostic’s
RNAscope protocol® for fluorescence insitu hybridization to allow for
single-molecule RNA detection. We coupled this experimental pipeline
to CellProfiler (v.4.2.1)°*® for automated segmentation ofimage data
(Methods). This workflow enables the capture of microglia-specific
geneexpression, localization of transcripts within microglia and struc-
tured assessment of cellular morphology.

To illustrate our approach, we chose two panels of genes to dis-
criminate different microglial subsetsinsitu. In panel1(Fig. 6a-d and
Extended Data Fig. 5a), we used probes against transcripts of CD74,
agenethatwefoundtoberelatively enriched inimmunologically active
subtypes (clusters 2, 3, 4, 8,9, and 10) and downregulated in clusters
1,5and 6. We have previously reported the existence and relevance of
a CD74"¢" microglial subset*, and the equivalent subset in our current
model (cluster 10) had a 1.5 fold greater expression of CD74 relative
to all other clusters (Fig. 6a). We also included probes against CXCR4,
agene predominantly expressed in cluster 8. This panel separates the
1/5/6 family from other clusters, exploring our primary axis of varia-
tion, and allows for the discrimination of the two subsets (8 and 10)
inasecond axis of variation associated with antigen presentation and
immune cellinteraction. In panel 2 (Fig. 6e-h and Extended Data Fig. 5b),
we included probes against GPX1, a gene predominantly expressed in
clusters4,9and11, aswellas SPP1, a previously proposed DAM marker
thatis enrichedincluster 11. This second panel enables amore detailed
examination of clusters along the DAM-like trajectory that were not
captured in the first panel. We applied this combined RNA-protein
interrogation technique totissue sections fromindividuals with patho-
logical diagnoses of AD, PD, PSP or DLBD and individuals with age-
related tauopathy (Supplementary Table 4).

Representative images for panel 1 are shown in Fig. 6b, demon-
strating the capture of microglia-specific transcripts, including those
inthe distal processes of single microglia. By taking area-normalized
CD74 expression per cell and binning cellsinto low expression, medium
expression and high expression based on fold-change thresholds
derived from our single-cell data (Methods), we found that the pro-
portions of cellsin each bin are similar to the proportions of cellsinour
single-cell dataset (Fig. 6¢). The CD74-low groupingincluded clusters
1,5,6,7 and 12, CD74-medium represented clusters 2, 3,4, 8,9 and 11,
and CD74-highidentified cluster 10. Moreover, concurrently examining
expression of CXCR4 across all three bins demonstrated peak CXCR4
expression in the CD74-medium populations, in agreement with our
scRNA-seq data (Fig. 6d). Thus, panel 1 validates clusters 8 and 10

Fig. 7| Live microglial population structure enables annotation of datasets
from model systems and data produced with different technologies.

a, Overview of our label transfer workflow. Similar classes were aggregated
(2and 4 or1, 6 and 7) to simplify the classification problem, and classifications
from two types of models were merged to assign final class labels for all cells
inquery data. b, Distribution of subset proportions across different datasetsin
comparisonto our reference. c-f, Mapping of query datasets onto our reference
model. UMAP colors for each cluster family were shaded by the proportion of
cells assigned to each family in each dataset. Numbers are the proportion of cells
ineach query dataset that were assigned to each cluster. g, Xenografted human
iPS cell microglia shifted away from homeostatic-active phenotypes and toward
disease-associated phenotypes in SXFAD mice. Bar plot showing the proportion
of iPS cell-derived microglia-like cells (y axis) in each of three cluster families

(xaxis) from either 5X (blue) or WT (red) mice. n =2 per condition. h, GBM
induced depletion of homeostatic myeloid cells and shifted microglia toward
more inflammatory subtypes. Bar plot showing proportions of cells per group
from the reference (blue), or the classified GBM data (red). Between the two
datasets, the higher proportionis showninits corresponding color, and the lower
proportionis delineated in gray. h, Cluster 3 abundance correlated negatively
with amyloid pathology in ROSMAP single-nucleus data. In the dot plot, each dot
isasingle donor. Axes are amyloid burden (y) and proportion of cells classified
ascluster 5 (x). h,i, Conversely, cluster 5 abundance correlated positively with
amyloid pathology. See also Extended Data Fig. 6 and Supplementary Table 6.

j, Projection of a GBM dataset into our model; there is a shift in the proportion

of microglial subtypes away from homeostatic subtypes and toward activated
subtypes in GBM-derived cells (pink) relative to our reference data (blue).
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in situ and demonstrates our ability to discriminate multiple distinct
microglial subsetsineach field of view. Asshownin Fig. 6e,f, panel 2 was
designed to discriminate the homeostatic-active family and concur-
rently identify clusters on the DAM axis, particularly cluster 11, that our
first panel cannot capture. We first evaluated GPX1, and, as with panel 1
markers, we observed similar proportions of cellsin the different GPX1
categories between the in situ and scRNA-seq approaches, confirm-
ing the translatability of our scRNA-seq-derived cluster definitions
(Fig. 6g). Notably, we identified cells coexpressing different levels of
GPX1and SPPI1and subpopulations that appear similar to clusters 9 and
11, making them good markers for future investigations targeting the
DAM-like axis (Fig. 6h). This second panel thus offers anindependent
validation of adifferent aspect of our population structure, providing
markers for future study design.

Establishing the colocalization and/or segregation of cluster-
specific marker genes then allowed us to investigate morphological
differences between microglial subgroups. We evaluated morphologi-
cal measures captured from each microglia by CellProfiler. We found
that the partially overlapping CD74, SPP1 and GPX1-medium classes had
the highestlevel of ramification (as measured by compactness scores;
Extended DataFig. 5¢). Similarly, we found that eccentricity—a feature
ranging from O (perfectly circular) to 1 (perfectly linear)—was lowest
in both the CD74"¢" and GPX1"€" classes and highest in the CD74"%
and GPX1'°" classes (Extended Data Fig. 5d), suggesting that the latter
subgroups have amore elongated morphology. Microglial activation
induces process retraction and an amoeboid morphology®’, and in
our scRNA-seq data, cells expressing high levels of CD74 and GPX1
expressed markers of activation. Interestingly, CXCR4" cells exhib-
ited higher CD74 radial distance on average (Extended Data Fig. 5e)
and higher ramification scores (Extended Data Fig. 5f), suggesting
that, unlike other activated classes, CXCR4" cells are likely to be more
ramified.

To complement the RNAscope approach described above, we
also assessed our subtype markers using the MERSCOPE platform,
which enables highly multiplexed MERFISH assessment of RNA spe-
cies; specifically, we designed a panel to detect all cortical cell sub-
types® and included 39 markers to capture our 12 microglial subtypes.
Two tissue sections were profiled (one from an AD donor cortex and
one from a non-AD donor cortex) and, after preprocessing (Meth-
ods), we identified a total of 2,381 microglia (6.4% of all cells). When
we projected these microglial cells into our model (Extended Data
Fig. 6a), we found that evenwith arelatively smallnumber of cellsand a
non-transcriptome-wide signature, we were still able to unambiguously
identify 9 of the 12 microglial subtypes. Further work willbe needed to
enhance the panel and profile amuch larger sample of tissue sections
to uncover the remaining microglial subtypes.

We, therefore, validated our cross-disease scRNA-seq resource by
identifying the dissociated microglial signatures in situ and highlight-
ing morphological differences between subgroups. We also showed the

existence of cluster 8 signatures using both RNAscope and MERFISH in
thetissue, supporting our hypothesis that the stress response observed
in certain ex vivo preparations of microglia is also present in intact
human brain tissue. However, it is likely that this stress response may
be enhanced by certain microglial manipulations'".

Extending the use of our dataset as areference:
invitro model systems, single-nucleus dataand
other diseases

This dataresource, which was designed to identify a shared, stable
microglial population structure across human diseases and brain
regions, can be used to annotate other microglial datasets and to
evaluate how much human microglial diversity is captured by model
systems. Toillustrate these uses, we selected two primary tissue data-
sets: asingle-nucleus RNA-sequencing (snRNA-seq) dataset (Methods)
from the ROSMAP**** cohorts of older individuals with and without AD
and asingle-cell myeloid dataset®* from surgical resections of glioblas-
toma multiforme (GBM), adisease where microgliaare thought to play
acentral role®. In parallel, we also selected two humaniiPS cell-derived
microglia-like cell datasets: a murine xenograft system®*® and an
in vitro system used for CRISPR screening®®. We then applied a label
transfer approach onthese four datasets; to simplify the classification
task, transcriptionally similar groups (that s, clusters2and 4 or1, 6
and7)inthereference datawere grouped. Our approach consisted of
a consensus voting of pairwise support vector machine (SVM) classi-
fiers to classify the smaller, more transcriptionally unique subtypes
and a flat XGBoost® (XGB) classifier retaining only classifications with
confidence of 50% or higher for the larger clusters (Fig. 7a). Quality
metrics for our label transfer pipeline are shown in Extended DataFig. 7
and Supplementary Table 6. In short, our approach is sensitive and
specific, withjoint accuracy averaging 83.8% across allmodels, and the
lowest-confidence assignments emanate from clusters with inherently
fluid boundaries, validating the efficacy of this pipeline.

This approach revealed differences in the percentages of cells
mapped to each cluster across the different datasets (Fig. 7b—f). In
bothiPS cell-derived datasets (Fig. 7c,d), cells mapped to most of the
states that weidentified in our microglial dataset, suggesting that these
model systems recapitulate asubstantialamount of humanin vivo het-
erogeneity. However, the tissue-derived data (Fig. 7c) showed higher
fractions of microglia at terminal pointsin our axes of differentiation,
such as the DAM-like axis of clusters 9,10 and 11. Notably, we observed a
trend toward increased levels of cluster 11in the 5X FAD mice (P = 0.087;
Fig. 7g), consistent with our AD enrichment analyses (Fig. 5b,c). In
contrast, theinvitroiPS cell-derived dataset contained high numbers
of proliferating cells (Fig. 7d), ‘intermediate’ cluster 3 cellsand inflam-
matory cluster 8 cells. These results highlight the utility of both model
systems for modeling microglial diversity.

With regards to the snRNA-seq datasets on primary tissue, anno-
tation of ROSMAP snRNA-seq data (Methods) showed prominent

Fig. 8| Chemical perturbation recapitulates in vivo human microglial
subtype signaturesin vitro. a, Representative example of CMAP analysis.
The CMAP was used to identify compounds that might drive transcriptional
signatures found in different microglial subsets. The cell ID columnidentified
the nine cell lines used in CMAP. Drugs were ranked by the tau score, which
quantifies homology between the perturbagen and the query. Scores greater
than 90 were considered as candidates for further study. b-d, qPCR hits by
grouping:1/6,4/9 or 8/10. Drugs were tested in the HMC3 microglial model
system at 6-hand 24-hintervals, and two marker genes were assayed by qPCR
per cluster group (1/6, SRGAP2 and MEF2A; 4/9, TYROBP and GPX1; 8/10, CXCR4
and SRGN). CT values were normalized to HPRT1. Bars represent fold-change
expression in relation to DMSO control. e, Camptothecin upregulated cluster
10 markers. Volcano plot showing log fold change (LFC, x), and —log,, P value (y)
from bulk RNA-seq generated from HMC3 cells treated with camptothecin for
24 h. Data were analyzed with DESeq2. FDR threshold was set to 0.01and LFC

threshold was setat 1.5. The top 20 cluster 10 genes in the differentially expressed
genellist, irrespective of direction, were plotted. f, Torin-2 upregulated most
cluster 1/6 markers. g, PCA revealed convergence of narciclasine and Torin-2 at
the proteomic level. PCA was calculated on log-normalized proteomic data. At
the proteomic level, Torin-2 and narciclasine are similar and divergent from both
control and camptothecin. h, Camptothecin upregulated cluster 10 markers at
the proteomic level. Heat map showing the row-scaled, zero-centered expression
values of proteomic data derived from compound-treated HMC3 microglia (24 h;
n=3pertreatment). Each columnis asingle sample, and each rowis asingle
gene. Pairwise differential testing between DMSO control and each of our treated
conditions was conducted using Welch'’s ¢-test with the Benjamini-Hochberg
correction (FDR alpha < 0.05, LFC <1).1, Camptothecin downregulates cluster
1/6 markers at the proteomic level. See also Extended Data Fig. 7 and 8 and
Supplementary Tables 6 and 7. PMA, phorbol 13-myristate 12-acetate.
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representation of cells from the intermediate clusters 3and 5 (Fig. 7e).
Although snRNA-seq can be applied to frozen human brain tissue,
it does not capture the cytoplasmic compartment'®”. Thus, as the
microglial subtype families 2/4 and 1/6/7 represent more polarized and
differentiated branches of the homeostatic trajectory, albeitin distinct
directions, technical differences may impair our ability to resolve
some of the more distal phenotypes on our differentiation trajectory
in nuclear data. Nonetheless, cluster 5, part of the same family that
exhibits association with AD pathology (Fig. 5¢), shows a positive asso-
ciation withamyloid burden (Fig. 7h), while cluster 3 shows a negative
association with the same trait (Fig. 71) in the ROSMAP snRNA-seq data.
Finally, annotation of the GBM dataset reveals high numbers of cells
that map to the proliferative cluster 12, DAM2"" cluster 11, and cluster 8
(Fig.7f). Upregulation of SPP1, agene defining cluster 11, has previously
beenreportedin GBM-associated myeloid cells and hasbeen shown to
correlate with worse survival in humans with GBM”°. Comparison of
subtype proportions with our reference dataset from neurodegenera-
tive diseases reinforces the presence of adramatic shift away fromthe
core homeostatic gradient and toward more inflammatory myeloid
subtypes in GBM (Fig. 7j). This is consistent with prior observations
reporting shifts away from homeostatic phenotypes among myeloid
cells found in the glioma microenvironment®.

We thus demonstrated the utility of our dataset for annotating
datasets fromawide variety of sources, such as diseases not captured
in our dataset, snRNA-seq data and humaniPS cell-derived microglial
model systems. We identified shifts in phenotype that accord with
those previously reported in GBM and demonstrate that iPS cell data-
sets, both in vitro and in vivo, capture an impressive amount of the
microglial heterogeneity that we have identified in isolated, living
human microglia.

Prediction and validation of compounds driving
cluster-specific transcriptional signatures and
subtype recapitulationinvitro

Next, we sought to leverage our data to understand how to use chemical
perturbation to direct state transitions toward specific subtypes. This
would enhance (1) in vitromodeling using iPS cell-derived microglia-like
cells or monocyte-derived microglia-like cells” and (2) drug discovery as
suchtoolcompounds could provide leads for therapeutic development
of in vivo microglial modulation. Here, we used the V1 database of the
CMAP?**?, a dataset that contains transcriptomic data associated with
thousands of chemical perturbations across a wide array of cell lines.
Toincrease the power of our initial analysis, we grouped related micro-
glial subtypes together, querying CMAP using RNA signatures for three
groups of microglial subtypes: clusters 1/6, clusters 2/4/9 and clusters
8/10, chosen because they capture two of the primary axes of variation
among our microglial subtypes. An overview of our workflow is shownin
Extended DataFig.8a.From ourinsilico CMAP analysis (representative
exampleinFig. 8a; Supplementary Table 7), we prioritized 14 compounds
for validation. For our initial screen, we exposed the human microglial
cell 3 (HMC3) line”* to each of the 14 compounds guided by the dosage
used in CMAP. Since HMC3 cells were not used in CMAP, we optimized
concentrations of each compound to minimize effects on survival and
morphology. We then tested the effects of each compound after 6-hand
24-htreatment by assessing the expression levels of two selected marker
genes for each of the three groups of microglial subtypes using quantita-
tive PCRwith reverse transcription (RT-qPCR), repeating this experiment
atleast three times with different batches of HMC3 cells (Fig. 8b—d and
Extended Data Fig. 8b—d). Four compounds met our predetermined
criteriafor the screen: Torin-2 and narciclasine both drove upregulation
of marker genes associated with clusters 1and 6, while camptothecin
and phorbol 13-myristate 12-acetate drove upregulation of cluster 8
and cluster 10 marker genes. Our results for compounds associated
with clusters 2, 4 and 9 were inconclusive, as the marker genes that we
chose did not show significant upregulation with these compounds.

To assess the effects of our selected compounds at a broader
scale, we profiled cells with bulk RNA-seq and shotgun proteomics
after 24 h of treatment in a separate set of experiments. At the tran-
scriptional level, camptothecin induced cluster 8 and 10 genes, such
as HLA-C, CXCR4 and CYBA (Fig. 8e). Interestingly, camptothecin also
downregulated cluster 1/6 genes such as Qk/and ATM (Extended Data
Fig. 9a), supporting the transcriptional divergence of clusters 8/10
from1/6 (Fig. 2c). As predicted, Torin-2 robustly drives the cluster 1/6
signature (Fig. 8f). Narciclasine does not appear to upregulate this
signature (Extended Data Fig. 9b); however, GO annotation of genes
differentially upregulated with narciclasine suggests astrong upregula-
tion of metabolic pathways, such as nitrogen-compound containing
metabolism and heterocyclic metabolism (Extended Data Fig. 9¢),
that we previously found to be strongly enriched in clusters 1/6 by GO
annotation. Moreover, examining cluster 1/6 genes upregulated in
Torin-2and narciclasine suggests that the two compounds engage com-
plementary, but separate aspects of the cluster 1/6 signature (Extended
Data Fig. 9d), with narciclasine inducing genes such as MEF2A and
NUFIPS, while Torin-2 upregulated genes such as DENND3 and ATM. In
contrast, at the proteomic level, principal component analysis (PCA)
suggests that narciclasine and Torin-2 yield similar changes in prot-
eomic profilesrelative to both the dimethylsulfoxide (DMSO) control
and camptothecin (Fig. 8g), suggesting the engagement of a different
proteomicstate. Interestingly, neither narciclasine nor Torin-2 clearly
drive cluster 1/6 marker genes at the proteomic level (Fig. 8h). This
may be because RNA-derived markers may be suboptimal to resolve
proteome changes for these microglial subtypes given the known
divergence between RNA and protein in microglia” and/or the short
time course of our perturbation. On the other hand, camptothecin
does drive strong upregulation of ten genes such as HLA-C and CYBA
(Fig. 81) and downregulation of cluster 1/6 genes such as QK/ (Fig. 8h)
atthe proteomiclevel.

Wethusidentified and validated three tool compounds that polar-
ize a human microglial model system (HMC3 cells) into different tar-
geted states, presenting an approach that can be extended to develop
abroader toolkit with which to manipulate microglial differentiation
invitroand potentially in vivo. Notably, one of our compounds, camp-
tothecin, drives a robust signal toward cluster 10 that is detectable
at both transcriptomic and proteomic levels; a compound with this
property could conceptually be useful therapeutically to shift the
distribution of human microgliain vivo away from clusters1/6 that are
strongly enriched in genes and traits associated with AD, MS and other
diseases (Fig. 5) and toward the CD74" cluster 10 subset that we have
previously reported to be associated with AD*.

Discussion

Our understanding of human microglial heterogeneity has been
transformed over the last 5 years by single-cell studies from many
groups*$710B 5747 n this study, we aimed to maximize sampling of
microglial diversity and to present a cross-disease microglial popula-
tion structure derived from 215,658 live human microglia sampled
from awide array of CNS regions and conditions (Fig. 2). Our analysis
explores the interconnection of different microglial subtypes, pro-
posing divergent routes of differentiation with exclusive terminal
endpoints as well as possible functional and metabolic shifts associ-
ated with these trajectories. We identify families of microglial subsets
with enrichment of neuropsychiatric disease susceptibility genes. We
validate our subtypes using a jointimmunofluorescence and in situ
hybridization staining protocol with automated image segmentation
to evaluate morphological characteristics. Further, we demonstrate
the utility of our reference by interpreting external data, including
GBM data, a disease that we did not sample. Finally, we demonstrate
how our dataset can be leveraged to identify tool compounds that
recapitulate microglial subtypes, providing a path toward targeted
therapeuticimmunomodulation of microglia.
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Consistent with other studies of ex vivo human microglia*, we

found thatshiftsin function, metabolism and association with disease
genes fall along continuous axes radiating outwards from a central
state. The primary axis of variation in our dataset lies between clus-
ters1and 6 and clusters 2,4 and 9. Clusters 1and 6 are enriched for
diseases genes and upregulate heterocyclic metabolism, while clus-
ters 2,4 and 9 are associated with oxidative metabolism and present
a homeostatic-active phenotype. The second major axis of differen-
tiation leads to clusters 8 (interleukin signaling) and 10 (complement
and antigen presentation). These clusters may represent two tracks of
microglial activation directed toward adaptive immune interaction.
They are related to cluster 11 (DAM2"&" microglia), which we had not
observed in our prior study*, probably because it represents a small
minority of microglia. Thisisin marked contrast to murine brain data;
this difference could stem from the accelerated kinetics of murine
models compared to human disease, from the ~90 million years of
evolution between mice and humans, or from the exhaustion of the
DAMresponseinthe protracted course of human disease. We can now
define human-centric versions of the DAM that may be more informa-
tive in human studies. Thus, we have captured three primary axes of
variation in our model: (1) a 1/6 versus 2/4/9 metabolic cline, (2) the
8/10 axis of immune response specialization, and (3) the DAM-like
axis of activation that terminates in cluster 11. Of course, it remains
unclear whether these different tracks of differentiation arise from
different progenitor pools, or whether any given microglia are fully
capable of attaining all possible states. Notably, our in situ validation
efforts confirm the existence of these axes using key marker genes
and suggest functional differences among these subsets. For example,
CD74"e" cells (cluster 10) and SPP1"e" cells (cluster 11) are both less
ramified than other microglia, while CXCR4" (cluster 8) cells exhibit
more ramification. Our in situ pipeline also offers opportunities to
explore spatial localization of RNA, as we detect transcripts even in
distal microglial processes (Fig. 6).

Label transfer offers the opportunity to use our existing structure
to analyze external datasets, and our results suggest that snRNA-seq
data, xenografted humaniPS cell microglia® and even aninvitro human
iPS cell microglial model system®® recapitulate animpressive amount
of the heterogeneity found among primary microglia. The reference
also recovers therole of cluster 11 microglia in GBM®*’°, a disease not
sampled in the resource. Ultimately, our resource can facilitate the
annotation of smaller datasets, enhancing the analysis of the less com-
mon microglial subtypes.

Our reference also forms a foundation that can be leveraged to
identify new tools that enable functional studies of subtypes by reca-
pitulating them in vitro. Our prioritized compounds include Torin-2,
anmTOR inhibitor that improves survival in animal models of GBM*°
and has neuroprotective effects®, camptothecin, a topoisomerase
inhibitor with neuroprotective effects in murine PD®, and narciclasine,
apleiotropic drug thatinhibits the NF-kB pathway®’. Camptothecinis
particularly interesting as it enhances its target cluster 10 signature
while also suppressing the cluster 1/6 signature at both the transcrip-
tomicand proteomic levels. These effects may be particularly relevant
to therapeutic development in AD as clusters 1/6 are enriched for AD
susceptibility genes (Fig. 5), and we have previously reported an asso-
ciation of the CD74"¢" cluster 10 in AD*. This compound prioritization
effort offers a generalizable strategy for identifying compounds that
may drive distinct microglial subtypes and provide a path toward
targeted immunomodulation therapies.

Ourwork has limitations. First, ‘control’ donors who have no clini-
cal manifestation of a neurological disorder at the time of death and
do not fulfill pathological criteria for a disease are rare and only one
came to autopsy during this study. Second, because our study design
prioritized uncovering diversity inmicroglial subtypes across diseases,
the samples do not enable association studies for disease, region, sex
or other variables. Third, our efforts to mitigate technical and batch

effects likely suppressed some true biological variation among sam-
ples. This was anecessary tradeoffto achieve our goal, but it also means
that we were unable to capture more subtle heterogeneity that may
be present in different diseases or regions. However, the differences
insingle-cell chemistry did not affect the cell purification process, so
we do not expect any effects on viability. Fourth, our cross-sectional
datarely on algorithmic inference in proposing trajectories, but they
recapitulate and extend similar findings seen in studies of murine
microglial heterogeneity®***.Fifth, our moderate sample size resolved
the proliferative cluster 12 (<1% of microglia); however, less frequent
subtypes may exist and will require larger sample sizes to be discov-
ered. Finally, our HMC3 model system may be limiting; however, we
mitigate this somewhat by reporting stable expression of microglial
markers across passages of HMC3 (Supplementary Fig. 1). Indeed,
this limitation is shared with iPS cell-derived in vitro and xenograft
models that do not recapitulate the full breadth of human microglial
heterogeneity (Fig. 7b).

Here, we have created anew cross-disease resource that describes
human microglial heterogeneity. Through our validation efforts, we
have used our reference to expand the community’s microglial toolkit
withrobust approaches (1) to identify microglial subtypesinsituand,
more broadly, to capture morphology and targeted RNA expression
fromindividual microgliainhumantissue, (2) to transfer the reference
labels to multiple data types, and (3) to recapitulate certain subtypes
invitroviachemical perturbation. The latter results outline a path for
targeted development of immunomodulatory strategies that lever-
agesour understanding of microglial subtypesimplicated in different
diseases.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability areavailable at https://doi.org/10.1038/s41593-024-01764-7.

References

1. Ginhoux, F., Lim, S., Hoeffel, G., Low, D. & Huber, T. Origin and
differentiation of microglia. Front. Cell. Neurosci. 7, 45 (2013).

2. Li, Q. &Barres, B. A. Microglia and macrophages in brain
homeostasis and disease. Nat. Rev. Immunol. 18, 225-242 (2018).

3. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced
by activated microglia. Nature 541, 481-487 (2017).

4. Olah, M. et al. Single cell RNA sequencing of human microglia
uncovers a subset associated with Alzheimer’s disease. Nat.
Commun. 1, 6129 (2020).

5. Butovsky, O. & Weiner, H. L. Microglial signatures and their role in
health and disease. Nat. Rev. Neurosci. 19, 622-635 (2018).

6. Keren-Shaul, H. et al. A unique microglia type associated with
restricting development of Alzheimer’s disease. Cell 169,
1276-1290 (2017).

7. Avyata, P. et al. Epigenetic regulation of brain region-specific
microglia clearance activity. Nat. Neurosci. 21, 1049-1060 (2018).

8. Gerrits, E. et al. Distinct amyloid-8 and tau-associated microglia
profiles in Alzheimer’s disease. Acta Neuropathol. 141, 681-696
(2021).

9. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia
heterogeneity in the single-cell era. Cell Rep. 30, 1271-1281
(2020).

10. Chen, Y. & Colonna, M. Microglia in Alzheimer’s disease at
single-cell level. Are there common patterns in humans and
mice? J. Exp. Med. 218, 20202717 (2021).

1. Colonna, M. & Brioschi, S. Neuroinflammation and
neurodegeneration in human brain at single-cell resolution.

Nat. Rev. Immunol. 20, 81-82 (2020).

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01764-7

Resource

https://doi.org/10.1038/s41593-024-01764-7

12.

13.

4.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

Dumas, A. A., Borst, K. & Prinz, M. Current tools to interrogate
microglial biology. Neuron 109, 2805-2819 (2021).

Masuda, T. et al. Spatial and temporal heterogeneity of mouse
and human microglia at single-cell resolution. Nature 566,
388-392 (2019).

Kracht, L. et al. Human fetal microglia acquire homeostatic
immune-sensing properties early in development. Science
https://doi.org/10.1126/science.aba5906 (2020).

Young, A. M. H. et al. A map of transcriptional heterogeneity and
regulatory variation in human microglia. Nat. Genet. 53, 861-868
(2021).

Thrupp, N. et al. Single-nucleus RNA-seq is not suitable for
detection of microglial activation genes in humans. Cell Rep. 32,
108189 (2020).

Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes
compared in matched cortical cell types. PLoS ONE 13,
0209648 (2018).

Marsh, S. E. et al. Dissection of artifactual and confounding glial
signatures by single-cell sequencing of mouse and human brain.
Nat. Neurosci. 25, 306-316 (2022).

Mattei, D. et al. Enzymatic dissociation induces transcriptional
and proteotype bias in brain cell populations. Int. J. Mol. Sci. 21,
7944 (2020).

Subramanian, A. et al. A next generation connectivity map: L1000

platform and the first 1,000,000 profiles. Cell 171, 1437-1452 (2017).

Lamb, J. et al. The Connectivity Map: using gene-expression
signatures to connect small molecules, genes, and disease.
Science 313, 1929-1935 (2006).

Olah, M. et al. A transcriptomic atlas of aged human microglia.
Nat. Commun. 9, 539 (2018).

Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177,1888-1902 (2019).

Gerrits, E., Heng, Y., Boddeke, E. W. G. M. & Eggen, B. J. L.
Transcriptional profiling of microglia; current state of the art and
future perspectives. Glia 68, 740-755 (2020).

Haage, V. et al. Comprehensive gene expression meta-analysis
identifies signature genes that distinguish microglia from
peripheral monocytes/macrophages in health and glioma. Acta
Neuropathol. Commun. 7, 20 (2019).

Jurga, A. M., Paleczna, M. & Kuter, K. Z. Overview of general and
discriminating markers of differential microglia phenotypes.
Front. Cell. Neurosci. 14,198 (2020).

Masuda, T. et al. Novel Hexb-based tools for studying microglia in
the CNS. Nat. Immunol. 21, 802-815 (2020).

Van Hove, H. et al. A single-cell atlas of mouse brain
macrophages reveals unique transcriptional identities shaped by
ontogeny and tissue environment. Nat. Neurosci. 22, 1021-1035
(2019).

Kierdorf, K., Masuda, T., Jorddo, M. J. C. & Prinz, M. Macrophages
at CNS interfaces: ontogeny and function in health and disease.
Nat. Rev. Neurosci. 20, 547-562 (2019).

Lee, J. et al. QUAKING regulates microexon alternative splicing
of the Rho GTPase pathway and controls microglia homeostasis.
Cell Rep. 33,108560 (2020).

Ren, J. et al. Qki is an essential regulator of microglial
phagocytosis in demyelination. J. Exp. Med. 218, 20190348
(2021).

Nguyen, A. T. et al. APOE and TREM2 regulate amyloid-responsive
microglia in Alzheimer’s disease. Acta Neuropathol. 140, 477-493
(2020).

Zhou, Y. et al. Human and mouse single-nucleus transcriptomics
reveal TREM2-dependent and -independent cellular responses in
Alzheimer’s disease. Nat. Med. 26, 131-142 (2020).

Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by
single cell transcriptomics. Nat. Neurosci. 19, 335-346 (2016).

35.

36.

37.

38.

39.

40.

a1.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Tasic, B. et al. Shared and distinct transcriptomic cell types across
neocortical areas. Nature 563, 72-78 (2018).

Ashburner, M. et al. Gene Ontology: tool for the unification of
biology. Nat. Genet. 25, 25-29 (2000).

The Gene Ontology Consortium. The Gene Ontology

Resource: 20 years and still GOing strong. Nucleic Acids Res. 47,
D330-D338 (2019).

Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for Gene
Ontology. Bioconductor version: release 3.13. https://doi.org/
10.18129/B9.bioc.topGO (2021).

Sayols, S. rrvgo: a Bioconductor package to reduce and visualize
Gene Ontology terms. https://doi.org/10.18129/B9.bioc.rrvgo
(2020).

Jassal, B. et al. The reactome pathway knowledgebase. Nucleic
Acids Res. 48, D498-D503 (2020).

Wu, G. & Haw, R. Functional interaction network construction and
analysis for disease discovery. Methods Mol. Biol. 1558, 235-253
(2017).

Yu, G., Wang, L. -G., Han, Y. & He, Q. -. clusterProfiler: an R
Package for comparing biological themes among gene clusters.
OMICS. 16, 284-287 (2012).

Trapnell, C. et al. The dynamics and regulators of cell fate
decisions are revealed by pseudotemporal ordering of single
cells. Nat. Biotechnol. 32, 381-386 (2014).

Cao, J. et al. The single-cell transcriptional landscape of
mammalian organogenesis. Nature 566, 496-502 (2019).

Qiu, X. et al. Reversed graph embedding resolves complex
single-cell trajectories. Nat. Methods 14, 979-982 (2017).
Mathys, H. et al. Temporal tracking of microglia activation

in neurodegeneration at single-cell resolution. Cell Rep. 21,
366-380 (2017).

Sala Frigerio, C. et al. The major risk factors for Alzheimer’s
disease: age, sex, and genes modulate the microglia response to
AR plaques. Cell Rep. 27, 1293-1306 (2019).

Ellwanger, D. C. et al. Prior activation state shapes the microglia
response to antihuman TREM2 in a mouse model of Alzheimer’s
disease. Proc. Natl Acad. Sci. USA 118, 2017742118 (2021).
Krasemann, S. et al. The TREM2-APOE pathway drives the
transcriptional phenotype of dysfunctional microglia in
neurodegenerative diseases. Immunity 47, 566-581(2017).
Marschallinger, J. et al. Lipid-droplet-accumulating microglia
represent a dysfunctional and proinflammatory state in the aging
brain. Nat. Neurosci. 23, 194-208 (2020).

International Multiple Sclerosis Genetics Consortium. Multiple
sclerosis genomic map implicates peripheral immune cells and
microglia in susceptibility. Science 365, eaav7188 (2019).
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res. 47, D1005-D1012 (2019).
Sekar, A. et al. Schizophrenia risk from complex variation of
complement component 4. Nature 530, 177-183 (2016).

David, A. B., Julie, A. S., Zoe, A. & Robert, S. W. Overview and
findings from the Religious Orders Study. Curr. Alzheimer Res. 9,
628-645 (2012).

David, A. B. et al. Overview and findings from the Rush Memory
and Aging Project. Curr. Alzheimer Res. 9, 646-663 (2012).
Patrick, E. et al. A cortical immune network map identifies distinct
microglial transcriptional programs associated with 3-amyloid
and Tau pathologies. Transl. Psychiatry 11, 50 (2021).

Wang, F. et al. RNAscope. J. Mol. Diagn. 14, 22-29 (2012).
Carpenter, A. E. et al. CellProfiler: image analysis software for
identifying and quantifying cell phenotypes. Genome Biol. 7,
R100 (2006).

McQuin, C. et al. CellProfiler 3.0: next-generation image
processing for biology. PLoS Biol. 16, e2005970 (2018).

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.1126/science.aba5906
https://doi.org/10.18129/B9.bioc.topGO
https://doi.org/10.18129/B9.bioc.topGO
https://doi.org/10.18129/B9.bioc.rrvgo

Resource

https://doi.org/10.1038/s41593-024-01764-7

60.

Kamentsky, L. et al. Improved structure, function and
compatibility for CellProfiler: modular high-throughput image
analysis software. Bioinformatics 27, 1179-1180 (2011).

74.

Miedema, A. et al. Brain macrophages acquire distinct
transcriptomes in multiple sclerosis lesions and normal
appearing white matter. Acta Neuropathol. Commun. 10, 8 (2022).

61. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility 75. Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in
and usability. BMC Bioinf. 22, 433 (2021). chronic active multiple sclerosis. Nature 597, 709-714 (2021).

62. Stence, N., Waite, M. & Dailey, M. E. Dynamics of microglial 76. Patel, T. et al. Transcriptional landscape of human microglia
activation: a confocal time-lapse analysis in hippocampal slices. implicates age, sex, and APOE -related immunometabolic
Glia 33, 256-266 (2001). pathway perturbations. Aging Cell 21, 13606 (2022).

63. Green, G. S. et al. Cellular communities reveal trajectories 77. Alsema, A. M. et al. Profiling microglia from Alzheimer’s disease
of brain ageing and Alzheimer’s disease. Nature 633, 634-645 donors and non-demented elderly in acute human postmortem
(2024). cortical tissue. Front. Mol. Neurosci. 13, 134 (2020).

64. Yuan, J. et al. Single-cell transcriptome analysis of lineage 78. Li, Y. etal. Decoding the temporal and regional specification
diversity in high-grade glioma. Genome Med. 10, 57 (2018). of microglia in the developing human brain. Cell Stem Cell 29,

65. Hambardzumyan, D., Gutmann, D. H. & Kettenmann, H. The 620-634 (2022).
role of microglia and macrophages in glioma maintenance and 79. Kumar, P. et al. Single-cell transcriptomics and surface
progression. Nat. Neurosci. 19, 20-27 (2016). epitope detection in human brain epileptic lesions identifies

66. Hasselmann, J. et al. Development of a chimeric model to study pro-inflammatory signaling. Nat. Neurosci. 25, 956-966 (2022).
and manipulate human microglia in vivo. Neuron 103, 1016-1033 80. Amin, A. G. et al. Targeting the mTOR pathway using novel
(2019). ATP-competitive inhibitors, Torin1, Torin2 and XL388, in the

67. Claes, C. et al. Plaque-associated human microglia accumulate treatment of glioblastoma. Int. J. Oncol. 59, 83 (2021).
lipid droplets in a chimeric model of Alzheimer’s disease. Mol. 81. Johnson, S. C. et al. mTOR inhibition alleviates mitochondrial
Neurodegener. 16, 50 (2021). disease in a mouse model of Leigh syndrome. Science 342,

68. Drager, N. M. et al. A CRISPRi/a platform in human iPSC-derived 1524-1528 (2013).
microglia uncovers regulators of disease states. Nat. Neurosci. 5, 82. He, D. et al. Camptothecin regulates microglia polarization and
1149-1162 (2022). exerts neuroprotective effects via activating AKT/Nrf2/HO-1 and

69. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. inhibiting NF-kB pathways in vivo and in vitro. Front. Immunol. 12,
in Proceedings of the 22nd ACM SIGKDD International Conference 619761 (2021).
on Knowledge Discovery and Data Mining 785-794 https://doi.org/ ~ 83. Stark, A. et al. Narciclasine exerts anti-inflammatory actions
10.1145/2939672.2939785 (Association for Computing Machinery, by blocking leukocyte-endothelial cell interactions and
2016). down-regulation of the endothelial TNF receptor 1. FASEB J. 33,

70. Szulzewsky, F. et al. Glioma-associated microglia/macrophages 8771-8781(2019).

display an expression profile different from M1and M2

polarization and highly express Gpnmb and Spp1. PLoS ONE 10,
e0116644 (2015).

71. Ryan, K. J. et al. A human microglia-like cellular model for
assessing the effects of neurodegenerative disease gene variants.
Sci. Transl. Med. 9, eaai7635 (2017).

72. Dello Russo, C. et al. The human microglial HMCS3 cell line: where
do we stand? A systematic literature review. J. Neuroinflammation
15, 259 (2018).

73. Boutej, H. et al. Diverging mRNA and protein networks in activated
microglia reveal SRSF3 suppresses translation of highly upregulated
innate immune transcripts. Cell Rep. 21, 3220-3233 (2017).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

'Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY,

USA. ?Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA. *Medical Scientist Training Program, Columbia
University Irving Medical Center, New York, NY, USA. “Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving
Medical Center, New York, NY, USA. *Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. °Department
of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 'Neuropathology Service, C.S. Kubik Laboratory for
Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA. 8Department of Pharmacology, UT Health San Antonio,
San Antonio, TX, USA. °Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA. °Banner
Sun Health Research Institute, Sun City, AZ, USA. "Department of Neurology, University of Colorado, and Rocky Mountain Multiple Sclerosis Center at
the University of Colorado, Aurora, CO, USA. ?Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer
Center, New York, NY, USA. ®*Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA. “Department

of Neurology, Columbia University Irving Medical Center, New York, NY, USA. ®Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA. ®Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. "Eleanor and Lou Gehrig ALS
Center, Columbia University Medical Center, New York, NY, USA. "®Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA.
“Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA. 2°These authors contributed
equally: John F. Tuddenham, Mariko Taga, Verena Haage, Marta Olah, Vilas Menon, Philip L. De Jager. [</e-mail: pld2115@cumc.columbia.edu

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
mailto:pld2115@cumc.columbia.edu

Resource

https://doi.org/10.1038/s41593-024-01764-7

Methods

Source of CNS specimens

Details of the acquisition of autopsy samples from Rush Univer-
sity Medical Center/Rush Alzheimer’s Disease Center (RADC)***in
Chicago (Dr. Bennett) and Columbia University Medical Center/New
York Brain Bank in New York (Drs. Vonsattel and Teich)®*, as well as
surgically resected brain specimens from Brigham and Women'’s
Hospital in Boston (Drs. Sarkis, Cosgrove, Helgager, Golden and Pen-
nell) are detailed in our prior publication®. In addition, samples were
obtained from donation programs at Massachusetts General Hospital,
Boston (Drs. Bradley T. Hyman and Matthew Frosch), Banner Sun Health
Research Institute (Dr. Thomas G Beach) and Rocky Mountain MS
Center (Dr.John Corboy). All brain specimens were obtained through
informed consent and/or a brain donation program at the respective
organizations. All procedures and research protocols were approved
by the corresponding ethical committees of our collaborator’s institu-
tions as well as the Institutional Review Board of Columbia University
Medical Center (protocol AAAR4962). For adetailed description of the
brain regions sampled, clinical diagnosis, age and sex of the donors,
see Supplementary Table1.

Shipping of brain specimens

After weighing, the tissue was placed inice-cold transportation medium
(Hibernate-A medium (Gibco, A1247501) containing 1% B27 serum-free
supplement (Gibco, 17504044) and 1% GlutaMax (Gibco, 35050061))
and shipped overnight at 4 °C with priority shipping.

Microgliaisolation, cell hashing and sorting

Theisolation of microglia was performed according to our published
protocol®, with minor modifications. In case of the cortical autopsy
samples (BA9/46, BA4, BA17/18/19), the cortex (gray matter) and the
underlying white matter (subcortical white matter) were dissected
under a stereomicroscope. The subcortical white matter samples
werenot used in this study. The epilepsy surgery samples of temporal
lobe (BA20/21) were processed without dissection as in this case the
cortical white and gray matter were not always distinguishable due to
the surgical procedure. The substantia nigra and the thalamus were
dissected by separation from the surrounding white matter tracts. The
hippocampus samples contained the dentate gyrus, CA4/CA3/CA2 and
CAlregions, both white and gray matter. The spinal cord sample was
sampled at the level of the lumbar section and included both white and
gray matter. The anterior watershed area deep white matter did not
need any further dissection. All steps of the protocol were performed
onice. The dissected tissue was placed in HBSS (Lonza, 10-508F) and
weighed. Subsequently, the tissue was homogenized in a15-ml glass tis-
suegrinder, using 0.5 gat atime. Theresultinghomogenate was filtered
through a70-umfilter and spun down at 300 rcffor 10 min. The pellet
wasresuspended in2 mlstaining buffer (RPMI (Fisher, 72400120) con-
taining 1% B27) per 0.5 g of initial tissue and incubated with anti-myelin
magnetic beads (Miltenyi, 130-096-733) for 15 min according to the
manufacturer’s specification. The homogenate was then washed once
with staining buffer, and the myelin was depleted using Miltenyi large
separation columns (Miltenyi, 130-042-202). The cell suspension
was spun down and was then incubated with anti-CD11b Alexa Fluor
488 (BioLegend, 301318) and anti-CD45 Alexa Fluor 647 (BioLegend,
304018) antibodies as well as 7AAD (BD Pharmingen, 559925) and cell
hashing antibodies (for catalog numbers of cell hashing antibodies,
see Supplementary Table 1) for 20 min on ice. Subsequently, the cell
suspension was washed twice with staining buffer, filtered through a
70-um filter and the CD11b*/CD45%/7AAD" cells or CD45°/7AAD" cells
were sorted on a BD FACS Aria Il or BD Influx cell sorter. Cells from
each brain region were sorted in a separate Al well of a 96-well PCR
plate (Eppendorf, 951020401) containing 100 pl of PBS buffer with
0.3% BSA. Following sorting, cells from different brain regions were
combined and immediately submitted to single-cell capture, reverse

transcription and library construction onthe 10x Chromium platform.
All sorting was performed using a 100-um nozzle. The sorting times
varied accordingto the quality of the sample but was usually between
10 min and 20 min per sample. The sorting speed was kept between
8,000 and 10,000 events per second.

10x Genomics Chromium single-cell 3’ library construction
Cell capture, amplificationand library construction on the 10x Genom-
ics Chromium platform were performed according to the manufac-
turer’s publicly available protocol. Briefly, viability was assessed by
trypan blue exclusion assay, and cell density was adjusted to 175 cells
per microliter. In total, 7,000 cells were then loaded onto a single
channel of a10x Chromium chip for each sample. The 10x Genomics
Chromium technology enables 3’ digital gene expression profiling of
thousands of cells from a single sample by separately indexing each
cell’s transcriptome. First, thousands of cells are partitioned into
nanoliter-scale Gel Bead-In-EMulsions (GEMs). Within one GEM, all
generated cDNA share acommon 10x barcode. Libraries were gener-
ated and sequenced from the cDNA, and the 10x barcodes were used to
associateindividual reads back to the individual partitions. Toachieve
single-cell resolution, the cells were delivered at a limiting dilution.
Upondissolution of the Single Cell 3’ Gel Bead in a GEM, primers con-
taining (i) an lllumina R1sequence (read 1 sequencing primer), (ii) a
16-nucleotide 10x Barcode, (iii) a10-nucleotide UMI, and (iv) a poly-dT
primer sequence were released and mixed with cell lysate and Master
Mix. Incubation of the GEMs then produced barcoded, full-length
cDNA from poly-adenylated mRNA. After incubation, the GEMs were
brokenandthe pooled fractions were recovered. Full-length, barcoded
cDNA was then amplified by PCR to generate sufficient mass for library
construction. Enzymatic fragmentation and size selection were used
to optimize the cDNA amplicon size before library construction. R1
(read 1 primer sequence) was added to the molecules during GEM
incubation.P5,P7,asampleindexand R2 (read 2 primer sequence) were
added during library construction via end repair, A-tailing, adaptor
ligation and PCR. The final libraries contained the P5 and P7 prim-
ers used in lllumina bridge amplification. The described protocol
produced lllumina-ready sequencing libraries. A single-cell 3’ library
comprises standard Illumina paired-end constructs that begin and
end with P5 and P7. The single-cell 3’ 16-bp 10x Barcode and 10-bp
UMl are encoded in read 1, while read 2 is used to sequence the cDNA
fragment. Sample index sequences were incorporated asthe i7 index
read.Read1andread 2 are standard Illumina sequencing primer sites
used in paired-end sequencing. Sequencing the library produced a
standard Illumina BCL data output folder. The BCL data include the
paired-end read 1 (containing the 16-bp 10x Barcode and 10-bp UMI)
and read 2 and the sampleindexinthei7 index read.

Batch structure and sequencing

Tissue specimens were processed upon receipt. The different brain
regions fromthe same donor were processed and hashed in parallel and
loaded in a single well of a10x Chromium 3’ chip as described above.
Accordingly, each sample (containing multiple brain regions fromthe
same donor) constitutes one batch for all three procedures (microglia
isolation, cell capture and library construction). All sequencing was per-
formed on eitheranlllumina HiSeq 4000 or aNovaSeq 6000 machine.
For specifics on the sequencing machines and QC metrics regarding
the generated reads, see Supplementary Table 1.

Single-cell RNA-seq data processing, alignment and hashtag
deconvolution

The majority of our downstream analysis was conducted using the
R programming language (v.4.0.5 for harmonization and clustering,
v.4.1.0 for annotation and downstream visualization)® and the RStu-
dio®*® integrated development environment. Cell Ranger v.3.1.0 with
default parameters was used to demultiplex and align our barcoded
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reads with the Ensembl transcriptome annotation (downloaded March
2019, GRCh38.91). Arecent report” suggested that filtering cells with
greater than 10% mitochondrial reads is the preferred baseline for
human tissue, and that for brain tissue a higher threshold may even
be optimal. Thus, a mitochondrial percentage that was the higher of
either10% of reads or the two absolute deviations above the median for
mitochondrial reads within the sample was chosen as a threshold. Cells
below this threshold with between 500 and 10,000 UMIs were retained
for downstream analysis. All ribosomal genes, mitochondrial genes and
pseudogenes were removed, as they interfered with the downstream
differential gene expression. For samples where we used cell hashing
to combine regions or subjects in a single sequencing run, droplets
were demultiplexed using the following workflow. For each hashtag
oligonucleotide (HTO), a mixture model with two components was
fitted to the HTO counts using an expectation-maximization algo-
rithm. The component with the smaller mean (negative component)
represents droplets that were not tagged with the HTO, whereas the
component with the larger mean (positive components) represents
droplets that were tagged. We then assign each droplet to either the
negative or positive component based on its posterior probability.
Droplets that were assigned to the negative component for all HTOs
as well as multiplets were discarded. Singlets with high uncertainty,
thatis, without confident assignment to either the negative or positive
component, were discarded as well, leaving only high-certainty singlets
for downstream analysis. The method is implemented in the R pack-
age demuxmix®®, Some of our hashtag data had lower overall counts,
and thus, the demuxmix model was unable to effectively segregate
distributions for some hashtags in several samples. These samples
were identified as having high percentages of negative/uncertain
cellswith demuxmix. Inthese cases, to try and recover cells for further
analysis, the problematic hashtags were reclassified using one of two
different algorithms, ademixing algorithm developed for MULTI-seq®
or HTOdemux from Seurat (v.3.2.0)*. Hashtag classifications were
merged, and doublet/negative/uncertain cell removal proceeded as
described earlier.

Batch correction

Striking differences were observed in the distributions of UMI counts
between10x v2 and v3 chemistry. As this was driving differential clus-
tering, count matrices from v3 samples were downsampled by 50%
using the DropletUtils’ package in R to achieve comparable UMI dis-
tributions across the two technologies (Supplementary Table 1 and
Extended DataFig.2d). Next, after testing a series of recently published
batch correction tools, SCTransform® combined with mNN°*was cho-
sentomitigate batch effectin our dataset. A range of numbers of differ-
entially expressed genes (3,000-6,000) and components (20-40) were
tested, and 4,500 differentially expressed genes and 40 components
were used for downstream analysis. Using these parameters, the full
pipelineis as follows: SCTransform, which normalizes for minor differ-
ences in sequencing depth, was performed on each individual batch,
then corrected counts were log normalized with the NormalizeData
functioninthe Seurat package. Subsequently, processed datasets were
merged on the corrected count matrix using the fastmNN algorithm
accessed through the RunFastMNN function in the SeuratWrappers
package. Library preparation batch is confounded with samples, and
diseases are confounded with technical variables in our dataset, due
tothe necessity to process all tissueimmediately uponreceipt and the
irregular schedule by which samples are received. AsmNNis aharsher
integration approachwhen compared to other commonly used tools,
our pipeline is likely to have removed relevant biological signal in
integrating the datasets. However, our priority was to obtain a robust
cluster structure across the diverse brain regions and diseases found
in our dataset while avoiding the issue of spurious signal from batch
effects driving separate clustering, which motivated the approach that
we have described here.

Clustering

Thegraph-based clustering approach implemented in Seurat (v.3)* was
usedto cluster our cells. In brief, a k-nearest neighbors graph based on
Euclideandistancein our corrected mNN space was calculated and used
toderive refined edge weights based onJaccard similarity. The Louvain
algorithmwas then applied toiteratively delineate a population struc-
ture on our dataset. This was implemented with the FindNeighbors and
FindClusters functionsin Seurat. AUMAP projection of our dataset was
computed withthe RunUMAP function for visualization (Extended Data
Fig.1a). Contaminating red blood cells from our dataset were removed
using classical markers (HBB/HBA), and microglia were subclustered
using an identical integration and clustering pipeline (Fig. 2a). Any
microglial subsets with fewer than 100 cells were discarded. Basic
quality metrics are shown in Extended Data Fig. 2a-f and reported in
Supplementary Table1.

Validation of cluster stability

To evaluate cluster stability, a post hoc pairwise machine learning
approach was used to evaluate the similarity between clusters. Logi-
cally, one would expect that operating with a simple classifier, sepa-
ration of cells from divergent clusters would be simpler and lead to
higher accuracy of prediction, while separation of cells from clusters
that are transcriptionally overlapping would be more difficult, and
would thuslead toalower accuracy of prediction. As such, we trained
simple machine learning models on pairs of different clusters, using
accuracy of prediction as a proxy for homology of individual pairs of
clusters. The top 10,000 variable genes in the dataset were identified
by applying the FindVariableFeatures function from Seurat on the
log-normalized RNA expression data from our dataset. Using these
features, keras® was used to train a multilayer perceptron classifier to
distinguish each pair of clusters. After basic hyperparameter optimiza-
tion, the following parameters were chosen for the model: the rmsprop
optimizer, a one-layer structure with 500 nodes in the hidden layer,
the tanh activation function for the dense layer and a sigmoid activa-
tion function for the output layer. Ten epochs and a batch size of 100
were used for training. As our only concern was the raw accuracy of
classification, mean squared error was used as the loss function. For
each pair of clusters, the data were split fivefold, then the classifier was
trained on 80% of the dataset and the remaining 20% was classified.
This process was repeated five times to classify every cell in our dataset
once. This entire pipeline was then repeated 50 times for each pair of
clusters. Cells that were ambiguously classified (<40 times of 50) to the
same cluster were designated intermediate cells. A threshold of <20%
overlap between clusters was chosen as the threshold for merging
clusters;inour model, no clusters met this parameter and as such, the
original 12-cluster model was retained. As such, this analysis leverages
the ability of simple classifiers to separate distinct clusters as a direct
metric for the transcriptional similarity of said clusters, and conducted
across all combinations of clusters, it provides an overarching metric
for the similarity of each cluster to every other cluster in our dataset.
The constellation diagram shown in Fig. 3a depicts the results of this
analysis: edges between clusters represent the percentage of total cells
classified as intermediate, and the area of each node is scaled to cor-
respond to the overall size of the corresponding cluster. As orthogonal
validation of our microglial clustering parameters, aresampling clus-
tering approach was also used to assess cluster robustness. Over 100
iterations, 75% of the cells from our dataset were randomly sampled
and our clustering pipeline was run with identical parameters. This was
alsodoneinapairwise fashion to examine fluidity between individual
pairs of clusters. For each pair of clusters, the frequency with which
cells assigned to one cluster in our original clustering were reclustered
into the cluster that contained fewer cells with the same original clas-
sification was recorded. Clusters remain generally stable, with most
ofthe overlap being found between adjacent, closely related clusters
or the intermediate clusters in our dataset. The results are shown in
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Extended DataFig. 2g, visualized using the corrplot package’*. Each of
our microglial subtypes was also subclustered, but no stable, distinct
subclusters were identified.

Identification of cluster-defining gene sets

Toidentify cluster-defining gene sets, the FindMarkers function in Seu-
rat was used to implement a pairwise testing approach. We prioritized
differentially expressed genes that could best delineate agiven cluster
from each other cluster in our dataset. To do so, MAST® was applied
to normalized count data from the ‘RNA’ assay of the Seurat object to
find differentially expressed genes between every combination of pairs
of clusters. Within each cluster, all the differentially expressed genes
that were identified with this approach were filtered to only include
those that were only found to be differentially expressed in one direc-
tion (either up or down). Any genes that were found to be upregulated
in comparison to some clusters but downregulated in comparisons
to other clusters or vice versa were removed from our downstream
analysis. Furthermore, to ensure that the specific cluster-defining
genes were prioritized, upregulated genes were ranked by the num-
ber of comparisons in which they were upregulated, and only those
upregulatedin three or more comparisons were used for downstream
analyses. An identical process was applied for downregulated genes.
Full marker gene lists are reported in Supplementary Table 2.

Enrichment of DAM signature gene sets

The DAM signature gene sets for ‘DAMI’, ‘'DAM2’ and ‘homeostatic
microglia’ described inref. 6 were examined separately in our analysis.
These sets consist of two sets of genes upregulated in the DAM trajec-
tory, as well as homeostatic microglial genes known to be downregu-
lated in DAM microglia. The overlap of ‘DAMI’and ‘DAM2’ gene sets with
upregulated cluster-defining genes, and the overlap of the ‘homeo-
static microglia’ gene set with downregulated cluster-defining genes
(‘Identification of cluster-defining gene sets’) was examined using a
hypergeometric test with an FDR-corrected threshold for significance
atg=0.01(ref. 96). The results of this analysis were visualized in a heat
map where the color intensity corresponds to the -log;, P value of
the FDR g value for enrichment of DAM1/DAM2 genes in upregulated
genesor homeostatic genesindownregulated genes from our clusters
(Fig. 2e).

Monocle3 pseudotime analysis

As an orthogonal method of evaluating the continuity of different
microglial statesin our cluster structure, the Monocle3 algorithm was
used to build a pseudotime trajectory across our dataset (Extended
DataFig. 4e). Using the Seurat interface to Monocle3 found in Seurat-
Wrappers, the Seurat object was converted into aMonocle data object,
and apseudotime trajectory was derived using the ‘learn_graph’func-
tion, retaining the clustering assignments from our original clustering
pipeline (see ‘Clustering’).To establish an originating point, the pseu-
dotime root was placed ontheborder of clusters 2and 3, as these cells
had the strongest gene expression signature for classic homeostatic
microglia and few differentiating genes, suggesting that they could
formthebasal state for microgliafrom which they would differentiate
into other states. Interestingly, this state was best captured by choosing
cells with maximal AVP expression, a marker of hematopoietic stem
cells” that is frequently used to mark the root cells in hematopoietic
pseudotime tracing.

Functional annotation of microglial clusters

To perform functional annotation of microglial clusters, upregulated
or downregulated gene lists for each cluster were defined as genes
upregulated in three or more comparisons or downregulated in two
or more comparisons. Annotation of these gene lists was performed
with several resources: GO by way of TopGO™® as well as Reactome*®
pathway analysis with clusterProfiler*>. For GO analysis, we conducted

analysis with biological process annotation. For all functional analysis,
the Benjamini-Hochberg correction® was used to correct P values
for multiple testing. Corrected P values below a threshold of 0.01
were chosen as significant for both GO and Reactome results. GO
results were aggregated and summarized by use of the rrvgo® pack-
age. Aggregated results of pathways are shown in Fig. 3 and Extended
DataFig.4.ForFig.3a, terms were filtered toinclude only those terms
that were simultaneously upregulated in both clusters 4 and 9 and
downregulatedin both clusters1and 6, or vice versa to best highlight
differences between these families.

Examining enrichment of MS susceptibility genes

The enrichment of MS susceptibility genes was evaluated separately
from other diseases due to the availability of a recent publication by
the International Multiple Sclerosis Genetics Consortium extensively
mapping genomic risk loci in MS™. A hypergeometric test was used
to evaluate the enrichment of 551 putative MS susceptibility genes
identified as targets of MS variants in genes upregulated in our clusters
(‘Identification of cluster-defining gene sets’). The FDR-corrected
threshold for significance was set at g = 0.01.

Examining enrichment of disease genes from the GWAS
Catalog

To confirm the results of our MS analysis and to examine enrichment
of genetic risk from other neurodegenerative or neuroinflammatory
diseases, we were interested in using amore comprehensive source of
disease-gene associations. Thus, the GWAS Catalog®>**'°, a curated
database that focused on SNP-trait association, was used for further
analysis. This dataset contains select studies that include a primary
GWAS analysis (per the GWAS catalog website: ‘array-based genotyping
and analysis 0of1000,000 pre-QC SNPs selected to tag variation across
the genome and without regard to gene content’) or an imputation
analysis with sufficient genome-wide coverage to meet the definition
of a GWAS catalog mentioned previously. This catalogis updatedona
weekly basis by curators, and eligible studies are generally added within
1-2 months of publication. The 2021-08-16 data release was used for
this study. For our analysis, we chose to focus on specific disease enti-
tieswhere microgliaare proposed to play relevant roles. To narrow our
scope, GWAS catalog entries were filtered by a specific disease name.
Forexample, to examine AD associations, all records containing ‘Alzhei-
mer’inthe ‘DISEASE_TRAIT columnwereretained. Similarly, for stroke
and cerebrovascular disorders, we filtered for all records containing
the keywords ‘stroke’, ‘brain ischemia’, ‘cerebral ischemia’, ‘cerebral
artery’ and ‘cerebrovascular’. We carried out a similar approach for
all other diseases we investigated in this analysis. After obtaining sets
of disease-gene associations for each disease entity of interest, we
applied asimilar testing approach to that described in our MS disease
gene analysis (see ‘Examining enrichment of MS susceptibility genes’).

Examining association of ROSMAP traits with clusters

The ROSMAP RNA-seq cohort used in our analysis contains a total of
1,092 samples, with atotal of 18,629 genes captured across all samples.
Using the DEseq2 R package'”, the DESeq function was used to perform
differential expression analysisinassociation with one of 12 traits. The
model for differential testing was:

gene expression ~ phenotype + age at death + sex + technical variables

Technical variables included: Batch, LOG_ESTIMATED_LIBRARY_
SIZE, LOG_PF_READS_ALIGNED, PCT_CODING_BASES, PCT_INTER-
GENIC_BASES, PCT_PF_READS_ALIGNED, PCT_RIBOSOMAL_BASES,
PCT_UTR_BASES, PERCENT_DUPLICATION, MEDIAN_3PRIME_BIAS,
MEDIAN_5PRIME_TO_3PRIME_BIAS, MEDIAN_CV_COVERAGE, pmi,
and study. For slope of cognitive decline, additional adjustment was
performed for years of education in the model. Lists of positively and
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negatively associated genes were derived with an FDR-adjusted Pvalue
with an alpha level of 0.01. Enrichment of positively and negatively
associated genesfor eachtraitinthe upregulated and downregulated
genes for each cluster, respectively, was evaluated with a similar test-
ing approach and threshold to our disease annotation analyses (see
‘Examining enrichment of disease genes from the GWAS Catalog’).
Detailed descriptions of the ROSMAP traits used in this analysis can
be found at https://www.radc.rush.edu/docs/var/varindex.htm, and
they have been described in detail elsewhere?>***>°¢1°2 Results of this
analysis are reported in Supplementary Table 4.

Insitu confirmation of microglia subsetidentity and
abundance

Asdatadonotalways correlate between the transcriptomic and protein
levels, a phenomenon that has been noted to be pronounced specifi-
cally in activated microglia, Advanced Cell Diagnostic’s RNAscope
was used to confirm our scRNA-seq results. A cohort of samples from
the New York Brain Bank (details on donor cohort can be found in
Supplementary Table 5) consisting of prefrontal cortex (BA9) tissue
sections from16 donors was chosen for validation efforts. After exten-
sive optimization of a co-detection workflow to merge immunofluo-
rescence and RNAscope, our final pipeline is described below. Initial
optimization was performed with positive and negative RNAscope
4-plex controls (ACD; positive, 321831; negative, 321801), and once
anoptimal pipeline was identified, it was run with probes of interest.

Allreagents from the RNAscope Multiplex Fluorescent Reagent Kit
v2(ACD, 323100) were prepared for use in accordance with the manu-
facturer’s instructions. All wash buffers were prepared immediately
before performing experiments.

Tissue sections cut at athickness of 6 pm were deparaffinized with
CitriSolv Clearing Agent (Decon Laboratories, 1601) for 20 minatroom
temperature (RT). This was followed by an ethanol series (100%,100%,
70%; 100%, Fisher Scientific, BP2818; 70%, Fisher Scientific, BP8203)
for 30 s per bath with agitation and rehydration in distilled water for
1minatRT. Subsequently, 4-6 drops of hydrogen peroxide were used
to cover thetissue section, and slides were incubated for 10 min at RT.
Hydrogen peroxide (ACD, 322381) solution was removed by tapping
onabsorbent paper, and slides were washed with distilled water twice.
Antigen retrieval was performed with pH 6.0 citrate (Sigma-Aldrich,
C9999) and heating with a microwave for 25 min at 400 watts. Slides
were then placedintap water for 5 min, then moved to 100% ethanol for
1min. Slides were allowed to dry fully at RT, then hydrophobicbarriers
were drawn around the tissue section with Super Pap Pen Liquid Blocker
(Newcomer Supply, 6505). Slides were then blocked for 30 min at RT
withRNAscope Co-Detection Antibody Diluent (ACD, 323160). Diluent
was removed by tapping on absorbent paper, and slides were treated
with primary antibody diluted in RNAscope Co-Detection Antibody
Diluentfor2 hatRT. Slides were washed three times with PBS (Corning,
46-013-CM) containing 0.1% Tween-20 (Sigma-Aldrich, P9416; PBS-T),
thensubmerged in fresh10% Neutral Buffered Formalin (Sigma-Aldrich,
HT5011) for 1 h at RT. Slides were washed with PBS-T three times, then
four drops of RNAscope protease plus (ACD, 322381) were added to the
slide and spread to fully cover the tissue. After incubation for 40 min at
40 °Cinthe RNAscopeHybEzIloven (ACD, 321710), slides were washed
oncewith distilled water. Intotal, 125 pl of pre-mixed RNAscope probe
mix was then added to each slide, and then slides were incubated for
2hat40 °C.Slides were removed from the oven and washed twice with
RNAscope wash buffer (ACD, 310091). Slides were then covered with
5x SSC (Sigma-Aldrich, S6639-1L) buffer and left overnight until the
morning, when the protocol was resumed.

On the second day of the protocol, the slides were washed twice
with RNAscope wash buffer, then four drops of RNAscope AMP1(ACD,
323101) were added to each slide. After 30 min of incubation at 40 °C,
slides were washed twice with RNAscope buffer, then four drops of
AMP2 (ACD, 323102) were added per slide. After 30 more minutes of

incubation at 40 °C, slides were washed twice with RNAscope buffer,
then four drops of AMP3 (ACD, 323103) were added per slide. After a
final 15 min of incubation, slides were washed twice with RNAscope
buffer.

Next, four drops of HRP-C1 (ACD, 323104) were added per slide.
After 15 min of incubation at 40 °C, slides were washed twice with
RNAscope buffer, then 150 pl of Opal 570 (Akoya, FP1488001KT) dye
diluted in RNAscope TSA diluent (ACD, 322809) was added per slide.
Slides were incubated for 30 min, then washed twice with RNAscope
wash buffer. Finally, four drops of HRP blocker (ACD, 323107) were
added, followed by a 15-min incubation period and two washes with
RNAscope buffer. This HRP-TSA-block process was repeated iden-
tically with either HRP-C2 (ACD, 323105) or HRP-C3 (ACD, 323106)
depending on the channel of the original probes, and Opal 690 (ACD,
FP1497001KT) dye diluted in TSA diluent. Finally, this HRP-TSA-block
process was repeated once more with HRP-C4 (ACD, 323121), and the
following modifications: TSA-DIG (Akoya, FP1501001KT) diluted in
RNAscope TSA diluent for the second step and a30-minincubation at
RTinstead of 40 °C, and swapping the second wash after HRP blocking
from RNAscope wash buffer to PBS-T.

After all HRP steps were completed, counterstaining was per-
formed with 200 pl of secondary antibody diluted in RNAscope
Co-Detection Antibody Diluent. Afterincubation for 30 minatRT, slides
were washed three times with PBS-T. Slides were then incubated with
150 plof Opal Polaris 780 dye (Akoya, FP1501001KT) diluted in Antibody
Diluent/Block (Akoya, ARD10O1EA) for 30 min at RT. After three washes
with PBS-T, slides were incubated with 200 pl of 1x Trueblack (Biotium,
23007) for 2 min at RT to quench lipofuscin autofluorescence. Slides
were washed three times with PBS and counterstained with four drops
of DAPI(ACD, 323108) per slideincubated at RT for 30 s. After removing
DAPIby tappingslides on absorbent paper, the hydrophobicbarrier was
removed, and the slides were mounted with one drop of Prolong Gold
(Thermo Fisher Scientific, P36934) and coverslips (Fisher Scientific,
12545F). Bubbles were removed from the mounting medium using
gentle pressure from a pipette tip. Slides were dried for 30 min at RT
inthe dark, then transferred to 4 °C for imaging the following day.

The primary antibody used in staining was goat anti-human Ibal
(Wako, 01127991; dilution of 1:50). The secondary antibody used in
staining was donkey anti-goat IgG (H + L) highly cross-adsorbed sec-
ondary antibody conjugated to Alexa Fluor Plus 488 (Thermo Fisher
Scientific, A11055; 1:500 dilution). The RNAscope probes used in our
experiments were: CD74 (ACD, 477521), CXCR4 (ACD, 310511-C2), GPX1
(ACD, 492881) and SPP1 (ACD, 420101-C4). Two additional probes were
used but provided insufficient signal for downstream analysis: MEF2A
(ACD, 452891-C3) and CX3CRI (ACD, 411251-C3).

Fields of view were captured using the x40 objective of a Nikon
Eclipse Ni-E immunofluorescence microscope. For each donor, 15
images were obtained from the gray matter with same exposure time,
thenloaded into CellProfiler software where automated segmentation
and downstream analysis was performed as described below. Repre-
sentativeimages canbe foundin Fig. 6b,f and Extended Data Fig. 6a,b.

Automated image analysis using CellProfiler

Toautomatically segmentimages and localize transcripts within micro-
glia, we developed an extensive pipeline in CellProfiler v.4.2.1. First,
the IdentifyPrimaryObjects module was used to segment based on
DAPI, the EnhanceOrSuppressFeatures module was used to enhance
the Ibal signal (using ‘Neurites’ as the feature type) using the ‘Line
structures’ filter, and segmented Ibal signal was identified using
IdentifyPrimaryObjects. After another round of enhancement of Ibal
signal by applying the ‘Tubeness’ filter (again using ‘Neurites’ as the
featuretype), the RelateObjects module was used torelate segmented
DAPI and Ibal objects using the DAPI as the parent objects and the
Ibal (after enhancement) as the child objects. Next, morphological
parameters of each joint segmentation-defined cell were measured
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withthe MeasureObjectSizeShape module. Then, for each of the chan-
nels with RNAscope imaging data, the following set of steps were run:
enhancement of the signal for the given channel with EnhanceOrSup-
pressFeatures specifying ‘Speckles’ asthe feature type, identification
of RNA puncta using IdentifyPrimaryObjects, setting a mask for the
channel with MaskObjects, thenrelating identified RNA punctato the
parent cells with RelateObjects. Subsequently, the intensity in each of
the channels for all RNA that were associated with a parent microglial
cell was measured with the MeasureObjectIntensity module, and all
data were exported with the ExportToSpreadsheet module. Our full
pipelineis available in Supplementary Table 5.

Analyzing CellProfiler-processed RNAscope data

Downstream of CellProfiler processing, all RNAscope punctain any
channelwerefiltered to exclude those found outside microglia identi-
fied by thejoint segmentation pipeline. Using the microglia-localized
puncta, anoverall area-adjusted score was computed for each channel
(cy3, cy5orcy7) bydividing the summed intensity of puncta detected
withinagiven microglial cell by the computed area for each microglial
cell segmented by CellProfiler. The distribution of area-adjusted inten-
sity for the differentimagesin our cohort was evaluated, showing that
most of our sections had similar distributions of cells, with rare outliers
that had abnormally high signal in all channels. These outliers were
excluded from further analysis. For three of our markers—CD74, GPX1
and SPPI—expression levels for each of these markers were thresholded
into three bins—low, medium and high—as we found substantial detec-
tion of these markers across all of our tissue samples. In contrast, CXCR4
was detected only in a small fraction of cells at similar levels, so cells
were segmented as either CXCR4 positive or negative.

Thresholds were determined based on the distributions of the
RNAscope data, as well as the levels of expression for different sub-
typesinour scRNA-sequencing dataset. For example, in our scRNA-seq
data, the ‘high’ subtype for CD74, cluster 10, has amedian fold change
of 2.899 for CD74 compared to other subsets. Thus, the threshold for
CD74inthe RNAscope data was set as 2.899 times the median of CD74
expression. Similarly, to derive the low threshold for CD74, the fold
change in CD74 expression was compared between the set of families
with low CD74 expression, whichincluded the closely related clusters
1,5,6and 7,as well as the proliferative cluster 12, and all other clusters
where the difference in expression of CD74 was found to be significant
by our pairwise testing approach (‘Identification of cluster-defining
gene sets’). In this case, the median fold change in expression for our
low classes versus all other clusters was 0.394. As such, the CD74-low
class threshold was set as 0.394 times the median of CD74 expres-
sion. This process was repeated for SPP1 and GPXI; for example, the
GPX1-high classes were clusters 2, 4 and 9, while the low classes were
1,6,7and 12, and median fold change of these two groups of clusters
versus other clusters was used to determine the high and low threshold,
respectively. A small fraction of cells with abnormally high signal that
nolonger appeared punctate inform, but rather diffuse and sometimes
extending beyond the boundary of the cells was identified. Although
these could represent real cells, these might also represent cells with
highlevels of background in our specific channels. Thus, for CD74 and
SPP1, the two markers where these types of cells were observed, cells
that were 1.5 times the interquartile range above the 75th percentile
for expression for all channels were excluded. This excluded a small
number of cells (49 of a total of 7,364 cells for panel 1and 13 of a total
of 3,710 cells for panel 2).

To provide the most accurate comparison of numbers of cells
between RNAscope and scRNA-seq, cellsin scRNA-seq coming from AD
diagnoses (EOAD, LOAD), PD diagnoses (PD-DLBD, PSP) or our control
sample, were chosen for comparison, as these were the diagnoses
represented in the samples that we obtained for our in situ analysis.
Proportions of cells per binned class (that is, CD74'°, CD74™, CD74")
were then compared between the two datasets. The numbers of cells

binned into the low, medium and high CD74 classes were 3,756, 3,333
and 329, respectively. The numbers of cells binned into the CXCR4 nega-
tive and positive classes were 7,096 and 322, respectively. The numbers
of cellsbinned into the low, medium and high GPX1 classes were 1,404,
1,653 and 671, respectively. The numbers of cells binned into the low,
medium and high SPPI classes were 3,216,388 and 125, respectively.

Foranalyses leveraging various features output by our CellProfiler
pipeline, including the ‘Compactness’ and ‘Eccentricity’ features, the
output of CellProfiler for each of these features was used. For others,
such as ‘median distance’, the median distance of puncta for a given
channel (for example, cy3, cy5 or cy7) was manually computed from
the centroid of single segmented microglial cells. Inall cases involving
median distance of puncta from cellular centroids, we excluded all
cellsin the ‘low’ class for all channels in question to only include cells
with real data. Significance of differences in morphological features
between expression classes was tested with Welch’s t-test with the
Holm-Bonferronicorrection'®'*, setting a significance threshold for
anadjusted Pvalue of 0.05.

MERFISH data generation

Human postmortem frozen brain tissue was embedded in Optimum
Cutting Temperature medium (VWR, 25608-930) and sectioned on a
Leicacryostat at —20 °C at 10 um onto MERSCOPE coverslips (Vizgen,
2040003). These sections were then processed for MERSCOPE imag-
ingaccording to the manufacturer’sinstructions. Once adhered to the
coverslip, the tissue was fixed followed by three washes with 1x PBS.
After aspiration, 70% ethanol was added to permeabilize the tissue for
atleast 24 h. After awash with Formamide Wash Buffer, the sample was
incubated with a custom MERFISH probe library and left to hybridize
for 36-48 h. The sample was then washed and incubated at 47 °C with
Formamide Wash Buffer twice, and then the tissue was embeddedina
polyacrylamide gel followed by incubation with tissue clearing solution
overnightat 37 °C. After the tissue became transparent, samples were
washed with the wash buffer (Vizgen, 20300001) and incubated with
DAPI and polythymine (polyT) staining reagent (Vizgen, 20300021)
for 15 min with agitation. After washing, the coverslip was assembled
into the imaging chamber and placed into the microscope for imag-
ing. Each section was imaged using MERSCOPE 500 Gene Imaging Kit
(Vizgen, 0400006) on a MERSCOPE (Vizgen). Briefly, the sample was
loaded into a flow chamber connected to the MERSCOPE Instrument.
A low-resolution mosaic was acquired using a x10 objective, and the
regions of interest were selected for high-resolution imaging with a
x60 lens. For the high-resolutionimaging, the focus was locked to the
fiducial fluorescent beads on the coverslip. Cell segmentation was
performed using the Watershed algorithm, using DAPI nuclear seeds
and PolyT total RNA staining basins. Images were decoded to RNA spots
with xyz and gene ID using Vizgen’s Merlin software.

Validation with MERFISH
We excluded cell entities suggesting failed segmentation (zero tran-
scripts) and retained cells with 25-2,500 transcripts, more than five
unique genes, and a size of 40-2,500 pm.
Fordownstreamintegration of cells across tissues, count matrices
were merged and normalized using SCTransform® in the R package,
Seurat (v.4)'®°. We identified major cell types based on 40 extracted
PCs using a k-nearest neighborhood of 30 cells via FindNeighbors
and clustering using the Louvain algorithm via FindClusters (Seurat).
For differential expression and downstream projection, we used
log-normalized, downsampled counts. The AD tissue showed higher
median UMI counts than the non-AD tissue. We downsampled UMI
countsinthe AD tissueto a proportion of 0.796 using downsampleMa-
trix from DropletUtils'° to ensure asimilar distribution to the non-AD
tissue. Cell types were annotated based on known cell-type markers and
differentially expressed genes identified using MAST® implemented
in FindMarkers (Seurat).
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To identify microglial subtypes, we extracted the microglia fol-
lowed a similar preprocessing and integration protocol. To optimize
the number of clusters, we used a subsampling-based approach
(chooseR') to calculate silhouette scores as ametric of cluster robust-
ness. Across eightresolutions (0.3 to 1), weiteratively derived clusters
(B=100) in 80% subsets of the AD-derived microglia. Silhouette scores
were averaged per cluster in each resolution, and optimal resolution
was selected based on a median per-cluster silhouette score greater
thanthebootstrapped mediansilhouette score (B=25,000) acrossthe
resolution parameter set. We chose aresolution of 0.4, which showed
the second-highest median silhouette score averaged across clusters
and an overall higher range than aresolution of 0.3.

We projected the microglia from the AD and the non-AD tissue
into the existing UMAP using 50 projected mNN dimensions. The
log-normalized, downsampled counts were used to identify anchor
cellsbased on 51overlapping genes in FindTransferAnchors and labels
were transferred using TransferData.

Training machine learning models for label transfer to other
single-cell microglial datasets

Intheinitial evaluation of our query datasets, substantial batch effects
were evident. As thiswas likely to confound our downstream label trans-
fer workflow, a version of our mNNintegration pipeline was adapted for
upstream removal of batch effects. To do so, our reference data were
concatenated with the query data in a single Seurat object, and the
unique differentially expressed genes from our pairwise differential
expression testing (Identification of cluster-defining gene sets) were
used for cross-batch merging with the fastmNN algorithm. For all
these analyses, we used 40 components. The normalized ‘mnn.recon-
structed’ assay, which represents per-gene corrected log-expression
values, was used for downstream analysis.

After testing a number of different models in our label transfer
pipeline, acombinatorial workflow leveraging two distinct models for
different clusters showed the best accuracy: aset of pairwise SVM clas-
sifiers using consensus voting to assign labels for the smaller clusters
(8-12) and a flat XGB® classifier to assign labels for the larger clusters
(1-7) with higher transcriptional homology. This set of models was
chosen because the SVM achieved highest accuracy in initial testing
with smaller classes, but lower-than-average accuracy on larger classes,
whereas the XGB results followed the exact opposite trend. Predictions
fromthese two models were thusintegrated to achieve higher predic-
tive accuracy. The overall workflow for both methods was similar: as
a few of our classes are transcriptionally similar, similar classes are
condensed (clusters1/6/7 and clusters 2/4), then a subset of the cellsin
our dataset are selected for training. Next, the differentially expressed
genes fromour pairwise differential expression testing (‘Identification
of cluster-defining gene sets’) were selected as the features for training,
and PCAwas performed on the resulting subset of the data.

For the SVM, the training subset was 0.2 for classes 1-9, and 0.5
for classes 10-12. A separate classifier was trained for each unique
pair of clusters (that is, a classifier to compare clusters 1/6/7 and 2/4,
1/6/7and3....1/6/7 and 12, then2/4 and 3, 2/4 and5....2/4 and 12) using
only the genes found to be differentially expressed (both up and
down) between that specific pair of clusters. Data classes were then
rebalanced using combined over/under resampling to reduce class
imbalance for smaller classes. Caret'*® was used to perform PCA and
hyperparameter optimization of a SVM model using a radial kernel
and tenfold cross-validation repeated three times. PCA was conducted
independently during each fold. Conversely, for XGB, the training sub-
set was 0.33, and the model trained only on cells from groupings1/6/7,
2/4,3 and 5. Similarly, PCA was performed upstream on the subset of
scaled data consisting of allgenes found to be differentially expressed
between any clusters. Hyperparameter optimization with fivefold
validation was performed in a stepwise fashion: tree number was first
optimized, thentree-specific parameters were tuned with arestrictive

grid search, thenregularization parameters were tuned with arestric-
tivegrid search, then final optimization was conducted with grid search
inanarrow range around prior optimal parameters.

To constructavalidation subset, a subset of 50% of the dataset was
sampled exclusively from cells not used for training of either the SVM
or XGB models. The same scaling and subsetting operations described
above were applied to these data. Optimized SVM and XGB models
were used to classify the data. For SVM models, final classifications
were obtained with hard consensus voting, as the class with the major-
ity of votes was chosen as the final class of the SVM voting ensemble.
Similarly, for XGB, which outputs a probability for each class summing
to 1across all classes, the highest probability was used to choose the
assigned label. However, the class probabilities for XGB also provided
the opportunity to evaluate the confidence of the classifier and drop
lower-confidence assignments. As such, cells were only retained for
SVM classificationsin classes 10-12 or for XGB classificationsin classes
1-7that had higher than 50% classification probability for the assigned
probability. Final classifications were merged across datasets, and
accuracy was evaluated by examining sensitivity, specificity and con-
gruence of marker gene expression patterns of cells assigned to each
class with marker gene expression patterns seen in our original data.
Identical procedures were performed for query datasets.

Thisapproach demonstrates high sensitivity and specificity on test
data, with joint accuracy averaging 85% across models trained for dif-
ferent query datasets. Notably, uniformly high specificity is observed,
even for clusters with lower sensitivity, such as clusters 3 and 5.
These two clusters are also associated with lower confidence scores
from our XGB model, an expected result given the transcriptionally
intermediate nature of these clusters. Thus, the model’s greatest dif-
ficulties with classification comein cases where the true classification
boundary is not well defined, which provides a vote of confidence for
thereliability of the model. Notably, for marker genes detected in query
datasets, the transcriptional profiles of cells assigned to our distinct
microglial clusters closely match the profiles of cellsin those clusters
inour original dataset (Extended Data Fig. 6).

To analyze association of mapped proportion numbers with con-
tinuous traits in the ROSMAP single-nucleus data, alinear model from
the stats package in R with the formula ‘proportion ~ trait’ was used
to examine the relationship of amyloid burden to cluster proportion.
Pvalues were adjusted with the Benjamini-Hochberg correction®. All
ROSMAP donors with single-nucleus data were used for this analysis
(described below).

Single-nucleus library preparation and sequencing of single
nuclei

Dorsolateral prefrontal cortex tissue specimens were received frozen
from the RADC. We observed variability in the morphology of these
tissue specimens with differingamounts of gray and white matter and
presence of attached meninges. Working on ice throughout, we care-
fully dissected to remove white matter and meninges, when present.
The following steps were also conducted on ice: about 50-100 mg
of gray matter tissue was transferred into the dounce homogenizer
(Sigma, D8938) with 2 ml of NP40 Lysis Buffer (0.1% NP40,10 mM Tris,
146 mM NaCl, 1 mM CacCl,, 21 mM MgCl,, 40 U mI™ of RNase inhibitor
(Takara, 2313B)). Tissue was gently dounced while on ice 25 times
with pestle A followed by 25 times with pestle B, then transferred to a
15-ml conical tube. Then, 3 ml of PBS + 0.01% BSA (NEB, B900O0S) and
40 U ml™ of RNase inhibitor were added for a final volume of 5 ml and
then immediately centrifuged with a swing bucket rotor at 500g for
5min at4 °C. Two samples were processed at a time, the supernatant
was removed and the pellets were set on ice to rest while process-
ing the remaining tissues to complete a batch of eight samples. The
nuclei pellets were then resuspended in 500 ml of PBS + 0.01% BSA
and 40 U ml™ of RNase inhibitor. Nuclei were filtered through 20-pm
pre-separation filters (Miltenyi, 130-101-812) and counted using the
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Nexcelom Cellometer Vision and a2.5 pg pl ™" DAPI stain at al:1dilution
with cellometer cell counting chamber (Nexcelom CHT4-SD100-002).
Intotal, 5,000 nuclei from each of eight participants were then pooled
into one sample, and 40,000 nuclei in a volume of 15-30 pl were run
on the 10x single-cell RNA-seq platform using the Chromium Sin-
gle Cell 3’ Reagent Kits version 3. Libraries were made following the
manufacturer’s protocol, briefly, single nuclei were partitioned into
nanoliter-scale GEMs in the Chromium controller instrument where
cDNA share a common 10x barcode from the bead. Amplified cDNA
was measured by Qubit HS DNA assay (Thermo Fisher Scientific,
Q32851) and quality assessed by BioAnalyzer (Agilent, 5067-4626).
This whole-transcriptome-amplified material was diluted to <8 ng ml™
and processed through av3library construction, and resulting libraries
were quantified again by Qubit and BioAnalzyer. Libraries from four
channels were pooled and sequenced on one lane of lllumina HiSeqX
by the Broad Institute’s Genomics Platform, for a target coverage of
around one million reads per channel.

Processing of snRNA-seq reads

For each batch of snRNA-seq FASTQfiles, Cell Ranger software (v.6.0.0;
10x Genomics) was used to map reads onto the reference human
genome GRCh38, to collapse reads by UMI, and to count UMIs per gene
per droplet. As a transcriptome model, the ‘GRCh38-2020-A’ file set
distributed by 10x Genomics was used. The ‘--include-introns’ option
was set to incorporate reads mapped to intronic regions of nuclear
pre-mRNA into UMI counts. To call cells among the entire droplets,
the ‘remove-background’ module of CellBender'*’ was applied to raw
UMI count matrices with command line parameters. The admixture
of ambient RNA was estimated and subtracted from UMI counts by
CellBender. These filtered UMI count matrices were used in the sub-
sequent analyses.

Demultiplexing

Because our snRNA-seq library consisted of nuclei from eight indi-
viduals, original individuals of each droplet were inferred by har-
nessing SNPs in snRNA-seq reads. We used two different procedures,
depending on whether all eight individuals had been genotyped with
whole-genome sequencing (WGS). When eight individuals were geno-
typed, we used demuxlet™ software. From the WGS-based VCF file of
1,196 ROS/MAP individuals, we extracted SNPs that were in transcribed
regions, passed afilter of GATK, and at least one of the eight individu-
als had its alternate allele. The extracted SNP genotype data were fed
to demuxletalong with BAM files generated by Cell Ranger. When less
than eight individuals were genotyped, we used freemuxlet (https://
github.com/statgen/popscle/), which clusters droplets based on SNPs
insnRNA-seqreads and generates a VCF file of snRNA-seq-based geno-
types of the clusters. The number of clusters was specified to be eight.
The snRNA-seq-based VCF file was filtered for genotype quality > 30
and compared with available WGS genotypes using the bcftools gtch-
eck command. Each WGS-genotyped individual was assigned to one
of the droplet clusters by visually inspecting a heat map of the num-
ber of discordant SNP sites between snRNA-seq and WGS. The above
two procedures converged to a table that mapped droplet barcodes
onto inferred individuals. Each BAM file generated by Cell Ranger
was splitinto eight per-individual BAM files, each of which contained
reads from distinct individuals, using subset-bam (https://github.
com/10XGenomics/subset-bam/). UMI count matrices filtered by
CellBender were splitinto eight per-individual UMI count matrices.

QC

To identify and exclude potential sample swaps, we assessed con-
cordance of genotypes between snRNA-seq and WGS. LOD scores,
a metric of genotype concordance, were computed by comparing
the per-individual BAM files with WGS genotypes of matched indi-
viduals using Picard CrosscheckFingerprints (v.2.25.4). We used a

haplotype map downloaded from https://github.com/naumanjaved/
fingerprint_maps/. After inspecting a histogram of LOD scores, ten
individuals whose LOD scores were less than 50.0 were filtered out.
Theseindividuals received few cells by the demultiplexing procedure.
As another measure to detect sample swaps, we checked RNA expres-
sion levels of the XIST gene and confirmed that they were consistent
with clinical sex. Five individuals were further excluded because they
failed QC of WGS. Four were marked as potential sample swaps among
WGS, and the other was marked as an outlier of genotype principal
component analysis.

Fourindividual-level sequencing metrics were computed from the
per-individual UMI count matrices: estimated number of cells, median
UMI counts per cell, median genes per cell and total genes detected.
Afterinspecting these metrics, individuals whose median UMI counts
per cellwereless than1,500 were excluded. Thirteenindividuals were
found to be sequenced twice in distinct batches. After comparing
sequencing metrics, one of these duplicates was excluded from further
analyses. After these QC processes, 424 individuals remained.

Cell-type classifications
To annotate for cell type, we fitted a weighted ElasticNet-regularized
logistic regression classifier over the data of our previous work™, pre-
dicting one of the eight major cell types for every nucleus: excitatory
neurons, inhibitory neurons, astrocytes, microglia, oligodendrocytes,
oligodendrocyte precursor cells, endothelial and pericytes. The gene
expression matrix was log normalized (using NormalizeData method,
Seurat package) and scaled over the top 700 variable features exclud-
ing noncoding RNA (using the FindVariableFeatures method, setting
the selectionmethod to vst and ScaleData method, in Seurat package).
We trained five different models with a mixing parameter of
alpha=0(Ridge), 0.25,0.5,0.75and 1(Lasso), over arandomly selected
75% of the data (n =139,311). Samples were weighted as 1/ for the number
of nucleiof celltype presentin the training set. This step ensured that
evenlowly represented cell types such as endothelial and pericytes will
be properly learned. Toselect the models’ regularization parameters,
we applied tenfold cross-validation (using cv.glmnet method, glmnet
package). Fitted models were evaluated using the held-out 25% of the
data(n=43,428),and their accuracy withrespect to the misclassifica-
tionerror was calculated. As allmodels achieved very high accuracies,
with misclassifications mostly between excitatory and inhibitory neu-
rons, we selected the ElasticNet model with a mixing parameter using
an alphalevel of 0.25 to induce sparsity to the model. Fitted models
used only 121 of the 700 available features and achieved a test accuracy
0f99.95, with most misclassified nuclei being between inhibitory and
excitatory neurons. The nuclei assigned to the microglial cluster were
extracted and used in our analyses.

Leveraging the CMAP to identify chemical and genetic targets
forin vitro recapitulation

The CMAP**? is a catalog of gene expression signatures for a series
of different genetic and pharmacologic perturbations across a wide
variety of different cell lines. To identify chemical targets that might
drive signatures associated with our distinct microglial subsetsin vitro,
upregulated gene lists were assembled for each cluster corresponding
togenes upregulatedincomparisontothree or more clusters. The web
interfacefound at clue.iowas used to interface with the CMAP database,
and the ListMaker tool was used to assembile lists, which were then
submitted asinputs to the Query tool. The v.1.0 L1000 gene expression
data compendium was used for all analyses. Output lists were down-
loaded and ranked by ‘median_tau_score’. Results were aggregated
into families:1and 6,4 and 9, and 8 and 10. Chemical perturbagens of
interest were selected from those with a‘median_tau_score’ above 90
and chosenbased on prior knowledge and the pathways they targeted.
Full output lists from CMAP separated by cluster can be found in Sup-
plementary Table 7.
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Drug screening in the HMC3 model system

Compounds of interest were obtained from a wide range of reputable
vendors and resuspended in DEPC-treated water (Invitrogen, AM9915G),
PBS (Corning, 21-040-CV) or DMSO (Sigma-Aldrich, 472301). Tokeep the
design of our experiment as similar as possible to the CMAP study, the
target stock concentration was 10 mM, but this was adjusted depend-
ing on the solubility of each compound. Extensive dose titration with
dosesranging from 0.01 uM to 0.1 mM was conducted to determine the
highest tolerable dose for eachcompound. Each concentration of drug
was plated in triplicate with early-passage HMC3 cells (American Type
Culture Collection, CRL-3304), and the viability was read out using Cal-
cein AM (Invitrogen, C1430) and propidiumiodide (Invitrogen, P3566)
using a Celigo plate (Nexcelom Bioscience) reader at 6 h and 24 h. An
optimal dose of each drug was then chosen based on cell morphology
and viability. Subsequently, optimal doses were applied to plated HMC3s
and collected for RNA extraction after 6 hand 24 h. In-well lysis was per-
formed with RLT buffer (QIAGEN, 74136) containing 2-mercaptoethanol
(ThermoFisher Scientific, 63689), and RNA extraction was performed
with the QIAGEN RNEasy mini plus kit (QIAGEN, 74136) following the
manufacturer’s instructions. gDNA eliminator columns were used to
remove contaminating genomic DNA. Initial RNA quality and quantity
were assessed using Nanodrop (Thermo Fisher Scientific) followed
by cDNA preparation using the iScript cDNA Synthesis kit (Bio-Rad,
1708891). cDNA was subsequently purified with AMPure XP beads
(Thermo Fisher Scientific, A63880) using a1:1.8 ratio of cDNA:beads.

RT-qPCR analysis

Real-time qPCRreactions to amplify 1 ng of total cDNA were performed
inaQuantStudio 3 Real-Time PCR Cycler (A28132, Applied Biosystems)
using the Applied Biosystems Fast SYBR Green Master Mix (Thermo
Fisher Scientific, 4385612). CT values were normalized using hypox-
anthine phosphoribosyltransferase 1 (HprtI) as the housekeeping
gene. Primers were tested for their efficiency beforehand, and the AAC,
methodwas applied for analysis of relative gene expression. The melting
curvesofeach product wereanalyzed toensure the specificity ofthe PCR
product. The following primers were used: HPRTI - fw: CCTGGCGTCGT-
GATTAGTGAT, rev: AGACGTTCAGTCCTGTCCATAA; SRGAP2 - fw:
GTTGTGACTTAGGCTACCATGC, rev: TGCTTCGACTGTTCCAGGTTT;
MEF2A - fw: GGTCTGCCACCTCAGAACTTT, rev: CCCTGGGTTAGTG-
TAGGACAA; TYROBP - fw: ACTGAGACCGAGTCGCCTTAT, rev: ATACG-
GCCTCTGTGTGTTGAG; GPXI - fw: CAGTCGGTGTATGCCTTCTCG,
rev: GAGGGACGCCACATTCTCG; CXCR4 - fw: ACGCCACCAACAGTCA-
GAG, rev: AGTCGGGAATAGTCAGCAGGA; SRGN - fw: GGACTACTCTG-
GATCAGGCTT, rev: CAAGAGACCTAAGGTTGTCATGG. For visualization,
the mean for each gene is shown with error bars that denote the stand-
ard deviation. Individual points are plotted to visualize the distribution
of the data.

Bulk RNA-seq of compound-treated microglia
Around 0.5 x 10 HMC3 microglial cells were seeded into a six-well plate
and incubated overnight. The next day, microglia were treated with
therespective concentrations of camptothecin (1 uM; EMD Millipore,
390238), narciclasine (0.1 pM; MilliporeSigma, SML2805), Torin-2
(10 pM; Cayman Chemical Company, 14185) or DMSO (Sigma-Aldrich,
472301) as control and incubated for 24 h before collection. Cells
were trypsinized (Gen Clone, 25-510 F), counted, the cell viability was
assessed and cells were then resuspended in 350 pul RLT Lysis buffer
(QIAGEN, 74136) containing 2-mercaptoethanol (Thermo Fisher Sci-
entific, 63689), and isolated using a QIAGEN Plus Mini kit (QIAGEN,
74136). RNA quality was assessed using 2100 Bioanalyzer G2938C
using an Agilent RNA 6000 Nano Kit (Agilent, 5067-1511) and Qubit 4
Fluorometer (Invitrogen) using Qubit 1X dsDNA HS Assay kit (Thermo
Fisher Scientific, Q33231) before further processing for RNA-seq.
mRNA libraries were prepped using the lllumina TruSeq Stranded
mRNA Library prep (Illumina, 20020595), in accordance with

manufacturer recommendations, and using IDT for Illumina TruSeq
DNA UD Indices (Illumina, 20022370) for adaptors. Briefly, 500 ng of
total RNA was used for purification and fragmentation of mRNA. Puri-
fied mRNA underwent first-strand and second-strand cDNA synthesis.
cDNAwasthenadenylated, ligated to llluminasequencing adaptors and
amplified by PCR (using ten cycles). The cDNA libraries were quantified
using the Fragment Analyzer 5300 (Advanced Analytical) kit FA-NGS-HS
(Agilent, DNF-474-1000) and Spectramax M2 (Molecular Devices) kit
Picogreen (Life Technologies, P7589). Libraries were sequenced onan
Illumina NovaSeq sequencer, using 2 x 100-bp cycles.

Sequencing QC was performed using Picard v.1.83 and RSeQC
v.2.6.1. STAR v.2.5.2a was used to align reads to the GRCh38 genome,
using Gencode v.25 annotation. Bowtie2 v.2.1.0 was used to measure
rRNA abundance. Annotated genes were quantified with featureCounts
v.1.4.3-pl.

To analyze the data, a generalized linear model within DESeq2
(ref. 101) was used to test for differentially expressed genes across
eachof our three treatment conditions in comparison to control. The
DESeqobject was constructed withastandard one-factor model, using
‘~treatment’ as the model for analysis, and genes with less than ten
overall counts across all samples were discarded before analysis. For
analysis of similarity between samples, we used the variance stabilizing
transformationin DESeq2, then computed PCA on the resultant matrix.
Differential expression was performed with the DESeq function, and
thresholds for significance were set as an FDR alpha of less than 0.01and
aLFCof 1.5. Shrinkage of LFC was performed with the ashr package',
and shrunk LFC values were used for downstream visualization. GO
annotation was performed with TopGO*®, and GO results were sum-
marized with rrvgo®. To examine specific genes associated with given
cluster families in each treatment condition, the top 20 nonoverlap-
ping markers for each member of the grouped clusters (that is, the
top 20 genes for cluster1, the top 20 genes for cluster 6 thatare notin
thetop 20 genelist for cluster 1) that were present in the differentially
expressed gene list for that given condition, regardless of the direction
of change (up or down) were chosen for visualization.

Generation and analysis of global quantitative proteomic data
For global quantitative proteomics of compound-treated HMC3
microglia cells, diaPASEF'” (data independent acquisition)-based
proteomics was used. In brief, 0.5 x 10° HMC3 microglial cells were
seeded into a six-well plate and incubated overnight. The next day,
cellswere treated with the respective concentrations of camptothecin
(1 uM; EMD Millipore, 390238), narciclasine (0.1 uM; MilliporeSigma,
SML2805), Torin-2 (10 pM; Cayman Chemical Company, 14185) or
DMSO (Sigma-Aldrich,472301) as control and incubated for 24 h before
collection. Cells were trypsinized (Gen Clone, 25-510F), counted, and
the cell viability was assessed. Cells were then washed with ice-cold PBS
(Corning, 21-040-CV) and cellular pellets were snap frozen and stored
at-80 °C until further processing.

Subsequently, cells were lysed in lysis buffer* (1% SDC, 100 mM
Tris-HCI, pH 8.5, and protease inhibitors; MilliporeSigma, D6750,
9290-0P) and boiled for 15 min at 60 °C, at 1,500 rpm. Protein reduc-
tion and alkylation of cysteine was performed with 10 mM TCEP
(MilliporeSigma, C4706) and 40 mM 2-chloroacetamide (Millipore-
Sigma, C0267) at 45 °C for 15 min followed by sonication in a water
bath, cooled down to RT. Protein digestion was processed for over-
night by adding LysC and trypsin in a 1:50 ratio (pg of the enzyme
to pg of protein; Promega, V5071) at 37 °C and 1,400 rpm. Peptides
were acidified by adding 1% trifluoroacetic acid (TFA) (Thermo Fisher
Scientific, 28904), vortexed, and subjected to StageTip clean-up via
styrenedivinylbenzene-reversed-phase sulfonate'*. Peptides were
loaded on one 14-gauge StageTip plug. Peptides were washed two
times with200 pl 1% TFA 99% ethyl acetate (Thermo Fisher Scientific,
28904; MilliporeSigma, 270989) followed 200 pl 0.2% TFA/5% acetoni-
trile (ACN; Thermo Fisher Scientific,28904; Thermo Fisher Scientific,
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A955) in a centrifuge at 3,000 rpm, followed by elution with 60 pl of
1%ammonia/50% ACN (Honeywell-Fluka, 4427310X1ML; Thermo Fisher
Scientific, A955) into microcentrifuge tubes and dried at 45°Cina
SpeedVac centrifuge. Samples were resuspended in 10 pl of LC buffer
(3% ACN/0.1% formic acid; Fisher Scientific, A11710X1-AMP). Peptide
concentrations were determined using NanoDrop (Thermo Fisher
Scientific) and 200 ng of each sample were used for diaPASEF analysis
on a timsTOFPro (Bruker). Peptides were separated within 120 min
at a flow rate of 400 nl min™ on a reversed-phase C18 column with an
integrated CaptiveSpray Emitter (25 cm x 75 um, 1.6 pm, lonOpticks).
Mobile phases A and B were with 0.1% formic acid in water and 0.1%
formic acid (Fisher Scientific, A11710X1-AMP) in ACN (Thermo Fisher
Scientific, A955). The fraction of B was linearly increased from 2% to
23% within 90 min, followed by an increase to 35% within 10 min and
afurther increase to 80% before re-equilibration. The timsTOF Pro
(Bruker) was operated in diaPASEF mode'™ and data were acquired
at defined 32 x 25-Th isolation windows from 400 to 1,200 m/z. To
adaptthe MS1cycle timein diaPASEF, we set the repetitionsto2inthe
16-scan diaPASEF scheme. The collision energy was ramped linearly as
a function of the mobility from 59 eV at /KO =1.6 Vs cm2to0 20 eV at
1/K0 = 0.6 Vscm . The acquired diaPASEF raw files were searched with
the UniProt Human proteome database in the DIA-NN search engine
with default settings of the library-free search algorithm'. The FDR
was set to 1% at the peptide precursor and protein level.

Results obtained from DIA-NN were further analyzed in R. To
preliminarily filter the data, peptides without a valid matching gene
symbol, as well as peptides that were detected in a fourth of our
samples or fewer were removed. For further analyses, total intensity
log-normalized protein abundances were used. PCA was performed
on the dataset in its entirety to assess relative similarity of treatment
conditions. Next, pairwise differential testing between DMSO control
and each of our treated conditions was conducted using a Welch’s'%?
t-test with the Benjamini-Hochberg correction®, setting a threshold
of 0.05 for the corrected P value and a threshold of 1 for the log, fold
change. Top differentially expressed genes were then used for GO
annotation with topGO (‘Bulk RNA-seq of compound-treated micro-
glia’). As there were fewer differentially expressed genes overall, all
genes associated with each cluster family that overlapped with the
differentially expressed gene list for each condition, irrespective of
direction (up or down) were selected for plotting.

Visualizing gene expression across clusters with DotPlots
Seurat’s DotPlot function was used to concurrently visualize gene
expression and percentage of cells in each cluster expressing said
genes. Using this function, a single circle is plotted for each cluster
for each given gene. The size of this circle represents the percentage
of cellswithinacluster thatexpress the gene, anditis absent entirely if
fewer than10% of cellsinagiven cluster expressed agene. Conversely,
the color of the circle represents the average expression of the gene.
Thisis computed by computing the mean of expression for each clus-
ter, then scaling and zero-centering the average expression level for
each discrete cluster. The viridis ‘magma’ color palette was used for
this visualization. Legends for the size and color scheme for each dot
plotaccompany each figure. In addition, for Fig. 2c, the ‘cluster.idents’
parameter was used to hierarchically cluster our different clusters by
the marker genes involved using complete linkage, enabling clearer
visualization of broad differences. The cluster dendogram was manu-
ally recomputed and added to the dot plot with the ggtree"® package.
Notably, data visualization was performed with Seurat v.4.0.4 instead
ofv.3.2.0.

Statistical analysis and data visualization

Statistical analysis was conducted as described in the associated meth-
ods sections above. Specific Pvalues (both significant and not), if not
found in the figures, may be found in Supplementary Information

tables before and after testing for multiple correction. T values and
degrees of freedom are also provided where relevant. Unless oth-
erwise noted, all measurements are taken from distinct samples. In
general, statistical methods were not used to recalculate or predeter-
mine sample sizes. All plots were created in R v.4.1.0 using either base
Rvisualization packages, ggplot2 (ref.117) with ggrepel”®, ggfortify"’,
patchwork, cowplot' and ggsci'?, or packages mentioned in the
methods text. Heat maps were made with the pheatmap'® package.
Volcano plots were made with the EnhancedVolcano'* package. All
boxplots denote the 25th percentile, medianand 75th percentile, with
whiskers representing 1.5 times the interquartile range in both direc-

tions. Outliers, if any, are represented as circles beyond the whiskers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw scRNA-seq data (fastq files) generated from CD45" cells isolated
from autopsy samples were deposited to the Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE204702. Bulk RNA-seq data from compound-treated HMC3 cells
were deposited to the GEO under accession number GSE202556. Bulk
proteomic data from compound-treated HMC3 cells were deposited
to ProteomeXChange (http://www.proteomexchange.org/) under
accession number PXD033844. Data repurposed for label transfer
was retrieved from the GEO under accession numbers GSE133432,
GSE178317 and GSE103224.

Code availability

Code used to perform preprocessing, clustering, cluster validation
and label transfer of scRNA-seq data in the current study is available
publicly at https://github.com/jtuddenham/single-cell-microglia-v2/.
The CellProfiler pipeline used to analyze jointimmunofluorescence-
RNAscope data is available as Supplementary Information (Sup-
plementary Table 5), and in the aforementioned GitHub repository.
Code for visualization, analysis of bulk RNA-seq/proteomic data and
downstream analysis of CellProfiler outputs is available from the cor-
responding author upon request.
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Extended Data Fig. 1| Proportions of overarching cell typesin our dataset.
(A) Different cell types are discriminable in UMAP space or by marker genes.
Unsupervised Jaccard-Louvain clustering on a kNN neighbor graph delineates
distinct cell types, including adaptive immune cells, monocytes, glial/neuronal
cells, and erythrocytes. UMAP plots are binned in hexagons: each single hexagon
represents a merged representation of all cells falling within the region. The
central UMAP plot is colored by the majority cell type. Different cell types are
easily distinguishable in 2-D UMAP plots. The other schex-UMAP plots show gene
expression values of selected characteristic marker genes projected onto cells.
The color gradient bar represents log-normalized gene expression values. Yellow
represents the maximal expressed value, while purple represents the lowest
expression values. Markers of distinctimmune subpopulations are detected in
our data: CD8 T-cells (CD8A), NK cells (GZMB), B cells (MS4A1I). Similarly, different
non-neuronal cells can be detected in our analysis: astrocytes (GFAP), neurons
(SNAP2S), and oligodendrocytes (OLIG2). Monocytes (LYZ) localize close to

our microglial cells and were used for comparative expression of marker genes
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in Fig. 2b. Red blood cells (HBB) were also easily discriminable. (B) Microglia
are the predominant cell type recovered across regions and diseases. Bar
plots showing the relative representation of different cell types across different
metadata parameters, with each bar summing to 100%. Overall, 95.7% of cells
are microglial, 2.2% are adaptive immune, 1.5% are glial/neuronal, 0.4% are
monocytic, and 0.3% are erythrocytes. The upper bar plot shows proportion
of each overarching cell group across regions, while the lower plot shows the
same across diseases. Mono monocytes, RBC red blood cells, LOAD late-onset
Alzheimer’s disease, EOAD early onset Alzheimer’s disease, MCI mild cognitive
impairment, CNTRL control, DLBD-PD diffuse Lewy body disease-Parkinson’s
disease, PSP progressive supranuclear palsy, TLE temporal lobe epilepsy, MS
multiple sclerosis, ALS amyotrophic lateral sclerosis, FTD frontotemporal
dementia, HD Huntington'’s disease, DNET dysembryoplastic neuroepithelial
tumor, BABrodmann area, AWS anterior watershed, OC occipital cortex, TNC
temporal neocortex, H hippocampus, TH thalamus, SC spinal cord, SN substantia
nigra, FN facial nucleus.
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Extended Data Fig. 2| Quality control metrics across our data after
downsampling to account for 10x chemistry differences. (A-F). Violin plots
showing the distribution of our cellular data with overlaid boxplots. The center of
boxplots is the median, and the hinges of the box span the 25% to 75% percentiles.
Whiskers represent 1.5 IQR from the nearest hinge. Outliers are not shown

in this visualization, nor are minima or maxima. Further information about
metadata traits and number of cells included in each violin plot may be found in
Supplementary Table1under ‘QC_’ tabs. The distributions of unique molecular
identifiers (UMIs) and genes detected on a per-cell level after downsampling

are similar across donors (A), clusters (B), genders (C), 10x chemistry versions
(D), regions, (E), and diagnoses (F). Notably, after downsampling, differences
between 10x chemistry versions in these metrics are largely eliminated.

(G) Validation of population stability by resampling and reclustering
demonstrates that overlap of gene expression is largely observed for clusters
with similarly related families, such as 2 and 4, or for intermediate subsets
such as 5and 3. To evaluate clustering stability, we randomly sampled %4 of the

sse[o uaAlb e ojul paiyIsse|d s|[39 Jo abejuadiad

cells from our dataset and ran our clustering pipeline with identical parameters.
We recorded the frequency of ‘misclassification’, where cells were re-clustered
into clusters different from the one that contained most cells with the same
original classification. This process was repeated between pairs of cells, and
repeated 50 times for each comparison. Cells were considered to be classified
into the ‘correct’ class if they were assigned correctly in %4 of classification

runs. Otherwise, they were considered ‘misclassified’ into a different cluster.
Classification frequency is visualized in a heatmap here. LOAD late-onset
Alzheimer’s disease, EOAD early onset Alzheimer’s disease, MCI mild cognitive
impairment, CNTRL control, DLBD-PD diffuse Lewy body disease-Parkinson’s
disease, PSP progressive supranuclear palsy, TLE temporal lobe epilepsy, MS
multiple sclerosis, ALS amyotrophic lateral sclerosis, FTD frontotemporal
dementia, HD Huntington’s disease, DNET dysembryoplastic neuroepithelial
tumor, BA Brodmann area, AWS anterior watershed, OC occipital cortex, TNC
temporal neocortex, H hippocampus, TH thalamus, SC spinal cord, SN substantia

nigra, FN facial nucleus.
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Extended Data Fig. 3 | See next page for caption.
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Extended DataFig. 3 | Microglial proportions across individual donors and proportion of cells across all samples for which that combination of disease and
donor-region pairings. (A) Proportions of microglial subtypes across single region was sampled. Whiskers represent 1.5 IQR from the nearest hinge, and
donors. Proportions of microglial subtypes are plotted by donor, with selected outliers are not shown, nor are minima or maxima. Proportions are shown on
metadataannotated in aheader bar above. Each bar represents asingle donor the x-axis, and the scale varies depending on the cluster in question. [Number of
and sums to100%. Samples are clustered hierarchically based on proportions independent samples per category: TNC_TLE (6), TNC_PSP (1), TH_MS (2), SN_PSP
of each subtype. Donors have variability in the exact proportions of different (1), SN_LOAD (3), SN_DLBD-PD (5), SN_.CNTRL (1), SC_ALS/FTD (2),SC_ALS (9),
subtypes but exhibit consistent amounts of the most common subtypes in our OC_TLE (1), OC_Stroke_lesion (1), Lesion_MS (1), H_TLE (2), H_PSP (1), H_LOAD (14),
dataset, clusters1through 6. (B) Proportions of microglial subtypes across H_HD (1), H_FTD (1), H_EOAD (2), H_ CNTRL (1), FN_ALS (4), DNET_DNET (1), BA9_
region-donor pairings. Samples are aggregated to donor-region pairings (for Stroke_lesion (1), BA9_PSP (1), BA9_MS (2), BA9_MCI (4),BA9 LOAD (35),BA9 HD (1),
example, AD1-BA9) to give a proportion of different clusters for each region for BA9_FTD (1), BA9_EOAD (2), BA9_DLBD-PD (5), BA9_CNTRL (1), BA9_ALS/FTD (2),
eachindividual. Boxplots are computed for specific region-disease pairings BA9 ALS (8),BA4_ CNTRL (1), BA4 ALS/FTD (2),BA4_ALS (9), BA20 LOAD (9),
showing the median (center), 25% (left hinge), and 75% (right hinge), for the BA20_HD (1), BA20_EOAD (2), AWS_MS (2), AWS_MCI (3), AWS_LOAD (13)].
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Extended Data Fig. 4 | Further exploration of microglial phenotypes with
pseudotime analysis and GO annotation validates our trajectory map and
reveals subsets associated with motility, lipid trafficking, and proliferation.
(A) Cluster 5, anintermediate cluster, shows association with motility. On
theleft, the size of the circle represents the percentage of cells in a cluster that
express the gene, with no circle plotted if less than 10% of cells in a cluster express
the gene. The color of the circle represents the z-scored expression of the gene.
Cluster 5 expresses a transcriptional signature partially overlapping with the
core homeostatic or transitional clusters, 2 and 3, but expresses unique sets of
genes associated with motility. GO annotation was performed with topGO and
summarized with rrvgo. Parent terms are shown in white, overlaid over child
terms. Terms associated with motility are enriched in cluster 5. (B) Cluster 12 is

associated with oxidative phosphorylation and proliferation. (C) Cluster
11interfaces with lipids and beta-amyloid. (D) GO annotation of clusters
8/10 parallels results of Reactome pathway analysis, highlighting common
immunological activation but divergence in other aspects of phenotype.

(E) Trajectories of state shift in pseudotime analysis parallel those seenin
other analyses. Monocle3 was used to build a pseudotime trajectory across

our dataset, setting the root point at the boundary of clusters 2 and 3. Shifts

in pseudotime from this root point reinforces the directionality laid outin the
constellation diagram, suggesting that abroad intermediate gradient between a
series of terminal points exists, with pseudotime scoresin 6-7,4,and 10 showing
most divergence from the root point. GO gene ontology.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Additional representative images from our joint
RNAscope/IF and CellProfiler measures highlight morphological differences
between expression-defined subtypes. Representative images are shown for
both panel1(A) and panel 2 (B) across different diseases. (C) Compactness is
highest in the medium classes of CD74, GPX1, and SPPI-defined expression
groups. Compactness (a measure of ramification, where high values indicate
high ramification) is shown across CD74-, GPX1-, and SPPI-expressing IBA1+
microglial cells quantified using CellProfiler. For this and following panels,
significance was calculated with two-sided, two-sample Welch’s t-tests. Multiple
testing correction was performed with Holm-Bonferroni correction. For boxplots
inthese visualizations, the center is the median, and the hinges of the box span
the 25% to 75% percentiles. Whiskers represent 1.5 IQR from the nearest hinge.
Outliers are shown as circles, but minima and maxima are not explicitly depicted.

Significance thresholds for p-values: >0.05=ns, <0.05=*,<0.01=**,<0.005 = ***,
(D) Compactness is higher in the CXCR4+ class. (E) Eccentricity is highest in
thelow classes for CD74 and GPX1. Eccentricity (a measure of shape, where Oisa
circleandlisaline), is shown across CD74- and GPXI- expressing Ibal+ microglia.
(F) CD74 distance is highest in the CD74 medium group, but also in the CXCR4*
group. CD74 distance (calculated as the median of all puncta for a given cell

from the cellular centroid) is shown across CD74-, and CXCR4-expressing Ibal+
microglia. Number of cells per expression class are as follows. CD74: low (3756),
medium (3333), high (329), GPX1: low (1404), medium (1653), high (329), SPPI: low
(3216), medium (388), high (125), CXCR4: positive (322), negative (7096).16 tissue
sections were stained with panel1(CD74/CXCR4) and eight were stained with
panel 2 (GPX1/SPPI).
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Extended DataFig. 6 | Insitu merFISH validation of microglia subtypes.
(A) Projection of microglial cells into the established scRNAseq model.
UMAP space showing predicted cluster subtypes withina projected UMAP space
(established model shown in greyed-out background). Seven out of twelve
microglial subtypes were identified across AD (blue) and non-AD (yellow) cortex
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predicted clusters insitu. Microglia predicted to belong to clusters 8/10 show
agreater average expression and percent expression of CXCR4, SRGN, and CD74.
Showing clusters with at least 5 predicted microglia.
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Extended Data Fig. 7 | Performance metrics across models trained for
different datasets. Each row contains a different performance metric, while
each columnrepresents a single dataset. Training and validation sets were
identical, but mNN correctionincorporates the query dataset, slightly modifying
input data. Accuracy metrics are derived from analysis of the holdout validation
set, consisting of approximately 50% of the original dataset not used for training
either SVM or XGB models (104902 cells). The first row presents histograms of
XGBoost classification confidence for cells in the validation set, highlighting
cellsbelow 70% confidence in yellow and below 50% in red (the latter cells are
dropped). Most cells in the validation set are classified with high confidence.
Row 2 contains a UMAP visualization of classification confidence, revealing
higher confidence for cells at the UMAP periphery and lower confidence for
intermediate cells. Row 3 shows confusion matrices for the validation set. Row

4 presents sensitivity and specificity per class, which are comparable across
different datasets. Row 5 shows boxplots for XGB classification confidence across

the 4 classes. Boxplots represent the median (center), 25% (lower hinge), and 75%
(upper hinge) percentiles. Whiskers extend to 1.5 times the IQR from the nearest
hinge, with more extreme values represented as circles. Minima and maximaare
notexplicitly depicted. Classification confidence varies substantially depending
on the data, with the ROSMAP data being the only dataset where classification
confidence for families 167 and 24 is generally comparable to that for 3and 5.
Row 6 contains histograms of XGBoost classification confidence for the query
cells. Notably, the glioblastoma and xenograft data have similar classification
confidence to the validation set, but the ROSMAP data, and to alesser extent,
the Drager data, diverge noticeably. Finally, row 7 shows marker gene expression
across assigned labels in the query datasets. The size of the circle represents the
percentage of cellsin each cluster expressing the gene (no circle plotted if less
than10% of cells in a cluster express the gene). The color of the circle represents
z-scored expression of the gene. Despite systematic differences, label transfer
aligns expression profiles effectively.
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A Overview of workflow for compound treatment optimization and data collection
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Extended Data Fig. 8 | See next page for caption.
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Extended DataFig. 8| Screening of insilico predictions identifies successful
hits and compounds that fail to drive predicted signatures. (A) Schematic
overview of workflow for compound treatment. To explore the correct dosage
for downstream studies, we conducted dose titration to examine viability of
cells after treatment with varying dosages of our drugs. After choosing optimal
concentrations, we conducted initial screening with qPCR to select candidates
for final validation, then conducted final validation with bulk RNA-seq and
proteomics. (B)-(D) qPCRresults for different cluster families. Results not
shownin Fig. 8b-d are shown here. Some compounds had effects on specific

marker genes, but these did not pass our criteria for further study. Bars represent
mean fold change expression, and error bars represent SD. All replicates are
biological. Number of replicates per experiment as follows - Dorsomorphin:
6hrs: CXCR4 -n=6,SRGN - n=7;24hrs:bothn =6,BX-795: 6hrs: CXCR4-n=35,
SRGN - n =8;24hrs: CXCR4 -n=3,SRGN - n =5, BMS-2455421: 6hrs:both-n=4;
24hrs: CXCR4 -n=3,SRGN - n=4,BRD: 6hrs:both-n=7;24hrs: TYROPB-n=6,
GPX1-n=7,Budesonide: 6hrs: n =3; 24hrs: n =3, Naltrexone: 6hrs: n =3;

24hrs:n =3, Cytochalasin b: 6hrs: SRGAP2 - n = 6, MEF2A - n = 5; 24hrs:bothn = 6.
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Extended Data Fig. 9 | Different compounds modulate different aspects
of the cluster 1/6 signature at the transcriptomic level. (A) Camptothecin
downregulates the cluster 1/6 signature. Bulk RNA-seq was generated from
HMC3 cells treated with our candidate drugs for 24 h. Data was analyzed with
DESeq2, which fits a negative binomial model to the data then uses Wald
significance tests with Benjamini-Hochberg correction, and fold change
shrinkage was performed with ashr. To examine the genes associated with cluster
families, we took the top 20 non-overlapping genes for each individual cluster
inour overarching groupings that were present in the differentially expressed
gene list for each compound, irrespective of directionality and plotted them
involcano plots. FDR threshold was set to 0.01 and fold change threshold was
setat 1.5. (B) Narciclasine does not upregulate the cluster 1/6 signature.

(C) Narciclasine upregulates GO processes also found in cluster1/6. GO
annotation was computed on differentially expressed genes that passed an

FDR threshold of 0.01and a fold change threshold of 1.5. Terms were grouped
based onsimilar etiology and parent terms were overlaid. Notably, Narciclasine
drives metabolic shifts such as in nitrogen-containing metabolism, heterocyclic
metabolism, and nucleic acid metabolism, that are strongly enriched in clusters
1/6 (Fig. 3a). (D) Narciclasine and Torin-2 drive distinct modules of cluster 1/6
marker genes. Cluster 1/6 genes were selected and shown in a row-scaled, zero-
centered heatmap. Columns are individual replicates, and rows are genes. These
two compounds appear to drive separate modules of genes associated with
cluster1/6. Camptothecin downregulates almost all 1/6 associated genes.
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Extended Data Fig. 10 | Representative flow gating images. Cells that were stained with anti-CD11b and anti-CD45 antibodies and 7AAD were sorted by flow
cytometry. Flow gates demonstrate selection of live singlets that are CD45-positive.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  CellRanger software V3.1.0 (from 10x Genomics) was used to align and quantify single-cell RNA-seq transcripts for our single-cell data and
CellRanger V6.0.0 was used to align and quantify single-nucleus data. Nikon Elements (NIS-Element AR 5.21.03) was used to acquire images
from tissue sections. For bulk RNA-seq, Picard version 1.83 was used for QC, RSeQC version 2.6.1. STAR version 2.5.2a was used to align reads,
Bowtie2 version 2.1.0 was used to measure rRNA abundance, and annotated genes were quantified with featureCounts version 1.4.3-p1. For
bulk proteomic data, the DIA-NN search engine was used to search the acquired diaPASEF raw files. BD FACS Software 1.2.0.142. was used to
collect and gate flow cytometry data for sorting of single microglia.

Data analysis R statistical software (v4.1.0) was used to analyze single-cell and bulk transcriptomic and proteomic data, and all custom code is available at
https://github.com/jtuddenham/single-cell-microglia-v2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw scRNA-seq data (fastq files) generated from CD45+ cells isolated from autopsy samples were deposited to GEO (https://www.ncbi.nlm.nih.gov/geo/) under
accession number GSE204702, or Synapse, with ID number syn61001870. Bulk RNA-seq data from compound-treated HMC3 cells were deposited to GEO under
accession number GSE202556. Bulk proteomic data from compound-treated HMC3 cells were deposited to ProteomeXChange (http://www.proteomexchange.org/)
under accession number PXD033844. Correspondence & material/data requests should be addressed to Philip L. De Jager.

Data repurposed for label transfer was retrieved from GEO, under accession numbers GSE133432, GSE178317, and GSE103224. Bulk RNA-seq data from ROSMAP
used to derive associations of gene expression with clinicopathological traits can be accessed on Synapse (syn25741873).

Datasets/databases used in this study included: CMAP (GSE92742)

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and gender were self-reported in this study. We have a total of 26 male donors and 48 female donors. As our interest
was in examining microglial diversity independent of metadata parameters, we did not perform sex- or gender-based
analysis.

Reporting on race, ethnicity, or We did not perform race- or ethnicity-based analysis.
other socially relevant
groupings

Population characteristics Details of the acquisition of autopsy samples from Rush University Medical Center/Rush Alzheimer’s Disease Center (RADC) in
Chicago, IL (Dr. Bennett) and Columbia University Medical Center/New York Brain Bank in New York, NY (Drs. Vonsattel and
Teich), as well as surgically resected brain specimens from Brigham and Women’s Hospital in Boston, MA (Drs. Sarkis,
Cosgrove, Helgager, Golden, and Pennell) were detailed in our prior publication (Olah et al. 2020, Nature Communications).
In addition, samples were obtained from donation programs at Massachusetts General Hospital, Boston, MA (Drs. Bradley T.
Hyman and Matthew Frosch), Banner Sun Health Research Institute, Sun City (Dr. Thomas G Beach), and Rocky Mountain MS
Center, Denver, CO (Dr. John Corboy). All brain specimens were obtained through informed consent and/or brain donation
program at the respective organizations. All procedures and research protocols were approved by the corresponding ethical
committees of our collaborator’s institutions as well as the Institutional Review Board (IRB) of Columbia University Medical
Center (protocol AAAR4962). Detailed descriptions of the Religious Orders Study and the Memory and Aging Project (ROS/
MAP) can be found in the following publications: PMIDs 29865057, 22471860, 22471867. Further information on the brain
donation system at Massachusetts General Hospital can be found at https://www.madrc.org/brain-autopsy-and-donation-
information. Further information on the brain donation system at Rocky Mountain Multiple Sclerosis center can be found at:
https://www.mscenter.org/research/tissue-bank/information-for-researchers. Description of the brain donation system at
Sun Health Research institute can be found here: PMID 18347928. The description of the brain bank at Columbia University
Medical Center can be found here: PMID: 29496134. All donors were consented for the use of their tissue for research
purposes. Age range for donors ranged between 22 and 90+, specific diagnoses included ALS, ALS/FTD, Control, DLBD-PD,
DNET, EOAD, FTD, HD, LOAD, MCI, MS, PSP, Stroke, and TLE. Treatment information and genotypic information were not
uniformly available for donors.

Recruitment See above.
Ethics oversight This study was approved by ethics committees from 1) Rush University, Chicago, IL, 2) Columbia University, New York, NY, 3)

Brigham and Women'’s Hospital, Boston, MA, 4) Massachusetts General Hospital, Boston, MA, 5) Banner Sun Health Research
Institute, Sun City (Dr. Thomas G Beach), and 6) Rocky Mountain MS Center, Denver, CO.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were not calculated ahead of time. Moreover, as we do not ask specific questions about association of microglial proportions
with specific diseases or regions, we do not require specific sample numbers for this type of analysis. Our primary constraint was ensuring that
there was sufficient representation of cell type heterogeneity across our sample pool; as such, we sampled as extensively as possible. Single-
cell RNA-seq studies of human tissue also cannot control the number of cells per donor, as it is defined by the quality of the sample.

Data exclusions  First, for samples that used hashing antibodies, we removed unlabeled cells and doublets ascertained using demuxmix (https://github.com/
cu-cten/demuxmix). Next, we excluded cells with fewer than 500 transcripts or more than 10,000 transcripts (Unique Molecular Identifiers),
as well as cells with more than 10% mitochondrial reads. These thresholds accord with the standards of the field and remove doublets and
low-quality/dying cells. These standards were established ahead of time, and help ensure that downstream analyses are not polluted by low-
quality data.

Replication When possible, we replicated the results of our analyses using similar databases. For example, for our indirect disease association, we
replicated patterns of enrichment of multiple sclerosis susceptibility genes from a recent publication by the International Multiple Sclerosis
Genetics Consortium extensively mapping genomic risk loci in MS (PMID: 31604244) using data from the GWAS catalog to evaluate
enrichment of GWAS-based risk genes in our clusters.

Similarly, for our compound stimulation work, we sought to replicate the results of our initial gPCR screen showing upregulation of cluster-
associated genes in our 3 compounds of interest: Torin-2, Narciclasine, and Camptothecin. We had at least 4 independent replicates for each
of our compound treatment conditions for gPCR.

In addition, we replicated the results of our initial screen for Torin-2 and Campthothecin at the transcriptomic level using bulk RNA-
sequencing, finding that Torin-2 and Camptothecin are especially congruent with the gPCR results, as Narciclasine drives a slightly different
aspect of the broad transcriptomic signature we were targeting. Bulk RNA-seq experiments had 3 independent replicates per treatment
condition.

Notably, we also sought to replicate the effect of compound stimulation at the proteomic level, finding that Camptothecin still drives the
predicted signature at the proteomic level, although Torin-2 and Narciclasine do not drive the expected result at this level. This latter result is
not wholly surprising, as the discordance between RNA and protein is well documented, especially in microglia, and our expected target
signature was defined entirely at the RNA level. As with bulk RNA-seq experiments, proteomic experiments were conducted with 3
independent replicates per treatment condition.
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Randomization  Aside from compound treatment, where the treatment of interested defined the groupings used for analysis, none of our analyses required
specification of sample groups so no randomization was performed. To correct for potential batch effects and effects of different 10x
technologies, we downsampled our 10x v3 data to the same depth as our v2 data and used SCTransform and mNN to correct for batch
effects, as described in our methods section.

Blinding In this study, we did not have a hypothesis to test, and thus, blinding of team members to the characteristics of the samples was not
necessary. None of the algorithms for clustering or label transfer took sample or donor metadata into account.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X| Antibodies [] chip-seq

Eukaryotic cell lines |:| |X| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging
[ ] Animals and other organisms

|:| Clinical data

L]

Dual use research of concern
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Plants

Antibodies

Antibodies used TotalSeq™-B0255 anti-human Hashtag 5 Antibody (Biolegend, Cat #: 394639; RRID: AB_2820042) [1 ug per 100 pl staining volume
¥Z|tL;T;231TMfBO256 anti-human Hashtag 6 Antibody (Biolegend, Cat #: 394641; RRID: AB_2820042) [1 pug per 100 pl staining volume
¥Z|tL;T;231TMfBO257 anti-human Hashtag 7 Antibody (Biolegend, Cat #: 394643; RRID: AB_2820043) [1 ug per 100 pl staining volume
¥Z|tL;T;231TMfBO258 anti-human Hashtag 8 Antibody (Biolegend, Cat #: 394645; RRID: AB_2820044) [1 ug per 100 pl staining volume
¥Z|tL;T;231TMfBO259 anti-human Hashtag 9 Antibody (Biolegend, Cat # 394647; RRID: AB_2820045) [1 ug per 100 pl staining volume
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Validation

volume]

TotalSeq™-B0260 anti-human Hashtag 10 Antibody (Biolegend, Cat #: 394649; RRID: AB_2820046)

Alexa Fluor® 488 anti-mouse/human CD11b Antibody (Biolegend, Cat #: 101217; Lot #: multiple) [0.5 pg per 100 pl staining volume
volume]

Alexa Fluor® 647 anti-human CD45 Antibody (Biolegend, Cat #: 304018; Lot #: multiple) [0.5 ug per 100 pl staining volume volume]
Goat anti-Human Ibal (Wako, Cat #: 01127991; Lot #: SKK1868) [dilution 1:50]

Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (Invitrogen, Cat #: A11055; Lot #: 2211210)
[dilution 1:500]

As per the manufacturer's website: "Each lot of this antibody [TotalSeqg-B] is quality control tested by immunofluorescent staining
with flow cytometric analysis and the oligomer sequence is confirmed by sequencing. TotalSeq™-B antibodies are compatible with
10x Genomics Single Cell Gene Expression Solutions". Validation on human PBMCs is available under the application note from
BiolLegend titled "Efficient Multiplexing of Samples Using TotalSeq™ Hashtag Antibody Oligonucleotide Conjugates for Single-Cell RNA
and Proteomics Studies".

Anti-Ibal has been validated by the manufacturer and multiple subsequent publications demonstrating its utility in
immunohistochemistry and western blotting (see manufacturer’s website). It has been used by our group and others to detect
microglia in the brain (PMID: 33257666). Biolegend’s anti-human CD11b and CD45 antibodies have been used by our group for
several years, and transcriptomic analysis of cells sorted with these antibodies confirm that they primarily label brain myeloid cells,
the majority of which are microglia (PMIDs: 29416036 and 33257666).

The Donkey anti-goat secondary antibody has been extensively validated by the manufacturer for use in flow cytometry, ICC, IF, and
IHC. It has over 2000 references.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

HMC3 (human, ATCC)

No sequencing-based authentication of the identity of this cell line was performed. Conversely, we tested expression of
microglial marker genes by gPCR every 3 passages to ensure that we were working with a model system that transcriptionally
resembled our cell of interest, microglia.

Mycoplasma contamination Cell lines were not tested for mycoplasma, but no evidence of infection was observed.

Commonly misidentified lines No commonly misidentified lines were used in this study.

(See ICLAC register)

Plants

Seed stocks

Novel plant genotypes

Authentication

Flow Cytometry

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied.
Describe-any-authentication-procedures for-each seed stock used-or novel-genotype generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Procurement of specimens is described above. The isolation of microglia was performed according to our published protocol
(Olah et al. 2020, Nature Communications), with minor modifications. In case of the cortical autopsy samples (BAS/46, BA4,
BA17/18/19), the cortex (grey matter and the underlying white matter (subcortical white matter) were dissected under a
stereomicroscope. The subcortical white matter samples were not used in this study. The epilepsy surgery samples of
temporal lobe (BA20/21) were processed without dissection as in this case the cortical white and grey matter was not always
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distinguishable due to the surgical procedure. The substantia nigra (SN) and the thalamus (TH) were dissected by separation
from the surrounding white matter tracts. The hippocampus samples (H) contained the dentate gyrus, CA4/CA3/CA2 and CA1
regions, both white and grey matter. The spinal cord sample (SC) was sampled at the level of lumbar section and included
both white and grey matter. The anterior watershed area (AWS) deep white matter did not need any further dissection. All
steps of the protocol were performed on ice. The dissected tissue was placed in HBSS (Lonza, 10-508F) and weighed.
Subsequently the tissue was homogenized in a 15 ml glass tissue grinder - 0.5 g at a time. The resulting homogenate was
filtered through a 70 um filter and spun down at 300rcf for 10 minutes. The pellet was resuspended in 2 ml staining buffer
(RPMI (Fisher, 72400120) containing 1% B27) per 0.5 g of initial tissue and incubated with anti-myelin magnetic beads
(Miltenyi, 130-096-733) for 15 minutes according to the manufacturer’s specification. The homogenate was than washed
once with staining buffer and the myelin was depleted using Miltenyi large separation columns (Miltenyi, 130-042-202). The
cell suspension was spun down and was then incubated with anti-CD11b AlexaFluor488 (BioLegend, 301318) and anti-CD45
AlexaFluor647 (BioLegend, 304018) antibodies as well as 7AAD (BD Pharmingen, 559925) and cell hashing antibodies (for
catalogue numbers of cell hashing antibodies see Table S1) for 20 minutes on ice. Subsequently the cell suspension was
washed twice with staining buffer, filtered through a 70 um filter and the CD11b+/CD45+/7AAD- cells or CD45+/7AAD- cells
were sorted on a BD FACS Aria Il or BD Influx cell sorter. Cells from each brain region were sorted in a separate Al well of a
96 well PCR plate (Eppendorf, 951020401) containing 100 pl of PBS buffer with 0.3% BSA. Following sorting cell from
different brain regions were combined and immediately submitted to single cell capture, reverse transcription and library
construction on the 10x Chromium platform. All sorting was performed using a 100 um nozzle. The sorting times varied
according to the quality of the sample but was on average between 10 and 20 minutes per sample. The sorting speed was
kept between 8000 - 10,000 events per second.
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Instrument BD’s Aria Ilu and BD Influx sorters were used for fluorescent activated cell sorting of microglial cells from human brain.
Software BD’s FACSDiva version 8.0.1 software was used during fluorescent activated cell sorting of microglial cells from human brain.
Cell population abundance Microglial cells represented on average 0.4% of all the events. Among the 7AAD- live cells the CD11b+/CD45+ cells

represented 50% (RBCs will also show up as 7AAD- since they lack a nucleus). The analysis of sorted cells showed that they
were ~96% microglia (CD11b+/CD45+/7AAD-) cells.

Gating strategy The detailed description of the gating strategy was included in our previous publications (PMIDs: 29416036 and 33257666).
Briefly, cells were gated on the FSC/SSC scatter plots (Gate 1), from which the dead cells were excluded based on their 7ZAAD
positivity (Gate 2: 7AAD- events). The third gate was placed on the CD11b/CD45 double positive events (Gate 3: CD11b+/
CD45+).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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