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A cross-disease resource of living human 
microglia identifies disease-enriched 
subsets and tool compounds recapitulating 
microglial states
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Human microglia play a pivotal role in neurological diseases, but we still have 
an incomplete understanding of microglial heterogeneity, which limits the 
development of targeted therapies directly modulating their state or function. 
Here, we use single-cell RNA sequencing to profile 215,680 live human microglia 
from 74 donors across diverse neurological diseases and CNS regions. We 
observe a central divide between oxidative and heterocyclic metabolism and 
identify microglial subsets associated with antigen presentation, motility 
and proliferation. Specific subsets are enriched in susceptibility genes for 
neurodegenerative diseases or the disease-associated microglial signature. We 
validate subtypes in situ with an RNAscope–immunofluorescence pipeline and 
high-dimensional MERFISH. We also leverage our dataset as a classification 
resource, finding that induced pluripotent stem cell model systems capture 
substantial in vivo heterogeneity. Finally, we identify and validate compounds 
that recapitulate certain subtypes in vitro, including camptothecin, which 
downregulates the signature of disease-enriched subtypes and upregulates a 
signature previously associated with Alzheimer’s disease.

Microglia, the resident parenchymal myeloid population of the CNS1, 
can rapidly disengage from key homeostatic functions to fulfill differ-
ent specialized roles, such as antigen presentation, pathogen response 
and synaptic pruning2,3. They play pivotal roles in CNS development2 
and diseases including Alzheimer’s disease (AD)4 and multiple sclerosis 
(MS)5. We are only beginning to understand their spatial, temporal and 
functional complexity, particularly in humans, as much of the published 
profiling work has been performed in mice6,7. Structured evaluations 

of human microglial heterogeneity at the single-cell level have only 
recently been applied to a limited set of contexts4,8–15. Further, most 
of these studies analyzed only a modest number of samples or used 
single-nucleus profiling, which may have differential sensitivity to 
capture genes when compared to single-cell approaches, especially 
in microglia16,17. As a result, our understanding of the range of states 
that live human microglia can attain, as well as their trajectories of 
state transition, remains limited. Analyzing data captured in different 
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microglial transcriptional profiles18,19, we purified live CD45+ cells and 
collected single-cell RNA sequencing (scRNA-seq) data from a diverse 
set of CNS regions and clinicopathologic states affecting both men 
and women. We identified 12 microglial subpopulations represented 
across all diseases and regions; importantly, our study was not designed 
to characterize microglia in a particular disease, but rather to sample 
as many different conditions as possible and to profile them using a 
single experimental and analytic pipeline. We propose trajectories of 
cell-state transitions between microglial subsets in our dataset, iden-
tifying a central metabolic shift between oxidative and heterocyclic 
metabolism, microglial subsets enriched for disease genes, microglial 
subsets that express high levels of the disease-associated microglial 
(DAM) transcriptional program6 and subsets associated with immune 

contexts in a single framework is essential to interpret results across 
diseases and studies.

In this study, we aimed to (1) generate a broad reference of micro-
glial transcriptional profiles across neurodegenerative diseases that 
would capture as much of the diversity of microglial states as possible 
and (2) illustrate the utility of this resource to annotate model systems 
and identify tool compounds for modulating human microglial states. 
The study is not designed to identify microglial populations associated 
with a given disease; that type of effort would require a different study 
design involving a single brain region and profiling of only one set of 
participants with a diagnosis and one set of reference participants 
without that diagnosis. Using cold, enzyme-free, mechanical disso-
ciation, which has been demonstrated to optimally preserve native 
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Fig. 1 | Overview of our cross-disease sample collection, data generation 
approach, downstream analyses and validation. We sampled a wide array 
of neurological diseases and CNS regions (Supplementary Table 1) from a mix 
of autopsy samples and surgical resections. We isolated live brain CD45+ cells 
from a total of 74 donors of both sexes. Single-cell suspensions were loaded 

directly onto the 10x Chromium controller. Resulting libraries were sequenced 
on an Illumina HiSeq 4000. The lower part of the figure outlines our analyses 
and validation efforts, including disease and functional relevance of microglial 
subtypes, in situ validation, in vitro recapitulation of subtype phenotypes, and 
annotation of other datasets using our data as a reference.
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activation. Given the plasticity of microglia, we suspect that they can 
differentiate into these populations in adults, after the cell is commit-
ted to a microglial fate, and that they can switch signatures depending 
on the changes occurring in their microenvironment. Using our new 
subset signatures, we optimized a joint protein–RNA staining protocol 
to localize microglial subsets in situ and demonstrate morphological 
shifts associated with expression of selected hallmark genes; in paral-
lel, we also used a multiplexed MERFISH approach to independently 
validate our subsets in brain tissue sections using a larger number of 
genes. We also used our new resource to classify microglia profiled 
in previous studies and evaluated the degree of microglial diversity 
found in induced pluripotent stem (iPS) cell-derived microglial model 
systems. Finally, we leveraged the Connectivity Map (CMAP)20,21 to 
identify chemical perturbations predicted to drive subtype-specific 
signatures and cell-state transitions, and we validated these predictions 
in vitro at the RNA and protein levels. Ultimately, we provide a resource 
that explores human microglial heterogeneity across regions and dis-
eases and a series of tools for classifying, evaluating and manipulating 
microglial model systems, bringing us closer to the goal of microglial 
modulation in humans.

Overview of our samples and analytical approach
Our sample collection encompasses fresh autopsy samples from 
individuals with both early-onset and late-onset AD, mild cognitive 
impairment (MCI), amyotrophic lateral sclerosis (ALS), frontotemporal 
dementia (FTD), Parkinson’s disease (PD), progressive supranuclear 
palsy (PSP), diffuse Lewy body disease (DLBD), MS, Huntington’s dis-
ease (HD) and stroke, as well as samples from an individual without 
a diagnosis of neurological disease (Fig. 1). Our cohort also includes 
surgical resections from individuals with temporal lobe epilepsy and a 
dysembryoplastic neuroepithelial tumor. These samples were derived 
from a wide array of brain regions: anterior watershed white matter, 
frontal cortex (BA9/46), primary motor cortex (BA4), temporal cortex 
(BA20/21), occipital cortex (BA17/18/19), hippocampus, thalamus, 
substantia nigra, facial motor nucleus and spinal cord. As our workflow 
limited the number of regions that could be processed in parallel for 
each brain, we chose BA9 as a reference in most cases and sampled 
other regions where possible. As individuals without any diagnosed 
pathology (‘controls’) rarely come to autopsy, only one was available 
for sampling during the study. Our workflow included the use of a previ-
ously reported cold, enzyme-free mechanical dissociation approach 
for isolation of live human microglia and leukocytes4,22 followed by 
scRNA-seq of the freshly sorted live cells using the droplet-based 10x 
Genomics Chromium platform. Further details on the demographic 
and clinical characteristics of our donors, as well as details regarding 
our cell hashing strategy, can be found in Supplementary Table 1.

After rigorous preprocessing and quality control (QC), we retained 
225,382 individual transcriptomes from 74 donors. As the samples 
in our dataset encompassed a broad set of disease conditions, brain 
regions and chemistry versions for the 10x Genomics Chromium plat-
form, we applied algorithms for batch correction and normalization 
with the goal of identifying microglial states that are conserved across 
conditions. To separate microglia from non-microglial populations, we 
used the Seurat package in R23 to perform Louvain clustering, choosing 
a resolution where distinct cell types could be identified by canonical 
markers. In this initial clustering step (Extended Data Fig. 1), small 
numbers (<5%) of adaptive immune cells, monocytes, erythrocytes 
and other nonimmune populations segregated from our microglia 
and were not further analyzed.

Microglial subpopulations and signature genes
After isolating the myeloid cells in silico, we then subclustered them to 
generate a shared reference model across all regions and diseases. After 
selecting a model where all pairs of clusters had less than 20% of ambig-
uous assignment of cells using multilayer perceptron classification 

(Methods) and retaining clusters with >100 cells, we arrived at a popu-
lation structure consisting of 12 distinct clusters (Fig. 2a). The mean 
number of unique molecular identifiers (UMIs) and genes detected 
in microglia was similar across batches, technologies and clusters 
(Extended Data Fig. 2a–f and Supplementary Table 1), and post hoc 
computational cluster validation supported the stability of this cluster 
structure (Extended Data Fig. 2g). We first confirmed the microglial 
identity of our clusters by evaluating a set of core microglial genes5,24–26 
as well as monocyte (S100A8, VCAN) and macrophage (SELL, EMILIN2 
and GDA) genes (Fig. 2b). Notably, all 12 clusters expressed AIF1 and 
C1QA, well-validated markers of microglial identity in the brain; how-
ever, some microglia-specific murine marker genes, such as HEXB27, 
are expressed at low levels or are inconsistent in our human data. We 
also examined proposed markers (LYVE1, MS4A7 and CD163) of the 
border-associated macrophage (BAM) subset recently reported in 
mice28,29, and no cluster appears to be predominantly composed of 
BAM-like cells, although it is impossible to rule out the possibility that 
BAM-lineage cells may have entered the CNS microenvironment and 
downregulated lineage-defining genes during the infiltration.

Next, we performed pairwise differential expression analyses to 
define the genes that best differentiated our microglial subgroups 
from each other (Methods and Supplementary Table 2). Representative 
distinguishing genes are shown in Fig. 2c. The clusters are numbered in 
descending order based on their size, with cluster 1 having the largest 
number of cells and cluster 12 the least. Clusters 1, 2 and 3 are the most 
abundant clusters in most individuals (Extended Data Fig. 3). Genes 
upregulated in cluster 1 (the largest cluster) include disease genes such 
as ITPR2 and SORL1, as well as transcription factors and RNA-binding 
proteins, such as those encoded by MEF2A, RUNX1 and CELF1. Cluster 6 is,  
transcriptionally, the closest to cluster 1, expressing high levels of 
SRGAP2 and QKI, which encodes an RNA-binding protein that regulates 
microglial phagocytosis in the context of demyelination30,31. In contrast, 
clusters 4 and 9, which are transcriptionally adjacent to cluster 2, have 
an overlapping set of enriched genes, including C1QA, TYROBP, ITM2B, 
GPX1 and FCER1G. Thus, the broadest division in microglial subtypes 
appears to be between clusters 2, 4 and 9 (represented on the left side of 
our low-dimensional embedding for visualization) and 1, 5, 6 and 7 (on 
the right side of the same embedding; Fig. 2a). The marker expression 
profile of cluster 3 suggests that it is intermediate between clusters 1 
and 2, and clusters 2 and 3 are more enriched in genes associated with 
classical homeostatic-active states5 (CX3CR1, FCGR1A and P2RY12). This 
suggests that clusters 2 and 3 may be closest to the classic description 
of ‘homeostatic’ microglia, while cluster 1 and its closely related family 
are a divergent branch of microglial differentiation. Notably, clusters 
2 and 3 have relatively few differentially upregulated genes compared 
to all other microglial clusters. Interestingly, cluster 5 appears to be an 
alternative intermediate state between clusters 1 and 2, as it expresses 
CX3CR1 alongside QKI and MEF2A.

Clusters 8 and 10 are located between these broad families but 
are more homologous to 2, 4 and 9. Cluster 8 is enriched in CXCR4 and 
SRGN, while cluster 10 is enriched in HLA-C, CD74 (encoding a protein 
that plays an important role in antigen presentation) and CYBA. Clus-
ter 11 also shares some transcriptomic homology with 2, 4 and 9 but 
is distinguished by enrichment in SPP1 and LGALS1. Finally, cluster 
12 expresses MKI67 and PCNA, suggesting a proliferative phenotype.

The DAM state6 has been clearly defined in mouse models, but 
results in human studies have been mixed4,13,32,33. The lack of clarity 
around the possible presence and/or role of DAM genes in humans 
may stem from technical differences between studies and the rela-
tively small numbers of microglia profiled in studies to date. In addi-
tion, the proposed transition from homeostatic to DAM1, an initial 
TREM2-independent state, then to DAM2, a later, TREM2-dependent 
state, has been under-explored in humans. We reasoned that sepa-
rately examining the enrichment of signatures associated with both 
DAM sub-states might allow us to delineate the distribution of human 
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microglia along this proposed DAM trajectory. Markers for both DAM 
subsets, as well as homeostatic genes downregulated in the DAM pro-
gression, are shown in Fig. 2d. We hypothesized that, if a DAM subset 
existed in our dataset, it would likely be a small, distinct subset pri-
marily enriched in the DAM2 signature due to the predominance of 
autopsy tissue from late-stage neurodegenerative disease among 
our data. Indeed, cluster 11, representing 1% of our microglia, showed 
strong enrichment for the DAM2 signature. However, as seen in Fig. 2e, 
the situation is complex: the DAM signature genes are expressed in 
four different microglial clusters showing different combinations of 
DAM1 and DAM2 enrichment, with the DAM1 signature being most 
enriched in cluster 9. We note that cluster 10, the CD74high cluster that 
we had highlighted in our prior report as showing DAM enrichment4, 
also showed significant enrichment in the DAM2 signature, albeit at 
lower level than cluster 11. Notably, clusters 10 and 11 both showed 
substantial downregulation of the homeostatic microglial signature 
identified in the original DAM publication6, while cluster 9 did not 

demonstrate significant downregulation of the homeostatic gene set, 
suggesting that clusters 10 and 11 are further along the trajectory of 
divergence from the homeostatic microglial phenotype. Our data sug-
gest that, in humans, there may be distinct microglial subgroups with 
different combinations of DAM-related transcriptional programs that 
fulfill different functions, rather than a single linear DAM trajectory. 
Finally, it is important to note that the different populations associated 
with the DAM-like response are minor fractions of the total number 
of microglia that we have profiled, which provides a possible reason 
for the difficulty in conclusively identifying these subpopulations in 
previous human studies.

Axes of metabolic and functional variation across 
microglial subtypes
After characterizing our microglial subgroups, we next evaluated 
inter-cluster relatedness using a post hoc machine learning approach 
leveraging a multilayer perceptron classifier to examine the homology 
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Fig. 2 | Microglial subtypes are defined by distinct marker genes and 
shared expression programs. a, Visual representation of the 12 microglial 
subtypes. A hex-binned uniform manifold approximation and projection 
(UMAP) plot presents microglial subsets: other cells are shown in Extended 
Data Fig. 1. Each hexagon is colored by the majority cluster identity among all 
cells aggregated (mean of 50 cells per hexagon). b, Expression levels of genes 
delineating different myeloid identities. The legend (above d) summarizes the 
selected gene sets, which are color coded on the left side. In b–e, each column 
presents data from a cluster of cells (microglial subtypes colored as in a and 
monocytes (Mo)), and each row represents the level of expression of a gene. The 
size of the circle represents the percentage of cells in each cluster that express 
the gene. The color of the circle represents z-scored gene expression. Genes 
were chosen for association with microglial, macrophage, BAM or monocytic 

identity. c, Subtype-enriched marker genes. Marker genes, selected by pairwise 
differential expression testing with MAST, delineate broad microglial families 
with overlapping gene expression programs and small clusters with strongly 
distinguishing marker genes. Hierarchical clustering with complete linkage on 
the expression of genes is shown by the dendrogram at the top of the figure. 
d, Expression level of DAM gene sets and homeostatic genes across microglial 
subsets. e, Heat map of DAM gene-set enrichment. Enrichment of DAM subtype 
signature genes in upregulated (for DAM1/DAM2, in red) or downregulated 
(homeostatic, in blue) genes associated with each cluster is shown. Each 
column is one microglial subtype. Enrichment was tested by false discovery rate 
(FDR)-corrected hypergeometric test. See also Supplementary Table 2. FACS, 
fluorescence-activated cell sorting.
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Fig. 3 | Microglia display a complex trajectory of state transition with 
several primary axes. a, A central metabolic divide separates divergent subtype 
families. Constellation diagram demonstrates relationships between clusters 
by way of post hoc classification. Each pair of distinct clusters was used to train 
a multilayer perceptron 50 times using fivefold cross-validation to obtain a 
classification for every cell. Cells that were classified to the same cluster less 
than 40 times were considered ambiguous. The fraction of ambiguous cells 
determines the width of the connecting lines in the diagram. Each node is a single 
cluster, with size scaled in proportion to the number of cells contained therein. 
Notably, even closely related clusters can be reliably distinguished over 85% of 
the time. Cluster 3, which has few distinct marker genes, has the most ‘central’ 
expression profile, with close relationships to the cluster 2/4 family and the 
1/6/7 family. Cluster 5 represents another intermediate step between the 2/4 
and 1/6/7 families. GO annotation was performed with topGO and summarized 

with rrvgo. Parent terms are shown in white, overlaid over child terms. GO 
annotation for clusters 1/6 and clusters 4/9 revealed a metabolic shift between 
the two groups: clusters 4/9 showed enrichment of oxidative phosphorylation, 
catabolism and protein metabolism, as well as general immune response, while 
clusters 1/6 demonstrated upregulation of heterocyclic and nitrogen-containing 
compound metabolism alongside transcriptional regulation. b,c, Clusters 8 and 
10 shared a signature of interferon-gamma signaling and antigen presentation 
but differed in other pathways. Reactome annotation of clusters 8 and 10 
aggregated by group highlights shared enrichment for T cell interaction and 
interferon-gamma signaling (purple in cluster 8 and blue in cluster 10). Cluster 
10 showed upregulation of complement signaling (purple) and MHC class I/II 
antigen presentation (green), while cluster 8 showed upregulation of chaperone 
and steroid signaling (blue) and interleukin signaling (green). See also Extended 
Data Fig. 4.
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of gene expression programs between cells assigned to different clus-
ters34. We visualize these results in a constellation diagram (middle 
of Fig. 3a), which indicates both the proportion of ambiguously clas-
sified cells between every pair of clusters (edge thickness) and the 
total number of cells in each cluster (size of nodes)4,34,35. A central 
question in microglial biology is how different subtypes may branch 
off from core homeostatic phenotypes, and whether trajectories of 
microglial state transition are linear or characterized by critical bifur-
cation points. Based on our analysis, cluster 3 exhibited the most 
‘central’ gene expression profile, with the greatest overlap with other 
clusters. As expected, clusters 2 and 4 showed substantial homology 
to one another, as did clusters 1 and 6. Notably, cluster 5, another 
prospective intermediate state, showed overlap with both clusters 
1 and 2, with stronger similarity to cluster 1. This suggests a degree 
of continuous transition between extremes of gene expression in 
either direction along this central division. To explore the functional 
relevance of this division, we used topGO to conduct Gene Ontology 
(GO)36–38 analysis on the top differentially expressed genes in each 
cluster and summarized results with rrvgo39. As shown on the left 
and right sides of Fig. 3a, the most heavily enriched terms along the 
left (clusters 4 and 9) side of our population structure are related 
to metabolism, particularly oxidative phosphorylation, catabolism 
and peptide metabolism, and immune response and localization. In 
contrast, the right side (clusters 1 and 6) of our population structure 
shows enrichment of alternative metabolic pathways, including het-
erocyclic metabolism and nitrogen-containing compound metabolism 
as well as transcriptional regulation. Intriguingly, the intermediate 
cluster 5 showed strong association with motility (Extended Data 
Fig. 4a). This highlights a central divide in metabolism and function, 
suggesting a homeostatic-active phenotype in clusters 2, 4 and 9 that 
transitions to different metabolic and functional phenotypes in clus-
ters 1, 6 and 7 of our structure, with intermediate states that may play 
different functional roles. Cluster 9, which has a partially overlapping 
transcriptional signature with cluster 4, is the most closely related to 
cluster 12, which shows enrichment for proliferation and oxidative 
phosphorylation (Extended Data Fig. 4b). Cluster 9 also showed sub-
stantial transcriptomic similarity to cluster 11, which is enriched for 
lipid processing and beta-amyloid clearance (Extended Data Fig. 4c), 
consistent with the proposed role of TREM2 in this signature33 and 
confirming the continuum of DAM transitional states identified in 
our earlier analysis (Fig. 2e).

Clusters 8 and 10, whose signatures suggest substantial microglial 
activation, are clearly distinguishable from other clusters, although 
they maintain a relationship to the central cluster 3. To explore this axis, 
we annotated clusters using ClusterProfiler to perform Reactome40–42 
pathway analysis (Fig. 3b,c). Some overlap was present between these 
two clusters, as both clusters contained genes associated with antigen 
presentation, interferon signaling and T cell interaction. However, 
cluster 10 exhibited stronger association with both class I and class II 
major histocompatibility complex (MHC) signaling and complement 
signaling. In contrast, cluster 8, which expressed significant levels of 
early response genes, showed upregulation of pathways associated 
with chaperone signaling, steroid response, interleukin signaling 
(particularly IL4/IL10/IL13), and the senescence-associated secretory 
phenotype. These phenotypic differences were also recapitulated with 
GO annotation (Extended Data Fig. 4d).

Thus, this analysis highlights the divergent nature of the micro-
glial differentiation program, suggesting that there are at least three 
distinct tracks of microglial subtype specification that emerge from 
the most basal microglial state, including a central metabolic divide, 
an axis of immunological activation, and a trajectory that contains 
elements of the DAM signature identified in murine model systems. 
These tracks appear to be nonlinear and different paths of transition 
may exist between terminal states, a result that is consistent with an 
ancillary pseudotime analysis leveraging the Monocle3 algorithm43–45 

that defines a complex trajectory (Extended Data Fig. 4e). In addition, 
consistent representation of clusters across donors, regions and dis-
eases (Extended Data Fig. 3a,b) supports the conceptual framework 
of our trajectory analyses, as this shared representation supports the 
idea that we are examining an actual biological continuity rather than 
identifying state shifts that result from differences in disease or region. 
Indeed, our findings here parallel findings from studies of microglia 
in mice that have hinted at nonlinear trajectories in disease states, 
either with regard to early branching points46–48 or partially overlap-
ping terminal phenotypes that arise in similar disease contexts6,49,50. 
However, further dissection of the trajectories in human data that 
we describe here will be challenging due to the difficulty of profiling 
human samples along a continuous pathway toward disease and may 
ultimately require careful cohort design and new tools for tracking 
patterns of state transition in individual cells. Notably, the results of 
our analyses further underscore the robust nature of our population 
structure, as even clusters with substantial overlap of gene expression 
signatures still comprise cells that are robustly distinguishable with 
more than 85% accuracy. Starting from this overall framework, further 
work in vitro and in situ will be required to confirm our observations 
and to understand the importance of functional and metabolic shifts 
in health and disease.

Annotating disease and trait associations of 
distinct microglial subsets
To illustrate variation in microglial composition in our brain tissue 
samples, we report the proportion of different microglial subtypes in 
each disease, region and individual (Fig. 4 and Extended Data Fig. 3). 
First, we note that most clusters are present in each individual, albeit 
at different frequencies (Extended Data Fig. 3a). The most common 
microglial subtypes in most individuals were clusters 1 to 6, suggesting 
that these subtypes capture a homeostatic spectrum and that neuro-
degenerative diseases involve small shifts toward distinct microglial 
states. Notably, grouping samples by region (Fig. 4a,b) or diagnosis 
(Fig. 4c,d), demonstrated that even with different numbers of cells 
from different regions and diagnoses, we see a similar distribution of 
cell populations across diseases and regions. As substantial statistical 
power is needed for comparison of samples with complicated combi-
nations of region, disease, age and sex. Much larger datasets will be 
needed to directly identify disease associations; our dataset was not 
designed for this purpose.

However, the depth and quality of our sequencing data enabled 
us to pursue gene enrichment analyses to implicate certain subsets in 
different diseases. For MS, we utilized a recent publication from the 
International Multiple Sclerosis Genetics Consortium that identified 
a comprehensive set of 551 MS susceptibility genes51. We found that 
clusters on the right side of our microglial cloud, specifically clusters 5 
and 6, were significantly enriched in MS susceptibility genes, highlight-
ing a possible role of one arm of our microglial differentiation tree in 
MS susceptibility (Fig. 5a). Next, we explored the genome-wide asso-
ciation study (GWAS) catalog52, a curated database containing single 
nucleotide polymorphism (SNP)–trait associations from GWAS studies. 
As seen in Fig. 5b, we recapitulated the enrichment of MS in cluster 6 in 
this database, although cluster 5 did not pass the threshold for signifi-
cance in this analysis. Clusters 1 and 6 also showed enrichment for other 
neurodegenerative and neuropsychiatric disease genes, including AD, 
PD and depression. Similarly, cluster 10 showed enrichment for MS and 
schizophrenia. The strong complement expression found in cluster 10 
aligns with previous reports of the role of complement-related genes 
in schizophrenia53. Finally, cluster 8, the CXCR4-enriched cluster, has 
a set of disease associations that suggest a role in conditions charac-
terized by neuroinflammatory signaling but not neurodegenerative 
diseases. Interestingly, we found no substantial enrichment of dis-
ease genes associated with stroke, seizure, ALS/FTD or glioma. This 
may be due either to a less important role of microglia in the primary 
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pathogenesis of these diseases or to less extensive GWAS annotation 
of these diseases.

To complement these analyses, we repeated our earlier analysis4 
evaluating AD-related traits more thoroughly. We leveraged associa-
tions with traits from a large analysis of bulk cortical (BA9) RNA-seq data 
from 1,092 participants in the ROSMAP54,55 cohorts (Supplementary 
Table 3); these individuals do not overlap with the ROSMAP participants 
included in our microglial dataset. These bulk RNA-seq data contain 
transcripts from all parenchymal cells, including microglia. To evaluate 

the enrichment of microglial clusters for genes associated with each 
trait, we calculated the overlap of cluster-specific signature genes with 
gene sets that were significantly positively or negatively associated with 
each of these traits (Fig. 5c). Clusters 1 and 6, the right side of the micro-
glial cloud, were enriched for genes that are positively correlated with 
amyloid-beta pathology, tau tangle pathology, and both a clinical and 
pathological diagnosis of AD. Consistent with these results, they were 
also enriched for genes negatively correlated with the slope of cognitive 
decline where a larger negative number indicates worsening cognitive 
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Fig. 4 | Human microglial subsets are found across diseases and regions.  
a–d, Microglial subsets are broadly represented across diseases and regions. 
On the left (a and c), each bar shows the proportion of each cluster among all 
microglia from a given disease. On the right (b and d), UMAP plots are split 
by disease. Plots are color coded in accordance with Fig. 2a. Most subsets 
are represented across all diseases and all regions, albeit in slightly different 

numbers, although larger sample sizes would be required to statistically assess 
differences in abundance. LOAD, late-onset AD; EOAD, early-onset AD; Ctrl, 
control; TLE, temporal lobe epilepsy; DNET, dysembryoplastic neuroepithelial 
tumor; BA, Brodmann area; AWS, anterior watershed; OC, occipital cortex;  
TNC, temporal neocortex; H, hippocampus; TH, thalamus; SC, spinal cord;  
SN, substantia nigra; FN, facial nucleus. See also Extended Data Fig. 3.
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Fig. 5 | Disease annotation implicates specific microglial families in disease. 
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susceptibility genes in upregulated gene lists associated with each cluster was 
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P values are shown for combinations of clusters and traits where they have an 
FDR < 0.01. Coloration of squares corresponds to P-value magnitude: larger  
P values correspond to darker blue squares, whereas smaller P values correspond 
to yellow coloration. c, Clusters 1 and 6 correlate with clinical and pathological 
traits in AD. In this case, enrichment was performed separately for both the genes 
positively and negatively correlated with each trait in upregulated genes for each 
cluster. Coloration of each box relates to the strength and directionality of each 
association. Red (positive numbers) corresponds to genes upregulated with the 
trait, while blue corresponds to genes downregulated in relation to the trait.  
See also Supplementary Table 3.
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dysfunction. In contrast, clusters 2, 4, 9 and 10 were enriched in genes 
negatively correlated with tau and amyloid pathology, and clusters 4 and 
9 were enriched in genes positively correlated with the slope of cognitive 
decline. Further, our DAM2hi cluster 11 was enriched for genes positively 
associated with AD and amyloid pathology, but not tau pathology. This 
cluster also showed enrichment for genes negatively correlated with cog-
nitive decline. Our results strongly suggest that the human cortex in AD is 
enriched for genes defining clusters 1 and 6; this could occur either from 
an increase in the proportion of these subtypes in AD cortical tissue or 
from the enhanced expression of these signature genes in the microglia 
of the AD cortex. It also implicates cluster 11 more modestly, suggesting 
a narrower contribution to amyloid rather than tau proteinopathy. Nota-
bly, several molecular pathologies that we evaluated—including cerebral 
amyloid angiopathy, arteriolar sclerosis, cerebrovascular disease and 
TDP-43 pathology—showed no enrichment with any of our clusters. 
Cluster 12 showed enrichment trends akin to clusters 2, 4, 9 and 10, 
perhaps because of the heavy overrepresentation of genes associated 
with oxidative phosphorylation. Overall, by leveraging indirect disease 
annotation, we identify a family of microglial subtypes that are strongly 
enriched in genes associated with neurodegenerative diseases and asso-
ciated with AD traits in an independent ROSMAP cohort.

Identifying microglial subsets in situ
Having identified microglial subgroups from dissociated cells, we 
sought to validate their existence in situ. We had previously done this 
with immunofluorescence4,56, but the range of potential antibody 
markers is limited. Thus, we first optimized a co-detection workflow 
that merged anti-IBA1 staining (IBA1 is a ubiquitous marker of myeloid 
cells in the brain at the protein level), with Advanced Cell Diagnostic’s 
RNAscope protocol57 for fluorescence in situ hybridization to allow for 
single-molecule RNA detection. We coupled this experimental pipeline 
to CellProfiler (v.4.2.1)58–61 for automated segmentation of image data 
(Methods). This workflow enables the capture of microglia-specific 
gene expression, localization of transcripts within microglia and struc-
tured assessment of cellular morphology.

To illustrate our approach, we chose two panels of genes to dis-
criminate different microglial subsets in situ. In panel 1 (Fig. 6a–d and 
Extended Data Fig. 5a), we used probes against transcripts of CD74,  
a gene that we found to be relatively enriched in immunologically active 
subtypes (clusters 2, 3, 4, 8, 9, and 10) and downregulated in clusters 
1, 5 and 6. We have previously reported the existence and relevance of 
a CD74high microglial subset4, and the equivalent subset in our current 
model (cluster 10) had a 1.5 fold greater expression of CD74 relative 
to all other clusters (Fig. 6a). We also included probes against CXCR4,  
a gene predominantly expressed in cluster 8. This panel separates the 
1/5/6 family from other clusters, exploring our primary axis of varia-
tion, and allows for the discrimination of the two subsets (8 and 10)  
in a second axis of variation associated with antigen presentation and 
immune cell interaction. In panel 2 (Fig. 6e–h and Extended Data Fig. 5b),  
we included probes against GPX1, a gene predominantly expressed in 
clusters 4, 9 and 11, as well as SPP1, a previously proposed DAM marker 
that is enriched in cluster 11. This second panel enables a more detailed 
examination of clusters along the DAM-like trajectory that were not 
captured in the first panel. We applied this combined RNA–protein 
interrogation technique to tissue sections from individuals with patho-
logical diagnoses of AD, PD, PSP or DLBD and individuals with age-
related tauopathy (Supplementary Table 4).

Representative images for panel 1 are shown in Fig. 6b, demon-
strating the capture of microglia-specific transcripts, including those 
in the distal processes of single microglia. By taking area-normalized 
CD74 expression per cell and binning cells into low expression, medium 
expression and high expression based on fold-change thresholds 
derived from our single-cell data (Methods), we found that the pro-
portions of cells in each bin are similar to the proportions of cells in our 
single-cell dataset (Fig. 6c). The CD74-low grouping included clusters 
1, 5, 6, 7 and 12, CD74-medium represented clusters 2, 3, 4, 8, 9 and 11, 
and CD74-high identified cluster 10. Moreover, concurrently examining 
expression of CXCR4 across all three bins demonstrated peak CXCR4 
expression in the CD74-medium populations, in agreement with our 
scRNA-seq data (Fig. 6d). Thus, panel 1 validates clusters 8 and 10 

Fig. 7 | Live microglial population structure enables annotation of datasets 
from model systems and data produced with different technologies.  
a, Overview of our label transfer workflow. Similar classes were aggregated  
(2 and 4 or 1, 6 and 7) to simplify the classification problem, and classifications 
from two types of models were merged to assign final class labels for all cells  
in query data. b, Distribution of subset proportions across different datasets in 
comparison to our reference. c–f, Mapping of query datasets onto our reference 
model. UMAP colors for each cluster family were shaded by the proportion of 
cells assigned to each family in each dataset. Numbers are the proportion of cells 
in each query dataset that were assigned to each cluster. g, Xenografted human 
iPS cell microglia shifted away from homeostatic-active phenotypes and toward 
disease-associated phenotypes in 5XFAD mice. Bar plot showing the proportion 
of iPS cell-derived microglia-like cells (y axis) in each of three cluster families  

(x axis) from either 5X (blue) or WT (red) mice. n = 2 per condition. h, GBM 
induced depletion of homeostatic myeloid cells and shifted microglia toward 
more inflammatory subtypes. Bar plot showing proportions of cells per group 
from the reference (blue), or the classified GBM data (red). Between the two 
datasets, the higher proportion is shown in its corresponding color, and the lower 
proportion is delineated in gray. h, Cluster 3 abundance correlated negatively 
with amyloid pathology in ROSMAP single-nucleus data. In the dot plot, each dot 
is a single donor. Axes are amyloid burden (y) and proportion of cells classified 
as cluster 5 (x). h,i, Conversely, cluster 5 abundance correlated positively with 
amyloid pathology. See also Extended Data Fig. 6 and Supplementary Table 6. 
j, Projection of a GBM dataset into our model; there is a shift in the proportion 
of microglial subtypes away from homeostatic subtypes and toward activated 
subtypes in GBM-derived cells (pink) relative to our reference data (blue).

Fig. 6 | In situ confirmation of microglial population structure with joint 
immunofluorescence–RNAscope with automated segmentation. a, CD74 
demarcates a small, immunologically active subset, while CXCR4 delineates 
a distinct immunologically active subset. The size of the circle represents the 
percentage of cells in each cluster that express the gene, and the color of the 
circle represents z-scored gene expression. CD74 is overexpressed in cluster 10, 
while CXCR4 is primarily expressed in cluster 8. b, Representative images showing 
CD74 and CXCR4 in IBA1+ microglia. RNAscope staining for CD74 (red) and CXCR4 
(pink) in IBA1+ microglial cells (green) in human cortical brain slices, with nuclear 
DAPI staining (blue). In the same field of view, microglia with different levels of 
CD74 and with or without expression of CXCR4 can be observed (arrowheads 
point to representative microglia). c, Separating single in situ cells using CD74 
expression thresholds adapted from scRNA-seq identified similar proportions 
across technologies. The proportion of cells, along the y axis, that express low, 
medium or high levels of CD74, along the x axis, in scRNA-seq is shown in yellow, 

while in situ results (area-adjusted CD74 expression binned on thresholds from 
scRNA-seq) are shown in blue. d, CXCR4+ cells matched the expected distribution 
within CD74 expression classes. CD74 expression class, as described in c, is shown 
on the x axis, and count of CXCR4+ cells is shown on the y axis. CXCR4+ microglial 
cells are identified in situ and most fall into the CD74int class, confirming our 
scRNA-seq findings. e, GPX1 and SPP1 delineate the DAM axis and extremes in 
homeostatic-active families. f, Representative images from our joint staining 
protocol for GPX1 and SPP1. Staining as in b, except that RNAscope SPP1 is pink 
and GPX1 is red. g, Separating single in situ cells on the basis of GPX1 expression 
thresholds borrowed from scRNA-seq also identified similar proportions across 
technologies. Analysis performed as in c but using GPX1 expression data.  
h, Gradated expression of both SPP1 and GPX1. Individual cells are plotted as 
single dots, where the axes represent area-adjusted expression of GPX1 (x) or  
SPP1 (y). See also Extended Data Fig. 5 and Supplementary Tables 4 and 5.  
IHC, immunohistochemistry.
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in situ and demonstrates our ability to discriminate multiple distinct 
microglial subsets in each field of view. As shown in Fig. 6e,f, panel 2 was 
designed to discriminate the homeostatic-active family and concur-
rently identify clusters on the DAM axis, particularly cluster 11, that our 
first panel cannot capture. We first evaluated GPX1, and, as with panel 1 
markers, we observed similar proportions of cells in the different GPX1 
categories between the in situ and scRNA-seq approaches, confirm-
ing the translatability of our scRNA-seq-derived cluster definitions 
(Fig. 6g). Notably, we identified cells coexpressing different levels of 
GPX1 and SPP1 and subpopulations that appear similar to clusters 9 and 
11, making them good markers for future investigations targeting the 
DAM-like axis (Fig. 6h). This second panel thus offers an independent 
validation of a different aspect of our population structure, providing 
markers for future study design.

Establishing the colocalization and/or segregation of cluster- 
specific marker genes then allowed us to investigate morphological 
differences between microglial subgroups. We evaluated morphologi-
cal measures captured from each microglia by CellProfiler. We found 
that the partially overlapping CD74, SPP1 and GPX1-medium classes had 
the highest level of ramification (as measured by compactness scores; 
Extended Data Fig. 5c). Similarly, we found that eccentricity—a feature 
ranging from 0 (perfectly circular) to 1 (perfectly linear)—was lowest 
in both the CD74high and GPX1high classes and highest in the CD74low 
and GPX1low classes (Extended Data Fig. 5d), suggesting that the latter 
subgroups have a more elongated morphology. Microglial activation 
induces process retraction and an amoeboid morphology62, and in 
our scRNA-seq data, cells expressing high levels of CD74 and GPX1 
expressed markers of activation. Interestingly, CXCR4+ cells exhib-
ited higher CD74 radial distance on average (Extended Data Fig. 5e) 
and higher ramification scores (Extended Data Fig. 5f), suggesting 
that, unlike other activated classes, CXCR4+ cells are likely to be more 
ramified.

To complement the RNAscope approach described above, we 
also assessed our subtype markers using the MERSCOPE platform, 
which enables highly multiplexed MERFISH assessment of RNA spe-
cies; specifically, we designed a panel to detect all cortical cell sub-
types63 and included 39 markers to capture our 12 microglial subtypes. 
Two tissue sections were profiled (one from an AD donor cortex and 
one from a non-AD donor cortex) and, after preprocessing (Meth-
ods), we identified a total of 2,381 microglia (6.4% of all cells). When 
we projected these microglial cells into our model (Extended Data 
Fig. 6a), we found that even with a relatively small number of cells and a 
non-transcriptome-wide signature, we were still able to unambiguously 
identify 9 of the 12 microglial subtypes. Further work will be needed to 
enhance the panel and profile a much larger sample of tissue sections 
to uncover the remaining microglial subtypes.

We, therefore, validated our cross-disease scRNA-seq resource by 
identifying the dissociated microglial signatures in situ and highlight-
ing morphological differences between subgroups. We also showed the 

existence of cluster 8 signatures using both RNAscope and MERFISH in 
the tissue, supporting our hypothesis that the stress response observed 
in certain ex vivo preparations of microglia is also present in intact 
human brain tissue. However, it is likely that this stress response may 
be enhanced by certain microglial manipulations18,19.

Extending the use of our dataset as a reference: 
in vitro model systems, single-nucleus data and 
other diseases
This data resource, which was designed to identify a shared, stable 
microglial population structure across human diseases and brain 
regions, can be used to annotate other microglial datasets and to 
evaluate how much human microglial diversity is captured by model 
systems. To illustrate these uses, we selected two primary tissue data-
sets: a single-nucleus RNA-sequencing (snRNA-seq) dataset (Methods) 
from the ROSMAP54,55 cohorts of older individuals with and without AD 
and a single-cell myeloid dataset64 from surgical resections of glioblas-
toma multiforme (GBM), a disease where microglia are thought to play 
a central role65. In parallel, we also selected two human iPS cell-derived 
microglia-like cell datasets: a murine xenograft system66,67 and an 
in vitro system used for CRISPR screening68. We then applied a label 
transfer approach on these four datasets; to simplify the classification 
task, transcriptionally similar groups (that is, clusters 2 and 4 or 1, 6 
and 7) in the reference data were grouped. Our approach consisted of 
a consensus voting of pairwise support vector machine (SVM) classi-
fiers to classify the smaller, more transcriptionally unique subtypes 
and a flat XGBoost69 (XGB) classifier retaining only classifications with 
confidence of 50% or higher for the larger clusters (Fig. 7a). Quality 
metrics for our label transfer pipeline are shown in Extended Data Fig. 7 
and Supplementary Table 6. In short, our approach is sensitive and 
specific, with joint accuracy averaging 83.8% across all models, and the 
lowest-confidence assignments emanate from clusters with inherently 
fluid boundaries, validating the efficacy of this pipeline.

This approach revealed differences in the percentages of cells 
mapped to each cluster across the different datasets (Fig. 7b–f). In 
both iPS cell-derived datasets (Fig. 7c,d), cells mapped to most of the 
states that we identified in our microglial dataset, suggesting that these 
model systems recapitulate a substantial amount of human in vivo het-
erogeneity. However, the tissue-derived data (Fig. 7c) showed higher 
fractions of microglia at terminal points in our axes of differentiation, 
such as the DAM-like axis of clusters 9, 10 and 11. Notably, we observed a 
trend toward increased levels of cluster 11 in the 5X FAD mice (P = 0.087; 
Fig. 7g), consistent with our AD enrichment analyses (Fig. 5b,c). In 
contrast, the in vitro iPS cell-derived dataset contained high numbers 
of proliferating cells (Fig. 7d), ‘intermediate’ cluster 3 cells and inflam-
matory cluster 8 cells. These results highlight the utility of both model 
systems for modeling microglial diversity.

With regards to the snRNA-seq datasets on primary tissue, anno-
tation of ROSMAP snRNA-seq data (Methods) showed prominent 

Fig. 8 | Chemical perturbation recapitulates in vivo human microglial 
subtype signatures in vitro. a, Representative example of CMAP analysis. 
The CMAP was used to identify compounds that might drive transcriptional 
signatures found in different microglial subsets. The cell ID column identified 
the nine cell lines used in CMAP. Drugs were ranked by the tau score, which 
quantifies homology between the perturbagen and the query. Scores greater 
than 90 were considered as candidates for further study. b–d, qPCR hits by 
grouping: 1/6, 4/9 or 8/10. Drugs were tested in the HMC3 microglial model 
system at 6-h and 24-h intervals, and two marker genes were assayed by qPCR 
per cluster group (1/6, SRGAP2 and MEF2A; 4/9, TYROBP and GPX1; 8/10, CXCR4 
and SRGN). CT values were normalized to HPRT1. Bars represent fold-change 
expression in relation to DMSO control. e, Camptothecin upregulated cluster 
10 markers. Volcano plot showing log fold change (LFC, x), and −log10 P value (y) 
from bulk RNA-seq generated from HMC3 cells treated with camptothecin for 
24 h. Data were analyzed with DESeq2. FDR threshold was set to 0.01 and LFC 

threshold was set at 1.5. The top 20 cluster 10 genes in the differentially expressed 
gene list, irrespective of direction, were plotted. f, Torin-2 upregulated most 
cluster 1/6 markers. g, PCA revealed convergence of narciclasine and Torin-2 at 
the proteomic level. PCA was calculated on log-normalized proteomic data. At 
the proteomic level, Torin-2 and narciclasine are similar and divergent from both 
control and camptothecin. h, Camptothecin upregulated cluster 10 markers at 
the proteomic level. Heat map showing the row-scaled, zero-centered expression 
values of proteomic data derived from compound-treated HMC3 microglia (24 h; 
n = 3 per treatment). Each column is a single sample, and each row is a single 
gene. Pairwise differential testing between DMSO control and each of our treated 
conditions was conducted using Welch’s t-test with the Benjamini–Hochberg 
correction (FDR alpha < 0.05, LFC < 1). I, Camptothecin downregulates cluster 
1/6 markers at the proteomic level. See also Extended Data Fig. 7 and 8 and 
Supplementary Tables 6 and 7. PMA, phorbol 13-myristate 12-acetate.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01764-7

fe

g h i

b

d

c

Cluster 1/6

Cluster 2/4/9

Cluster 8/10

a

DMSO Camptothecin Torin-2 Narciclasine

Proteomics: 10 markers

DMSO Camptothecin Torin-2 Narciclasine

Proteomics: 1/6 markers

–2 210–1

Z-scored expression

CD74

GRN

CYBA

TREM2

FCGRT

DNASE2

TMEM59

OLFML3

ATP6V0B

CD68

APOE

ALOX5AP

ITM2C

B2M

CD14

C3AR1

HLA−DQB1

HLA−C

HLA−A

HLA−B

0

100

200

300

−5 0 5 10

log2 fold change
−5 0 5 10

log2 fold change

−l
og

10
 P

0

100

200

300

−l
og

10
 P

Camptothecin: 10 markers

Total = 17,485 variables

Up
Down

SP100

NAV3

ZNF638

SLC1A3

SPG11

DENND3

CDK6

FNBP4

PLXDC2

ARHGAP22
XAF1

DMTF1

PCNX2

LPP

PAXBP1

MYSM1

CCNL1

CREBRF

TAF1D

ZMAT1

PARP14

ANKRD36C

MAF

SLC8A1

SRGAP3

PLCG2

NOL8

ADGRG1

NPIPB5

Torin2: 1/6 markers

Total = 17,004 variables

−0.25

0

0.25

0.50

−0.4 −0.2 0 0.2

PC1 (34.45%)

PC
2 

(2
5.

81
%

)

Condition
Camptothecin
DMSO
Narciclasine
Torin2

FCGRT

LGMN

NPC2

ASAH1

TMBIM6

HLA-A

ATP6AP2

CYBA

HLA-B;HLA-C

HLA-C

HLA-B;HLA-C;HLA-E;HLA-H

HLA-A;HLA-B;HLA-C;HLA-H

HLA-A;HLA-B;HLA-E;HLA-H

AXL

HLA-A;HLA-B

LRPAP1

SYPL1

ITM2B

DAD1

PRDX4

BCAP31

MYDGF

IL6ST
SKI
ZFP36L1;ZFP36L2
ZFP36L1
MIS18BP1
CEP350
NIPBL
ZNF292
GOLGB1
PHF3
BACH1
RBM5
SNRNP70
ZEB2
PUM3
PCF11
ZNF655
RIF1
SETD2
KMT2A
KANSL1
ELL2
PRPF38B
LUC7L3
MKLN1
CDK6
SRSF11
NUFIP2
SPG11
TNRC6A
QKI
PRRC2C
GRAMD1A
BRWD1
TTC3
CEP170
ZNF106
NF1
DST
EML4
ZFC3H1
HERC4
JMJD1C
AKAP13
PKN2
DST;MACF1
BIRC6
ARHGAP21
PCM1
AKAP9
TRIM56
LENG8
KDM5A
ANKRD11

MEF2A
0

1

2

3
Narciclasine

6 h
24 h

SRGAP2

FC
 e

xp
re

ss
io

n

MEF2A
0

1

2

3

4

5
Torin2

SRGAP2

FC
 e

xp
re

ss
io

n

GPX1
0

2

4

8
10
12
14

Dopamine

TYROBP GPX1TYROBP

FC
 e

xp
re

ss
io

n

0

1

2

3
Repaglinide

FC
 e

xp
re

ss
io

n

CXCR4
0
2
4
6
8

10
40
60
80

100
Camptothecin

FC
 e

xp
re

ss
io

n

0
1
2
3
4
5

PMA

FC
 e

xp
re

ss
io

n

–100.00 100.00 

median_tau_score 
99.93 
99.92 
99.51 
99.51 
99.48 
99.45 
99.40 
99.37 
99.35 
99.31 
99.17 
99.13 
99.06 
98.93 
98.93 
98.92 
98.90 
98.89 
98.80 
98.76 
98.71 
98.71 
98.39 
98.38 
98.38 
98.23 
97.92 
97.87 
97.85 
97.81 
97.67 
97.65 
97.51 
97.41 
97.38 
97.28 

Calyculin 
Torin-2 
Tyrphostin-AG-126 
Torin-1 
Homoharringtonine 
Anisomycin
Narciclasine
Verrucarin-a 
Emetine 
AZD-8055 
Homoharringtonine 
WYE-354 
Emetine 
BNTX 
JWE-035 
NVP-BEZ235 
KU-0060648 
Digitoxin 
Digitoxigenin
KU-0063794 
Sarmentogenin 
Strophanthidin 
JW-7-24-1 
Cephaeline 
Pl-103 
Digoxin 
Ouabain 
Cytochalasin-b 
Puromycin 
MG-132 
Ouabain 
Digoxin 
Puromycin 
MK-5108 
81-2536

Description 
Protein phosphatase inhibitor 
mTOR inhibitor 
ERK1 and ERK2 phosphorylation inhibitor, tyrosine kinase inhibitor 
mTOR inhibitor, P13K inhibitor 
Apoptosis stimulant, protein synthesis inhibitor 
ONA synthesis inhibitor 
Coflilin signaling pathway activator, UM kinase activator, ROCK activator 
Protein synthesis inhibitor 
Protein synthesis inhibitor 
mTOR inhibitor 
Apoptosis stimulant, protein synthesis inhibitor 
mTOR inhibitor 
Protein synthesis inhibitor 
Opioid receptor antagonist 
Aurora kinase inhibitor 
mTOR inhibitor, P13K inhibitor, protein kinase inhibitor 
ONA dependent protein kinase, ONA dependent protein kinase inhibitor, P13K inhibitor 
ATPase inhibitor 
ATPase inhibitor 
mTOR inhibitor 
ATPase inhibitor 
ATPase inhibitor 
LCK Inhibitor 
Protein synthesis inhibitor 
P13K inhibitor, mTOR inhibitor 
ATPase inhibitor, ROR antagonist 
ATPase inhibitor, alpha subunit binder 
Microtubule inhibitor, phagocytosis inhibitor 
Adenosine receptor agonist, protein synthesis inhibitor 
Proteasome inhibitor 
ATPase inhibitor, alpha subunit binder 
ATPase inhibitor, ROR antagonist 
Adenosine receptor agonist, protein synthesis inhibitor 
Aurora kinase inhibitor 
PLK inhibitor, apoptosis stimulant, cell cycle inhibitor, protein kinase inhibitor 
Glycogen synthase kinase inhibitor, protein synthesis inhibitor SRGN CXCR4 SRGN

6 h
24 h

6 h
24 h

6 h
24 h

6 h
24 h

6 h
24 h

ADAM28

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01764-7

representation of cells from the intermediate clusters 3 and 5 (Fig. 7e). 
Although snRNA-seq can be applied to frozen human brain tissue, 
it does not capture the cytoplasmic compartment16,17. Thus, as the 
microglial subtype families 2/4 and 1/6/7 represent more polarized and 
differentiated branches of the homeostatic trajectory, albeit in distinct 
directions, technical differences may impair our ability to resolve 
some of the more distal phenotypes on our differentiation trajectory 
in nuclear data. Nonetheless, cluster 5, part of the same family that 
exhibits association with AD pathology (Fig. 5c), shows a positive asso-
ciation with amyloid burden (Fig. 7h), while cluster 3 shows a negative 
association with the same trait (Fig. 7I) in the ROSMAP snRNA-seq data. 
Finally, annotation of the GBM dataset reveals high numbers of cells 
that map to the proliferative cluster 12, DAM2high cluster 11, and cluster 8 
(Fig. 7f). Upregulation of SPP1, a gene defining cluster 11, has previously 
been reported in GBM-associated myeloid cells and has been shown to 
correlate with worse survival in humans with GBM70. Comparison of 
subtype proportions with our reference dataset from neurodegenera-
tive diseases reinforces the presence of a dramatic shift away from the 
core homeostatic gradient and toward more inflammatory myeloid 
subtypes in GBM (Fig. 7j). This is consistent with prior observations 
reporting shifts away from homeostatic phenotypes among myeloid 
cells found in the glioma microenvironment65.

We thus demonstrated the utility of our dataset for annotating 
datasets from a wide variety of sources, such as diseases not captured 
in our dataset, snRNA-seq data and human iPS cell-derived microglial 
model systems. We identified shifts in phenotype that accord with 
those previously reported in GBM and demonstrate that iPS cell data-
sets, both in vitro and in vivo, capture an impressive amount of the 
microglial heterogeneity that we have identified in isolated, living 
human microglia.

Prediction and validation of compounds driving 
cluster-specific transcriptional signatures and 
subtype recapitulation in vitro
Next, we sought to leverage our data to understand how to use chemical 
perturbation to direct state transitions toward specific subtypes. This 
would enhance (1) in vitro modeling using iPS cell-derived microglia-like 
cells or monocyte-derived microglia-like cells71 and (2) drug discovery as 
such tool compounds could provide leads for therapeutic development 
of in vivo microglial modulation. Here, we used the V1 database of the 
CMAP20,21, a dataset that contains transcriptomic data associated with 
thousands of chemical perturbations across a wide array of cell lines. 
To increase the power of our initial analysis, we grouped related micro-
glial subtypes together, querying CMAP using RNA signatures for three 
groups of microglial subtypes: clusters 1/6, clusters 2/4/9 and clusters 
8/10, chosen because they capture two of the primary axes of variation 
among our microglial subtypes. An overview of our workflow is shown in 
Extended Data Fig. 8a. From our in silico CMAP analysis (representative 
example in Fig. 8a; Supplementary Table 7), we prioritized 14 compounds 
for validation. For our initial screen, we exposed the human microglial 
cell 3 (HMC3) line72 to each of the 14 compounds guided by the dosage 
used in CMAP. Since HMC3 cells were not used in CMAP, we optimized 
concentrations of each compound to minimize effects on survival and 
morphology. We then tested the effects of each compound after 6-h and 
24-h treatment by assessing the expression levels of two selected marker 
genes for each of the three groups of microglial subtypes using quantita-
tive PCR with reverse transcription (RT–qPCR), repeating this experiment 
at least three times with different batches of HMC3 cells (Fig. 8b–d and 
Extended Data Fig. 8b–d). Four compounds met our predetermined 
criteria for the screen: Torin-2 and narciclasine both drove upregulation 
of marker genes associated with clusters 1 and 6, while camptothecin 
and phorbol 13-myristate 12-acetate drove upregulation of cluster 8 
and cluster 10 marker genes. Our results for compounds associated 
with clusters 2, 4 and 9 were inconclusive, as the marker genes that we 
chose did not show significant upregulation with these compounds.

To assess the effects of our selected compounds at a broader 
scale, we profiled cells with bulk RNA-seq and shotgun proteomics 
after 24 h of treatment in a separate set of experiments. At the tran-
scriptional level, camptothecin induced cluster 8 and 10 genes, such 
as HLA-C, CXCR4 and CYBA (Fig. 8e). Interestingly, camptothecin also 
downregulated cluster 1/6 genes such as QKI and ATM (Extended Data 
Fig. 9a), supporting the transcriptional divergence of clusters 8/10 
from 1/6 (Fig. 2c). As predicted, Torin-2 robustly drives the cluster 1/6 
signature (Fig. 8f). Narciclasine does not appear to upregulate this 
signature (Extended Data Fig. 9b); however, GO annotation of genes 
differentially upregulated with narciclasine suggests a strong upregula-
tion of metabolic pathways, such as nitrogen-compound containing 
metabolism and heterocyclic metabolism (Extended Data Fig. 9c), 
that we previously found to be strongly enriched in clusters 1/6 by GO 
annotation. Moreover, examining cluster 1/6 genes upregulated in 
Torin-2 and narciclasine suggests that the two compounds engage com-
plementary, but separate aspects of the cluster 1/6 signature (Extended 
Data Fig. 9d), with narciclasine inducing genes such as MEF2A and 
NUFIP5, while Torin-2 upregulated genes such as DENND3 and ATM. In 
contrast, at the proteomic level, principal component analysis (PCA) 
suggests that narciclasine and Torin-2 yield similar changes in prot-
eomic profiles relative to both the dimethylsulfoxide (DMSO) control 
and camptothecin (Fig. 8g), suggesting the engagement of a different 
proteomic state. Interestingly, neither narciclasine nor Torin-2 clearly 
drive cluster 1/6 marker genes at the proteomic level (Fig. 8h). This 
may be because RNA-derived markers may be suboptimal to resolve 
proteome changes for these microglial subtypes given the known 
divergence between RNA and protein in microglia73 and/or the short 
time course of our perturbation. On the other hand, camptothecin 
does drive strong upregulation of ten genes such as HLA-C and CYBA 
(Fig. 8I) and downregulation of cluster 1/6 genes such as QKI (Fig. 8h) 
at the proteomic level.

We thus identified and validated three tool compounds that polar-
ize a human microglial model system (HMC3 cells) into different tar-
geted states, presenting an approach that can be extended to develop 
a broader toolkit with which to manipulate microglial differentiation 
in vitro and potentially in vivo. Notably, one of our compounds, camp-
tothecin, drives a robust signal toward cluster 10 that is detectable 
at both transcriptomic and proteomic levels; a compound with this 
property could conceptually be useful therapeutically to shift the 
distribution of human microglia in vivo away from clusters 1/6 that are 
strongly enriched in genes and traits associated with AD, MS and other 
diseases (Fig. 5) and toward the CD74hi cluster 10 subset that we have 
previously reported to be associated with AD4.

Discussion
Our understanding of human microglial heterogeneity has been 
transformed over the last 5 years by single-cell studies from many 
groups4,8–10,13–15,74–79. In this study, we aimed to maximize sampling of 
microglial diversity and to present a cross-disease microglial popula-
tion structure derived from 215,658 live human microglia sampled 
from a wide array of CNS regions and conditions (Fig. 2). Our analysis 
explores the interconnection of different microglial subtypes, pro-
posing divergent routes of differentiation with exclusive terminal 
endpoints as well as possible functional and metabolic shifts associ-
ated with these trajectories. We identify families of microglial subsets 
with enrichment of neuropsychiatric disease susceptibility genes. We 
validate our subtypes using a joint immunofluorescence and in situ 
hybridization staining protocol with automated image segmentation 
to evaluate morphological characteristics. Further, we demonstrate 
the utility of our reference by interpreting external data, including 
GBM data, a disease that we did not sample. Finally, we demonstrate 
how our dataset can be leveraged to identify tool compounds that 
recapitulate microglial subtypes, providing a path toward targeted 
therapeutic immunomodulation of microglia.
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Consistent with other studies of ex vivo human microglia4,13, we 
found that shifts in function, metabolism and association with disease 
genes fall along continuous axes radiating outwards from a central 
state. The primary axis of variation in our dataset lies between clus-
ters 1 and 6 and clusters 2, 4 and 9. Clusters 1 and 6 are enriched for 
diseases genes and upregulate heterocyclic metabolism, while clus-
ters 2, 4 and 9 are associated with oxidative metabolism and present 
a homeostatic-active phenotype. The second major axis of differen-
tiation leads to clusters 8 (interleukin signaling) and 10 (complement 
and antigen presentation). These clusters may represent two tracks of 
microglial activation directed toward adaptive immune interaction. 
They are related to cluster 11 (DAM2high microglia), which we had not 
observed in our prior study4, probably because it represents a small 
minority of microglia. This is in marked contrast to murine brain data; 
this difference could stem from the accelerated kinetics of murine 
models compared to human disease, from the ~90 million years of 
evolution between mice and humans, or from the exhaustion of the 
DAM response in the protracted course of human disease. We can now 
define human-centric versions of the DAM that may be more informa-
tive in human studies. Thus, we have captured three primary axes of 
variation in our model: (1) a 1/6 versus 2/4/9 metabolic cline, (2) the 
8/10 axis of immune response specialization, and (3) the DAM-like 
axis of activation that terminates in cluster 11. Of course, it remains 
unclear whether these different tracks of differentiation arise from 
different progenitor pools, or whether any given microglia are fully 
capable of attaining all possible states. Notably, our in situ validation 
efforts confirm the existence of these axes using key marker genes 
and suggest functional differences among these subsets. For example, 
CD74high cells (cluster 10) and SPP1high cells (cluster 11) are both less 
ramified than other microglia, while CXCR4+ (cluster 8) cells exhibit 
more ramification. Our in situ pipeline also offers opportunities to 
explore spatial localization of RNA, as we detect transcripts even in 
distal microglial processes (Fig. 6).

Label transfer offers the opportunity to use our existing structure 
to analyze external datasets, and our results suggest that snRNA-seq 
data, xenografted human iPS cell microglia66 and even an in vitro human 
iPS cell microglial model system68 recapitulate an impressive amount 
of the heterogeneity found among primary microglia. The reference 
also recovers the role of cluster 11 microglia in GBM64,70, a disease not 
sampled in the resource. Ultimately, our resource can facilitate the 
annotation of smaller datasets, enhancing the analysis of the less com-
mon microglial subtypes.

Our reference also forms a foundation that can be leveraged to 
identify new tools that enable functional studies of subtypes by reca-
pitulating them in vitro. Our prioritized compounds include Torin-2, 
an mTOR inhibitor that improves survival in animal models of GBM80 
and has neuroprotective effects81, camptothecin, a topoisomerase 
inhibitor with neuroprotective effects in murine PD82, and narciclasine, 
a pleiotropic drug that inhibits the NF-κB pathway83. Camptothecin is 
particularly interesting as it enhances its target cluster 10 signature 
while also suppressing the cluster 1/6 signature at both the transcrip-
tomic and proteomic levels. These effects may be particularly relevant 
to therapeutic development in AD as clusters 1/6 are enriched for AD 
susceptibility genes (Fig. 5), and we have previously reported an asso-
ciation of the CD74high cluster 10 in AD4. This compound prioritization 
effort offers a generalizable strategy for identifying compounds that 
may drive distinct microglial subtypes and provide a path toward 
targeted immunomodulation therapies.

Our work has limitations. First, ‘control’ donors who have no clini-
cal manifestation of a neurological disorder at the time of death and 
do not fulfill pathological criteria for a disease are rare and only one 
came to autopsy during this study. Second, because our study design 
prioritized uncovering diversity in microglial subtypes across diseases, 
the samples do not enable association studies for disease, region, sex 
or other variables. Third, our efforts to mitigate technical and batch 

effects likely suppressed some true biological variation among sam-
ples. This was a necessary tradeoff to achieve our goal, but it also means 
that we were unable to capture more subtle heterogeneity that may 
be present in different diseases or regions. However, the differences 
in single-cell chemistry did not affect the cell purification process, so 
we do not expect any effects on viability. Fourth, our cross-sectional 
data rely on algorithmic inference in proposing trajectories, but they 
recapitulate and extend similar findings seen in studies of murine 
microglial heterogeneity6,46–49. Fifth, our moderate sample size resolved 
the proliferative cluster 12 (<1% of microglia); however, less frequent 
subtypes may exist and will require larger sample sizes to be discov-
ered. Finally, our HMC3 model system may be limiting; however, we 
mitigate this somewhat by reporting stable expression of microglial 
markers across passages of HMC3 (Supplementary Fig. 1). Indeed, 
this limitation is shared with iPS cell-derived in vitro and xenograft 
models that do not recapitulate the full breadth of human microglial 
heterogeneity (Fig. 7b).

Here, we have created a new cross-disease resource that describes 
human microglial heterogeneity. Through our validation efforts, we 
have used our reference to expand the community’s microglial toolkit 
with robust approaches (1) to identify microglial subtypes in situ and, 
more broadly, to capture morphology and targeted RNA expression 
from individual microglia in human tissue, (2) to transfer the reference 
labels to multiple data types, and (3) to recapitulate certain subtypes 
in vitro via chemical perturbation. The latter results outline a path for 
targeted development of immunomodulatory strategies that lever-
ages our understanding of microglial subtypes implicated in different 
diseases.
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Methods
Source of CNS specimens
Details of the acquisition of autopsy samples from Rush Univer-
sity Medical Center/Rush Alzheimer’s Disease Center (RADC)54,55 in  
Chicago (Dr. Bennett) and Columbia University Medical Center/New 
York Brain Bank in New York (Drs. Vonsattel and Teich)84, as well as 
surgically resected brain specimens from Brigham and Women’s 
Hospital in Boston (Drs. Sarkis, Cosgrove, Helgager, Golden and Pen-
nell) are detailed in our prior publication4. In addition, samples were 
obtained from donation programs at Massachusetts General Hospital,  
Boston (Drs. Bradley T. Hyman and Matthew Frosch), Banner Sun Health 
Research Institute (Dr. Thomas G Beach) and Rocky Mountain MS 
Center (Dr. John Corboy). All brain specimens were obtained through 
informed consent and/or a brain donation program at the respective 
organizations. All procedures and research protocols were approved 
by the corresponding ethical committees of our collaborator’s institu-
tions as well as the Institutional Review Board of Columbia University 
Medical Center (protocol AAAR4962). For a detailed description of the 
brain regions sampled, clinical diagnosis, age and sex of the donors, 
see Supplementary Table 1.

Shipping of brain specimens
After weighing, the tissue was placed in ice-cold transportation medium 
(Hibernate-A medium (Gibco, A1247501) containing 1% B27 serum-free 
supplement (Gibco, 17504044) and 1% GlutaMax (Gibco, 35050061)) 
and shipped overnight at 4 °C with priority shipping.

Microglia isolation, cell hashing and sorting
The isolation of microglia was performed according to our published 
protocol22, with minor modifications. In case of the cortical autopsy 
samples (BA9/46, BA4, BA17/18/19), the cortex (gray matter) and the 
underlying white matter (subcortical white matter) were dissected 
under a stereomicroscope. The subcortical white matter samples 
were not used in this study. The epilepsy surgery samples of temporal 
lobe (BA20/21) were processed without dissection as in this case the 
cortical white and gray matter were not always distinguishable due to 
the surgical procedure. The substantia nigra and the thalamus were 
dissected by separation from the surrounding white matter tracts. The 
hippocampus samples contained the dentate gyrus, CA4/CA3/CA2 and 
CA1 regions, both white and gray matter. The spinal cord sample was 
sampled at the level of the lumbar section and included both white and 
gray matter. The anterior watershed area deep white matter did not 
need any further dissection. All steps of the protocol were performed 
on ice. The dissected tissue was placed in HBSS (Lonza, 10-508F) and 
weighed. Subsequently, the tissue was homogenized in a 15-ml glass tis-
sue grinder, using 0.5 g at a time. The resulting homogenate was filtered 
through a 70-μm filter and spun down at 300 rcf for 10 min. The pellet 
was resuspended in 2 ml staining buffer (RPMI (Fisher, 72400120) con-
taining 1% B27) per 0.5 g of initial tissue and incubated with anti-myelin 
magnetic beads (Miltenyi, 130-096-733) for 15 min according to the 
manufacturer’s specification. The homogenate was then washed once 
with staining buffer, and the myelin was depleted using Miltenyi large 
separation columns (Miltenyi, 130-042-202). The cell suspension 
was spun down and was then incubated with anti-CD11b Alexa Fluor 
488 (BioLegend, 301318) and anti-CD45 Alexa Fluor 647 (BioLegend, 
304018) antibodies as well as 7AAD (BD Pharmingen, 559925) and cell 
hashing antibodies (for catalog numbers of cell hashing antibodies, 
see Supplementary Table 1) for 20 min on ice. Subsequently, the cell 
suspension was washed twice with staining buffer, filtered through a 
70-µm filter and the CD11b+/CD45+/7AAD− cells or CD45+/7AAD− cells 
were sorted on a BD FACS Aria II or BD Influx cell sorter. Cells from 
each brain region were sorted in a separate A1 well of a 96-well PCR 
plate (Eppendorf, 951020401) containing 100 µl of PBS buffer with 
0.3% BSA. Following sorting, cells from different brain regions were 
combined and immediately submitted to single-cell capture, reverse 

transcription and library construction on the 10x Chromium platform. 
All sorting was performed using a 100-µm nozzle. The sorting times 
varied according to the quality of the sample but was usually between 
10 min and 20 min per sample. The sorting speed was kept between 
8,000 and 10,000 events per second.

10x Genomics Chromium single-cell 3′ library construction
Cell capture, amplification and library construction on the 10x Genom-
ics Chromium platform were performed according to the manufac-
turer’s publicly available protocol. Briefly, viability was assessed by 
trypan blue exclusion assay, and cell density was adjusted to 175 cells 
per microliter. In total, 7,000 cells were then loaded onto a single 
channel of a 10x Chromium chip for each sample. The 10x Genomics 
Chromium technology enables 3′ digital gene expression profiling of 
thousands of cells from a single sample by separately indexing each 
cell’s transcriptome. First, thousands of cells are partitioned into 
nanoliter-scale Gel Bead-In-EMulsions (GEMs). Within one GEM, all 
generated cDNA share a common 10x barcode. Libraries were gener-
ated and sequenced from the cDNA, and the 10x barcodes were used to 
associate individual reads back to the individual partitions. To achieve 
single-cell resolution, the cells were delivered at a limiting dilution. 
Upon dissolution of the Single Cell 3′ Gel Bead in a GEM, primers con-
taining (i) an Illumina R1 sequence (read 1 sequencing primer), (ii) a 
16-nucleotide 10x Barcode, (iii) a 10-nucleotide UMI, and (iv) a poly-dT 
primer sequence were released and mixed with cell lysate and Master 
Mix. Incubation of the GEMs then produced barcoded, full-length 
cDNA from poly-adenylated mRNA. After incubation, the GEMs were 
broken and the pooled fractions were recovered. Full-length, barcoded 
cDNA was then amplified by PCR to generate sufficient mass for library 
construction. Enzymatic fragmentation and size selection were used 
to optimize the cDNA amplicon size before library construction. R1 
(read 1 primer sequence) was added to the molecules during GEM 
incubation. P5, P7, a sample index and R2 (read 2 primer sequence) were 
added during library construction via end repair, A-tailing, adaptor 
ligation and PCR. The final libraries contained the P5 and P7 prim-
ers used in Illumina bridge amplification. The described protocol 
produced Illumina-ready sequencing libraries. A single-cell 3′ library 
comprises standard Illumina paired-end constructs that begin and 
end with P5 and P7. The single-cell 3′ 16-bp 10x Barcode and 10-bp 
UMI are encoded in read 1, while read 2 is used to sequence the cDNA 
fragment. Sample index sequences were incorporated as the i7 index 
read. Read 1 and read 2 are standard Illumina sequencing primer sites 
used in paired-end sequencing. Sequencing the library produced a 
standard Illumina BCL data output folder. The BCL data include the 
paired-end read 1 (containing the 16-bp 10x Barcode and 10-bp UMI) 
and read 2 and the sample index in the i7 index read.

Batch structure and sequencing
Tissue specimens were processed upon receipt. The different brain 
regions from the same donor were processed and hashed in parallel and 
loaded in a single well of a 10x Chromium 3′ chip as described above. 
Accordingly, each sample (containing multiple brain regions from the 
same donor) constitutes one batch for all three procedures (microglia 
isolation, cell capture and library construction). All sequencing was per-
formed on either an Illumina HiSeq 4000 or a NovaSeq 6000 machine. 
For specifics on the sequencing machines and QC metrics regarding 
the generated reads, see Supplementary Table 1.

Single-cell RNA-seq data processing, alignment and hashtag 
deconvolution
The majority of our downstream analysis was conducted using the 
R programming language (v.4.0.5 for harmonization and clustering, 
v.4.1.0 for annotation and downstream visualization)85 and the RStu-
dio86 integrated development environment. Cell Ranger v.3.1.0 with 
default parameters was used to demultiplex and align our barcoded 
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reads with the Ensembl transcriptome annotation (downloaded March 
2019, GRCh38.91). A recent report87 suggested that filtering cells with 
greater than 10% mitochondrial reads is the preferred baseline for 
human tissue, and that for brain tissue a higher threshold may even 
be optimal. Thus, a mitochondrial percentage that was the higher of 
either 10% of reads or the two absolute deviations above the median for 
mitochondrial reads within the sample was chosen as a threshold. Cells 
below this threshold with between 500 and 10,000 UMIs were retained 
for downstream analysis. All ribosomal genes, mitochondrial genes and 
pseudogenes were removed, as they interfered with the downstream 
differential gene expression. For samples where we used cell hashing 
to combine regions or subjects in a single sequencing run, droplets 
were demultiplexed using the following workflow. For each hashtag 
oligonucleotide (HTO), a mixture model with two components was 
fitted to the HTO counts using an expectation–maximization algo-
rithm. The component with the smaller mean (negative component) 
represents droplets that were not tagged with the HTO, whereas the 
component with the larger mean (positive components) represents 
droplets that were tagged. We then assign each droplet to either the 
negative or positive component based on its posterior probability. 
Droplets that were assigned to the negative component for all HTOs 
as well as multiplets were discarded. Singlets with high uncertainty, 
that is, without confident assignment to either the negative or positive 
component, were discarded as well, leaving only high-certainty singlets 
for downstream analysis. The method is implemented in the R pack-
age demuxmix88. Some of our hashtag data had lower overall counts, 
and thus, the demuxmix model was unable to effectively segregate 
distributions for some hashtags in several samples. These samples 
were identified as having high percentages of negative/uncertain 
cells with demuxmix. In these cases, to try and recover cells for further 
analysis, the problematic hashtags were reclassified using one of two 
different algorithms, a demixing algorithm developed for MULTI-seq89 
or HTOdemux from Seurat (v.3.2.0)23. Hashtag classifications were 
merged, and doublet/negative/uncertain cell removal proceeded as 
described earlier.

Batch correction
Striking differences were observed in the distributions of UMI counts 
between 10x v2 and v3 chemistry. As this was driving differential clus-
tering, count matrices from v3 samples were downsampled by 50% 
using the DropletUtils90 package in R to achieve comparable UMI dis-
tributions across the two technologies (Supplementary Table 1 and 
Extended Data Fig. 2d). Next, after testing a series of recently published 
batch correction tools, SCTransform91 combined with mNN92 was cho-
sen to mitigate batch effect in our dataset. A range of numbers of differ-
entially expressed genes (3,000–6,000) and components (20–40) were 
tested, and 4,500 differentially expressed genes and 40 components 
were used for downstream analysis. Using these parameters, the full 
pipeline is as follows: SCTransform, which normalizes for minor differ-
ences in sequencing depth, was performed on each individual batch, 
then corrected counts were log normalized with the NormalizeData 
function in the Seurat package. Subsequently, processed datasets were 
merged on the corrected count matrix using the fastmNN algorithm 
accessed through the RunFastMNN function in the SeuratWrappers 
package. Library preparation batch is confounded with samples, and 
diseases are confounded with technical variables in our dataset, due 
to the necessity to process all tissue immediately upon receipt and the 
irregular schedule by which samples are received. As mNN is a harsher 
integration approach when compared to other commonly used tools, 
our pipeline is likely to have removed relevant biological signal in 
integrating the datasets. However, our priority was to obtain a robust 
cluster structure across the diverse brain regions and diseases found 
in our dataset while avoiding the issue of spurious signal from batch 
effects driving separate clustering, which motivated the approach that 
we have described here.

Clustering
The graph-based clustering approach implemented in Seurat (v.3)23 was 
used to cluster our cells. In brief, a k-nearest neighbors graph based on 
Euclidean distance in our corrected mNN space was calculated and used 
to derive refined edge weights based on Jaccard similarity. The Louvain 
algorithm was then applied to iteratively delineate a population struc-
ture on our dataset. This was implemented with the FindNeighbors and 
FindClusters functions in Seurat. A UMAP projection of our dataset was 
computed with the RunUMAP function for visualization (Extended Data 
Fig. 1a). Contaminating red blood cells from our dataset were removed 
using classical markers (HBB/HBA), and microglia were subclustered 
using an identical integration and clustering pipeline (Fig. 2a). Any 
microglial subsets with fewer than 100 cells were discarded. Basic 
quality metrics are shown in Extended Data Fig. 2a–f and reported in 
Supplementary Table 1.

Validation of cluster stability
To evaluate cluster stability, a post hoc pairwise machine learning 
approach was used to evaluate the similarity between clusters. Logi-
cally, one would expect that operating with a simple classifier, sepa-
ration of cells from divergent clusters would be simpler and lead to 
higher accuracy of prediction, while separation of cells from clusters 
that are transcriptionally overlapping would be more difficult, and 
would thus lead to a lower accuracy of prediction. As such, we trained 
simple machine learning models on pairs of different clusters, using 
accuracy of prediction as a proxy for homology of individual pairs of 
clusters. The top 10,000 variable genes in the dataset were identified 
by applying the FindVariableFeatures function from Seurat on the 
log-normalized RNA expression data from our dataset. Using these 
features, keras93 was used to train a multilayer perceptron classifier to 
distinguish each pair of clusters. After basic hyperparameter optimiza-
tion, the following parameters were chosen for the model: the rmsprop 
optimizer, a one-layer structure with 500 nodes in the hidden layer, 
the tanh activation function for the dense layer and a sigmoid activa-
tion function for the output layer. Ten epochs and a batch size of 100 
were used for training. As our only concern was the raw accuracy of 
classification, mean squared error was used as the loss function. For 
each pair of clusters, the data were split fivefold, then the classifier was 
trained on 80% of the dataset and the remaining 20% was classified. 
This process was repeated five times to classify every cell in our dataset 
once. This entire pipeline was then repeated 50 times for each pair of 
clusters. Cells that were ambiguously classified (<40 times of 50) to the 
same cluster were designated intermediate cells. A threshold of <20% 
overlap between clusters was chosen as the threshold for merging 
clusters; in our model, no clusters met this parameter and as such, the 
original 12-cluster model was retained. As such, this analysis leverages 
the ability of simple classifiers to separate distinct clusters as a direct 
metric for the transcriptional similarity of said clusters, and conducted 
across all combinations of clusters, it provides an overarching metric 
for the similarity of each cluster to every other cluster in our dataset. 
The constellation diagram shown in Fig. 3a depicts the results of this 
analysis: edges between clusters represent the percentage of total cells 
classified as intermediate, and the area of each node is scaled to cor-
respond to the overall size of the corresponding cluster. As orthogonal 
validation of our microglial clustering parameters, a resampling clus-
tering approach was also used to assess cluster robustness. Over 100 
iterations, 75% of the cells from our dataset were randomly sampled 
and our clustering pipeline was run with identical parameters. This was 
also done in a pairwise fashion to examine fluidity between individual 
pairs of clusters. For each pair of clusters, the frequency with which 
cells assigned to one cluster in our original clustering were reclustered 
into the cluster that contained fewer cells with the same original clas-
sification was recorded. Clusters remain generally stable, with most 
of the overlap being found between adjacent, closely related clusters 
or the intermediate clusters in our dataset. The results are shown in 
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Extended Data Fig. 2g, visualized using the corrplot package94. Each of 
our microglial subtypes was also subclustered, but no stable, distinct 
subclusters were identified.

Identification of cluster-defining gene sets
To identify cluster-defining gene sets, the FindMarkers function in Seu-
rat was used to implement a pairwise testing approach. We prioritized 
differentially expressed genes that could best delineate a given cluster 
from each other cluster in our dataset. To do so, MAST95 was applied 
to normalized count data from the ‘RNA’ assay of the Seurat object to 
find differentially expressed genes between every combination of pairs 
of clusters. Within each cluster, all the differentially expressed genes 
that were identified with this approach were filtered to only include 
those that were only found to be differentially expressed in one direc-
tion (either up or down). Any genes that were found to be upregulated 
in comparison to some clusters but downregulated in comparisons 
to other clusters or vice versa were removed from our downstream 
analysis. Furthermore, to ensure that the specific cluster-defining 
genes were prioritized, upregulated genes were ranked by the num-
ber of comparisons in which they were upregulated, and only those 
upregulated in three or more comparisons were used for downstream 
analyses. An identical process was applied for downregulated genes. 
Full marker gene lists are reported in Supplementary Table 2.

Enrichment of DAM signature gene sets
The DAM signature gene sets for ‘DAM1’, ‘DAM2’ and ‘homeostatic 
microglia’ described in ref. 6 were examined separately in our analysis. 
These sets consist of two sets of genes upregulated in the DAM trajec-
tory, as well as homeostatic microglial genes known to be downregu-
lated in DAM microglia. The overlap of ‘DAM1’ and ‘DAM2’ gene sets with 
upregulated cluster-defining genes, and the overlap of the ‘homeo-
static microglia’ gene set with downregulated cluster-defining genes 
(‘Identification of cluster-defining gene sets’) was examined using a 
hypergeometric test with an FDR-corrected threshold for significance 
at q = 0.01 (ref. 96). The results of this analysis were visualized in a heat 
map where the color intensity corresponds to the −log10 P value of 
the FDR q value for enrichment of DAM1/DAM2 genes in upregulated 
genes or homeostatic genes in downregulated genes from our clusters 
(Fig. 2e).

Monocle3 pseudotime analysis
As an orthogonal method of evaluating the continuity of different 
microglial states in our cluster structure, the Monocle3 algorithm was 
used to build a pseudotime trajectory across our dataset (Extended 
Data Fig. 4e). Using the Seurat interface to Monocle3 found in Seurat-
Wrappers, the Seurat object was converted into a Monocle data object, 
and a pseudotime trajectory was derived using the ‘learn_graph’ func-
tion, retaining the clustering assignments from our original clustering 
pipeline (see ‘Clustering’).To establish an originating point, the pseu-
dotime root was placed on the border of clusters 2 and 3, as these cells 
had the strongest gene expression signature for classic homeostatic 
microglia and few differentiating genes, suggesting that they could 
form the basal state for microglia from which they would differentiate 
into other states. Interestingly, this state was best captured by choosing 
cells with maximal AVP expression, a marker of hematopoietic stem 
cells97 that is frequently used to mark the root cells in hematopoietic 
pseudotime tracing.

Functional annotation of microglial clusters
To perform functional annotation of microglial clusters, upregulated 
or downregulated gene lists for each cluster were defined as genes 
upregulated in three or more comparisons or downregulated in two 
or more comparisons. Annotation of these gene lists was performed 
with several resources: GO by way of TopGO38 as well as Reactome40 
pathway analysis with clusterProfiler42. For GO analysis, we conducted 

analysis with biological process annotation. For all functional analysis, 
the Benjamini–Hochberg correction98 was used to correct P values 
for multiple testing. Corrected P values below a threshold of 0.01 
were chosen as significant for both GO and Reactome results. GO 
results were aggregated and summarized by use of the rrvgo39 pack-
age. Aggregated results of pathways are shown in Fig. 3 and Extended 
Data Fig. 4. For Fig. 3a, terms were filtered to include only those terms 
that were simultaneously upregulated in both clusters 4 and 9 and 
downregulated in both clusters 1 and 6, or vice versa to best highlight 
differences between these families.

Examining enrichment of MS susceptibility genes
The enrichment of MS susceptibility genes was evaluated separately 
from other diseases due to the availability of a recent publication by 
the International Multiple Sclerosis Genetics Consortium extensively 
mapping genomic risk loci in MS51. A hypergeometric test was used 
to evaluate the enrichment of 551 putative MS susceptibility genes 
identified as targets of MS variants in genes upregulated in our clusters 
(‘Identification of cluster-defining gene sets’). The FDR-corrected 
threshold for significance was set at q = 0.01.

Examining enrichment of disease genes from the GWAS 
Catalog
To confirm the results of our MS analysis and to examine enrichment 
of genetic risk from other neurodegenerative or neuroinflammatory 
diseases, we were interested in using a more comprehensive source of 
disease–gene associations. Thus, the GWAS Catalog52,99,100, a curated 
database that focused on SNP–trait association, was used for further 
analysis. This dataset contains select studies that include a primary 
GWAS analysis (per the GWAS catalog website: ‘array-based genotyping 
and analysis of 1000,000 pre-QC SNPs selected to tag variation across 
the genome and without regard to gene content’) or an imputation 
analysis with sufficient genome-wide coverage to meet the definition 
of a GWAS catalog mentioned previously. This catalog is updated on a 
weekly basis by curators, and eligible studies are generally added within 
1–2 months of publication. The 2021-08-16 data release was used for 
this study. For our analysis, we chose to focus on specific disease enti-
ties where microglia are proposed to play relevant roles. To narrow our 
scope, GWAS catalog entries were filtered by a specific disease name. 
For example, to examine AD associations, all records containing ‘Alzhei-
mer’ in the ‘DISEASE_TRAIT’ column were retained. Similarly, for stroke 
and cerebrovascular disorders, we filtered for all records containing 
the keywords ‘stroke’, ‘brain ischemia’, ‘cerebral ischemia’, ‘cerebral 
artery’ and ‘cerebrovascular’. We carried out a similar approach for 
all other diseases we investigated in this analysis. After obtaining sets 
of disease–gene associations for each disease entity of interest, we 
applied a similar testing approach to that described in our MS disease 
gene analysis (see ‘Examining enrichment of MS susceptibility genes’).

Examining association of ROSMAP traits with clusters
The ROSMAP RNA-seq cohort used in our analysis contains a total of 
1,092 samples, with a total of 18,629 genes captured across all samples. 
Using the DEseq2 R package101, the DESeq function was used to perform 
differential expression analysis in association with one of 12 traits. The 
model for differential testing was:

gene expression ∼ phenotype + age at death + sex + technical variables.

Technical variables included: Batch, LOG_ESTIMATED_LIBRARY_
SIZE, LOG_PF_READS_ALIGNED, PCT_CODING_BASES, PCT_INTER-
GENIC_BASES, PCT_PF_READS_ALIGNED, PCT_RIBOSOMAL_BASES, 
PCT_UTR_BASES, PERCENT_DUPLICATION, MEDIAN_3PRIME_BIAS, 
MEDIAN_5PRIME_TO_3PRIME_BIAS, MEDIAN_CV_COVERAGE, pmi, 
and study. For slope of cognitive decline, additional adjustment was 
performed for years of education in the model. Lists of positively and 
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negatively associated genes were derived with an FDR-adjusted P value 
with an alpha level of 0.01. Enrichment of positively and negatively 
associated genes for each trait in the upregulated and downregulated 
genes for each cluster, respectively, was evaluated with a similar test-
ing approach and threshold to our disease annotation analyses (see 
‘Examining enrichment of disease genes from the GWAS Catalog’). 
Detailed descriptions of the ROSMAP traits used in this analysis can 
be found at https://www.radc.rush.edu/docs/var/varIndex.htm, and 
they have been described in detail elsewhere22,54,55,56,102. Results of this 
analysis are reported in Supplementary Table 4.

In situ confirmation of microglia subset identity and 
abundance
As data do not always correlate between the transcriptomic and protein 
levels, a phenomenon that has been noted to be pronounced specifi-
cally in activated microglia73, Advanced Cell Diagnostic’s RNAscope 
was used to confirm our scRNA-seq results. A cohort of samples from 
the New York Brain Bank (details on donor cohort can be found in 
Supplementary Table 5) consisting of prefrontal cortex (BA9) tissue 
sections from 16 donors was chosen for validation efforts. After exten-
sive optimization of a co-detection workflow to merge immunofluo-
rescence and RNAscope, our final pipeline is described below. Initial 
optimization was performed with positive and negative RNAscope 
4-plex controls (ACD; positive, 321831; negative, 321801), and once 
an optimal pipeline was identified, it was run with probes of interest.

All reagents from the RNAscope Multiplex Fluorescent Reagent Kit 
v2 (ACD, 323100) were prepared for use in accordance with the manu-
facturer’s instructions. All wash buffers were prepared immediately 
before performing experiments.

Tissue sections cut at a thickness of 6 µm were deparaffinized with 
CitriSolv Clearing Agent (Decon Laboratories, 1601) for 20 min at room 
temperature (RT). This was followed by an ethanol series (100%, 100%, 
70%; 100%, Fisher Scientific, BP2818; 70%, Fisher Scientific, BP8203) 
for 30 s per bath with agitation and rehydration in distilled water for 
1 min at RT. Subsequently, 4–6 drops of hydrogen peroxide were used 
to cover the tissue section, and slides were incubated for 10 min at RT. 
Hydrogen peroxide (ACD, 322381) solution was removed by tapping 
on absorbent paper, and slides were washed with distilled water twice. 
Antigen retrieval was performed with pH 6.0 citrate (Sigma-Aldrich, 
C9999) and heating with a microwave for 25 min at 400 watts. Slides 
were then placed in tap water for 5 min, then moved to 100% ethanol for 
1 min. Slides were allowed to dry fully at RT, then hydrophobic barriers 
were drawn around the tissue section with Super Pap Pen Liquid Blocker 
(Newcomer Supply, 6505). Slides were then blocked for 30 min at RT 
with RNAscope Co-Detection Antibody Diluent (ACD, 323160). Diluent 
was removed by tapping on absorbent paper, and slides were treated 
with primary antibody diluted in RNAscope Co-Detection Antibody 
Diluent for 2 h at RT. Slides were washed three times with PBS (Corning, 
46-013-CM) containing 0.1% Tween-20 (Sigma-Aldrich, P9416; PBS-T), 
then submerged in fresh 10% Neutral Buffered Formalin (Sigma-Aldrich, 
HT5011) for 1 h at RT. Slides were washed with PBS-T three times, then 
four drops of RNAscope protease plus (ACD, 322381) were added to the 
slide and spread to fully cover the tissue. After incubation for 40 min at 
40 °C in the RNAscope HybEz II oven (ACD, 321710), slides were washed 
once with distilled water. In total, 125 µl of pre-mixed RNAscope probe 
mix was then added to each slide, and then slides were incubated for 
2 h at 40 °C. Slides were removed from the oven and washed twice with 
RNAscope wash buffer (ACD, 310091). Slides were then covered with 
5× SSC (Sigma-Aldrich, S6639-1L) buffer and left overnight until the 
morning, when the protocol was resumed.

On the second day of the protocol, the slides were washed twice 
with RNAscope wash buffer, then four drops of RNAscope AMP1 (ACD, 
323101) were added to each slide. After 30 min of incubation at 40 °C, 
slides were washed twice with RNAscope buffer, then four drops of 
AMP2 (ACD, 323102) were added per slide. After 30 more minutes of 

incubation at 40 °C, slides were washed twice with RNAscope buffer, 
then four drops of AMP3 (ACD, 323103) were added per slide. After a 
final 15 min of incubation, slides were washed twice with RNAscope 
buffer.

Next, four drops of HRP-C1 (ACD, 323104) were added per slide. 
After 15 min of incubation at 40 °C, slides were washed twice with 
RNAscope buffer, then 150 µl of Opal 570 (Akoya, FP1488001KT) dye 
diluted in RNAscope TSA diluent (ACD, 322809) was added per slide. 
Slides were incubated for 30 min, then washed twice with RNAscope 
wash buffer. Finally, four drops of HRP blocker (ACD, 323107) were 
added, followed by a 15-min incubation period and two washes with 
RNAscope buffer. This HRP-TSA-block process was repeated iden-
tically with either HRP-C2 (ACD, 323105) or HRP-C3 (ACD, 323106) 
depending on the channel of the original probes, and Opal 690 (ACD, 
FP1497001KT) dye diluted in TSA diluent. Finally, this HRP-TSA-block 
process was repeated once more with HRP-C4 (ACD, 323121), and the 
following modifications: TSA-DIG (Akoya, FP1501001KT) diluted in 
RNAscope TSA diluent for the second step and a 30-min incubation at 
RT instead of 40 °C, and swapping the second wash after HRP blocking 
from RNAscope wash buffer to PBS-T.

After all HRP steps were completed, counterstaining was per-
formed with 200 µl of secondary antibody diluted in RNAscope 
Co-Detection Antibody Diluent. After incubation for 30 min at RT, slides 
were washed three times with PBS-T. Slides were then incubated with 
150 µl of Opal Polaris 780 dye (Akoya, FP1501001KT) diluted in Antibody 
Diluent/Block (Akoya, ARD1001EA) for 30 min at RT. After three washes 
with PBS-T, slides were incubated with 200 µl of 1× Trueblack (Biotium, 
23007) for 2 min at RT to quench lipofuscin autofluorescence. Slides 
were washed three times with PBS and counterstained with four drops 
of DAPI (ACD, 323108) per slide incubated at RT for 30 s. After removing 
DAPI by tapping slides on absorbent paper, the hydrophobic barrier was 
removed, and the slides were mounted with one drop of Prolong Gold 
(Thermo Fisher Scientific, P36934) and coverslips (Fisher Scientific, 
12545F). Bubbles were removed from the mounting medium using 
gentle pressure from a pipette tip. Slides were dried for 30 min at RT 
in the dark, then transferred to 4 °C for imaging the following day.

The primary antibody used in staining was goat anti-human Iba1 
(Wako, 01127991; dilution of 1:50). The secondary antibody used in 
staining was donkey anti-goat IgG (H + L) highly cross-adsorbed sec-
ondary antibody conjugated to Alexa Fluor Plus 488 (Thermo Fisher 
Scientific, A11055; 1:500 dilution). The RNAscope probes used in our 
experiments were: CD74 (ACD, 477521), CXCR4 (ACD, 310511-C2), GPX1 
(ACD, 492881) and SPP1 (ACD, 420101-C4). Two additional probes were 
used but provided insufficient signal for downstream analysis: MEF2A 
(ACD, 452891-C3) and CX3CR1 (ACD, 411251-C3).

Fields of view were captured using the ×40 objective of a Nikon 
Eclipse Ni-E immunofluorescence microscope. For each donor, 15 
images were obtained from the gray matter with same exposure time, 
then loaded into CellProfiler software where automated segmentation 
and downstream analysis was performed as described below. Repre-
sentative images can be found in Fig. 6b,f and Extended Data Fig. 6a,b.

Automated image analysis using CellProfiler
To automatically segment images and localize transcripts within micro-
glia, we developed an extensive pipeline in CellProfiler v.4.2.1. First, 
the IdentifyPrimaryObjects module was used to segment based on 
DAPI, the EnhanceOrSuppressFeatures module was used to enhance 
the Iba1 signal (using ‘Neurites’ as the feature type) using the ‘Line 
structures’ filter, and segmented Iba1 signal was identified using 
IdentifyPrimaryObjects. After another round of enhancement of Iba1 
signal by applying the ‘Tubeness’ filter (again using ‘Neurites’ as the 
feature type), the RelateObjects module was used to relate segmented 
DAPI and Iba1 objects using the DAPI as the parent objects and the 
Iba1 (after enhancement) as the child objects. Next, morphological 
parameters of each joint segmentation-defined cell were measured 
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with the MeasureObjectSizeShape module. Then, for each of the chan-
nels with RNAscope imaging data, the following set of steps were run: 
enhancement of the signal for the given channel with EnhanceOrSup-
pressFeatures specifying ‘Speckles’ as the feature type, identification 
of RNA puncta using IdentifyPrimaryObjects, setting a mask for the 
channel with MaskObjects, then relating identified RNA puncta to the 
parent cells with RelateObjects. Subsequently, the intensity in each of 
the channels for all RNA that were associated with a parent microglial 
cell was measured with the MeasureObjectIntensity module, and all 
data were exported with the ExportToSpreadsheet module. Our full 
pipeline is available in Supplementary Table 5.

Analyzing CellProfiler-processed RNAscope data
Downstream of CellProfiler processing, all RNAscope puncta in any 
channel were filtered to exclude those found outside microglia identi-
fied by the joint segmentation pipeline. Using the microglia-localized 
puncta, an overall area-adjusted score was computed for each channel 
(cy3, cy5 or cy7) by dividing the summed intensity of puncta detected 
within a given microglial cell by the computed area for each microglial 
cell segmented by CellProfiler. The distribution of area-adjusted inten-
sity for the different images in our cohort was evaluated, showing that 
most of our sections had similar distributions of cells, with rare outliers 
that had abnormally high signal in all channels. These outliers were 
excluded from further analysis. For three of our markers—CD74, GPX1 
and SPP1—expression levels for each of these markers were thresholded 
into three bins—low, medium and high—as we found substantial detec-
tion of these markers across all of our tissue samples. In contrast, CXCR4 
was detected only in a small fraction of cells at similar levels, so cells 
were segmented as either CXCR4 positive or negative.

Thresholds were determined based on the distributions of the 
RNAscope data, as well as the levels of expression for different sub-
types in our scRNA-sequencing dataset. For example, in our scRNA-seq 
data, the ‘high’ subtype for CD74, cluster 10, has a median fold change 
of 2.899 for CD74 compared to other subsets. Thus, the threshold for 
CD74 in the RNAscope data was set as 2.899 times the median of CD74 
expression. Similarly, to derive the low threshold for CD74, the fold 
change in CD74 expression was compared between the set of families 
with low CD74 expression, which included the closely related clusters 
1, 5, 6 and 7, as well as the proliferative cluster 12, and all other clusters 
where the difference in expression of CD74 was found to be significant 
by our pairwise testing approach (‘Identification of cluster-defining 
gene sets’). In this case, the median fold change in expression for our 
low classes versus all other clusters was 0.394. As such, the CD74-low 
class threshold was set as 0.394 times the median of CD74 expres-
sion. This process was repeated for SPP1 and GPX1; for example, the 
GPX1-high classes were clusters 2, 4 and 9, while the low classes were 
1, 6, 7 and 12, and median fold change of these two groups of clusters 
versus other clusters was used to determine the high and low threshold, 
respectively. A small fraction of cells with abnormally high signal that 
no longer appeared punctate in form, but rather diffuse and sometimes 
extending beyond the boundary of the cells was identified. Although 
these could represent real cells, these might also represent cells with 
high levels of background in our specific channels. Thus, for CD74 and 
SPP1, the two markers where these types of cells were observed, cells 
that were 1.5 times the interquartile range above the 75th percentile 
for expression for all channels were excluded. This excluded a small 
number of cells (49 of a total of 7,364 cells for panel 1 and 13 of a total 
of 3,710 cells for panel 2).

To provide the most accurate comparison of numbers of cells 
between RNAscope and scRNA-seq, cells in scRNA-seq coming from AD 
diagnoses (EOAD, LOAD), PD diagnoses (PD-DLBD, PSP) or our control 
sample, were chosen for comparison, as these were the diagnoses 
represented in the samples that we obtained for our in situ analysis. 
Proportions of cells per binned class (that is, CD74lo, CD74int, CD74hi) 
were then compared between the two datasets. The numbers of cells 

binned into the low, medium and high CD74 classes were 3,756, 3,333 
and 329, respectively. The numbers of cells binned into the CXCR4 nega-
tive and positive classes were 7,096 and 322, respectively. The numbers 
of cells binned into the low, medium and high GPX1 classes were 1,404, 
1,653 and 671, respectively. The numbers of cells binned into the low, 
medium and high SPP1 classes were 3,216, 388 and 125, respectively.

For analyses leveraging various features output by our CellProfiler 
pipeline, including the ‘Compactness’ and ‘Eccentricity’ features, the 
output of CellProfiler for each of these features was used. For others, 
such as ‘median distance’, the median distance of puncta for a given 
channel (for example, cy3, cy5 or cy7) was manually computed from 
the centroid of single segmented microglial cells. In all cases involving 
median distance of puncta from cellular centroids, we excluded all 
cells in the ‘low’ class for all channels in question to only include cells 
with real data. Significance of differences in morphological features 
between expression classes was tested with Welch’s t-test with the 
Holm–Bonferroni correction103,104, setting a significance threshold for 
an adjusted P value of 0.05.

MERFISH data generation
Human postmortem frozen brain tissue was embedded in Optimum 
Cutting Temperature medium (VWR, 25608-930) and sectioned on a 
Leica cryostat at −20 °C at 10 μm onto MERSCOPE coverslips (Vizgen, 
2040003). These sections were then processed for MERSCOPE imag-
ing according to the manufacturer’s instructions. Once adhered to the 
coverslip, the tissue was fixed followed by three washes with 1× PBS. 
After aspiration, 70% ethanol was added to permeabilize the tissue for 
at least 24 h. After a wash with Formamide Wash Buffer, the sample was 
incubated with a custom MERFISH probe library and left to hybridize 
for 36–48 h. The sample was then washed and incubated at 47 °C with 
Formamide Wash Buffer twice, and then the tissue was embedded in a 
polyacrylamide gel followed by incubation with tissue clearing solution 
overnight at 37 °C. After the tissue became transparent, samples were 
washed with the wash buffer (Vizgen, 20300001) and incubated with 
DAPI and polythymine (polyT) staining reagent (Vizgen, 20300021) 
for 15 min with agitation. After washing, the coverslip was assembled 
into the imaging chamber and placed into the microscope for imag-
ing. Each section was imaged using MERSCOPE 500 Gene Imaging Kit 
(Vizgen, 0400006) on a MERSCOPE (Vizgen). Briefly, the sample was 
loaded into a flow chamber connected to the MERSCOPE Instrument. 
A low-resolution mosaic was acquired using a ×10 objective, and the 
regions of interest were selected for high-resolution imaging with a 
×60 lens. For the high-resolution imaging, the focus was locked to the 
fiducial fluorescent beads on the coverslip. Cell segmentation was 
performed using the Watershed algorithm, using DAPI nuclear seeds 
and PolyT total RNA staining basins. Images were decoded to RNA spots 
with xyz and gene ID using Vizgen’s Merlin software.

Validation with MERFISH
We excluded cell entities suggesting failed segmentation (zero tran-
scripts) and retained cells with 25–2,500 transcripts, more than five 
unique genes, and a size of 40–2,500 μm.

For downstream integration of cells across tissues, count matrices 
were merged and normalized using SCTransform91 in the R package, 
Seurat (v.4)105. We identified major cell types based on 40 extracted 
PCs using a k-nearest neighborhood of 30 cells via FindNeighbors 
and clustering using the Louvain algorithm via FindClusters (Seurat).

For differential expression and downstream projection, we used 
log-normalized, downsampled counts. The AD tissue showed higher 
median UMI counts than the non-AD tissue. We downsampled UMI 
counts in the AD tissue to a proportion of 0.796 using downsampleMa-
trix from DropletUtils106 to ensure a similar distribution to the non-AD 
tissue. Cell types were annotated based on known cell-type markers and 
differentially expressed genes identified using MAST95 implemented 
in FindMarkers (Seurat).
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To identify microglial subtypes, we extracted the microglia fol-
lowed a similar preprocessing and integration protocol. To optimize 
the number of clusters, we used a subsampling-based approach 
(chooseR107) to calculate silhouette scores as a metric of cluster robust-
ness. Across eight resolutions (0.3 to 1), we iteratively derived clusters 
(B = 100) in 80% subsets of the AD-derived microglia. Silhouette scores 
were averaged per cluster in each resolution, and optimal resolution 
was selected based on a median per-cluster silhouette score greater 
than the bootstrapped median silhouette score (B = 25,000) across the 
resolution parameter set. We chose a resolution of 0.4, which showed 
the second-highest median silhouette score averaged across clusters 
and an overall higher range than a resolution of 0.3.

We projected the microglia from the AD and the non-AD tissue 
into the existing UMAP using 50 projected mNN dimensions. The 
log-normalized, downsampled counts were used to identify anchor 
cells based on 51 overlapping genes in FindTransferAnchors and labels 
were transferred using TransferData.

Training machine learning models for label transfer to other 
single-cell microglial datasets
In the initial evaluation of our query datasets, substantial batch effects 
were evident. As this was likely to confound our downstream label trans-
fer workflow, a version of our mNN integration pipeline was adapted for 
upstream removal of batch effects. To do so, our reference data were 
concatenated with the query data in a single Seurat object, and the 
unique differentially expressed genes from our pairwise differential 
expression testing (Identification of cluster-defining gene sets) were 
used for cross-batch merging with the fastmNN algorithm. For all 
these analyses, we used 40 components. The normalized ‘mnn.recon-
structed’ assay, which represents per-gene corrected log-expression 
values, was used for downstream analysis.

After testing a number of different models in our label transfer 
pipeline, a combinatorial workflow leveraging two distinct models for 
different clusters showed the best accuracy: a set of pairwise SVM clas-
sifiers using consensus voting to assign labels for the smaller clusters 
(8–12) and a flat XGB69 classifier to assign labels for the larger clusters 
(1–7) with higher transcriptional homology. This set of models was 
chosen because the SVM achieved highest accuracy in initial testing 
with smaller classes, but lower-than-average accuracy on larger classes, 
whereas the XGB results followed the exact opposite trend. Predictions 
from these two models were thus integrated to achieve higher predic-
tive accuracy. The overall workflow for both methods was similar: as 
a few of our classes are transcriptionally similar, similar classes are 
condensed (clusters 1/6/7 and clusters 2/4), then a subset of the cells in 
our dataset are selected for training. Next, the differentially expressed 
genes from our pairwise differential expression testing (‘Identification 
of cluster-defining gene sets’) were selected as the features for training, 
and PCA was performed on the resulting subset of the data.

For the SVM, the training subset was 0.2 for classes 1–9, and 0.5 
for classes 10–12. A separate classifier was trained for each unique 
pair of clusters (that is, a classifier to compare clusters 1/6/7 and 2/4, 
1/6/7 and 3….1/6/7 and 12, then 2/4 and 3, 2/4 and 5….2/4 and 12) using 
only the genes found to be differentially expressed (both up and 
down) between that specific pair of clusters. Data classes were then 
rebalanced using combined over/under resampling to reduce class 
imbalance for smaller classes. Caret108 was used to perform PCA and 
hyperparameter optimization of a SVM model using a radial kernel 
and tenfold cross-validation repeated three times. PCA was conducted 
independently during each fold. Conversely, for XGB, the training sub-
set was 0.33, and the model trained only on cells from groupings 1/6/7, 
2/4, 3 and 5. Similarly, PCA was performed upstream on the subset of 
scaled data consisting of all genes found to be differentially expressed 
between any clusters. Hyperparameter optimization with fivefold 
validation was performed in a stepwise fashion: tree number was first 
optimized, then tree-specific parameters were tuned with a restrictive 

grid search, then regularization parameters were tuned with a restric-
tive grid search, then final optimization was conducted with grid search 
in a narrow range around prior optimal parameters.

To construct a validation subset, a subset of 50% of the dataset was 
sampled exclusively from cells not used for training of either the SVM 
or XGB models. The same scaling and subsetting operations described 
above were applied to these data. Optimized SVM and XGB models 
were used to classify the data. For SVM models, final classifications 
were obtained with hard consensus voting, as the class with the major-
ity of votes was chosen as the final class of the SVM voting ensemble. 
Similarly, for XGB, which outputs a probability for each class summing 
to 1 across all classes, the highest probability was used to choose the 
assigned label. However, the class probabilities for XGB also provided 
the opportunity to evaluate the confidence of the classifier and drop 
lower-confidence assignments. As such, cells were only retained for 
SVM classifications in classes 10–12 or for XGB classifications in classes 
1–7 that had higher than 50% classification probability for the assigned 
probability. Final classifications were merged across datasets, and 
accuracy was evaluated by examining sensitivity, specificity and con-
gruence of marker gene expression patterns of cells assigned to each 
class with marker gene expression patterns seen in our original data. 
Identical procedures were performed for query datasets.

This approach demonstrates high sensitivity and specificity on test 
data, with joint accuracy averaging 85% across models trained for dif-
ferent query datasets. Notably, uniformly high specificity is observed, 
even for clusters with lower sensitivity, such as clusters 3 and 5.  
These two clusters are also associated with lower confidence scores 
from our XGB model, an expected result given the transcriptionally 
intermediate nature of these clusters. Thus, the model’s greatest dif-
ficulties with classification come in cases where the true classification 
boundary is not well defined, which provides a vote of confidence for 
the reliability of the model. Notably, for marker genes detected in query 
datasets, the transcriptional profiles of cells assigned to our distinct 
microglial clusters closely match the profiles of cells in those clusters 
in our original dataset (Extended Data Fig. 6).

To analyze association of mapped proportion numbers with con-
tinuous traits in the ROSMAP single-nucleus data, a linear model from 
the stats package in R with the formula ‘proportion ~ trait’ was used 
to examine the relationship of amyloid burden to cluster proportion.  
P values were adjusted with the Benjamini–Hochberg correction98. All 
ROSMAP donors with single-nucleus data were used for this analysis 
(described below).

Single-nucleus library preparation and sequencing of single 
nuclei
Dorsolateral prefrontal cortex tissue specimens were received frozen 
from the RADC. We observed variability in the morphology of these 
tissue specimens with differing amounts of gray and white matter and 
presence of attached meninges. Working on ice throughout, we care-
fully dissected to remove white matter and meninges, when present. 
The following steps were also conducted on ice: about 50–100 mg 
of gray matter tissue was transferred into the dounce homogenizer 
(Sigma, D8938) with 2 ml of NP40 Lysis Buffer (0.1% NP40, 10 mM Tris, 
146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, 40 U ml−1 of RNase inhibitor 
(Takara, 2313B)). Tissue was gently dounced while on ice 25 times 
with pestle A followed by 25 times with pestle B, then transferred to a 
15-ml conical tube. Then, 3 ml of PBS + 0.01% BSA (NEB, B9000S) and 
40 U ml−1 of RNase inhibitor were added for a final volume of 5 ml and 
then immediately centrifuged with a swing bucket rotor at 500g for 
5 min at 4 °C. Two samples were processed at a time, the supernatant 
was removed and the pellets were set on ice to rest while process-
ing the remaining tissues to complete a batch of eight samples. The 
nuclei pellets were then resuspended in 500 ml of PBS + 0.01% BSA 
and 40 U ml−1 of RNase inhibitor. Nuclei were filtered through 20-µm 
pre-separation filters (Miltenyi, 130-101-812) and counted using the 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-024-01764-7

Nexcelom Cellometer Vision and a 2.5 µg µl−1 DAPI stain at a 1:1 dilution 
with cellometer cell counting chamber (Nexcelom CHT4-SD100-002). 
In total, 5,000 nuclei from each of eight participants were then pooled 
into one sample, and 40,000 nuclei in a volume of 15–30 µl were run 
on the 10x single-cell RNA-seq platform using the Chromium Sin-
gle Cell 3′ Reagent Kits version 3. Libraries were made following the 
manufacturer’s protocol, briefly, single nuclei were partitioned into 
nanoliter-scale GEMs in the Chromium controller instrument where 
cDNA share a common 10x barcode from the bead. Amplified cDNA 
was measured by Qubit HS DNA assay (Thermo Fisher Scientific, 
Q32851) and quality assessed by BioAnalyzer (Agilent, 5067-4626). 
This whole-transcriptome-amplified material was diluted to <8 ng ml−1 
and processed through a v3 library construction, and resulting libraries 
were quantified again by Qubit and BioAnalzyer. Libraries from four 
channels were pooled and sequenced on one lane of Illumina HiSeqX 
by the Broad Institute’s Genomics Platform, for a target coverage of 
around one million reads per channel.

Processing of snRNA-seq reads
For each batch of snRNA-seq FASTQ files, Cell Ranger software (v.6.0.0; 
10x Genomics) was used to map reads onto the reference human 
genome GRCh38, to collapse reads by UMI, and to count UMIs per gene 
per droplet. As a transcriptome model, the ‘GRCh38-2020-A’ file set 
distributed by 10x Genomics was used. The ‘--include-introns’ option 
was set to incorporate reads mapped to intronic regions of nuclear 
pre-mRNA into UMI counts. To call cells among the entire droplets, 
the ‘remove-background’ module of CellBender109 was applied to raw 
UMI count matrices with command line parameters. The admixture 
of ambient RNA was estimated and subtracted from UMI counts by 
CellBender. These filtered UMI count matrices were used in the sub-
sequent analyses.

Demultiplexing
Because our snRNA-seq library consisted of nuclei from eight indi-
viduals, original individuals of each droplet were inferred by har-
nessing SNPs in snRNA-seq reads. We used two different procedures, 
depending on whether all eight individuals had been genotyped with 
whole-genome sequencing (WGS). When eight individuals were geno-
typed, we used demuxlet110 software. From the WGS-based VCF file of 
1,196 ROS/MAP individuals, we extracted SNPs that were in transcribed 
regions, passed a filter of GATK, and at least one of the eight individu-
als had its alternate allele. The extracted SNP genotype data were fed 
to demuxlet along with BAM files generated by Cell Ranger. When less 
than eight individuals were genotyped, we used freemuxlet (https://
github.com/statgen/popscle/), which clusters droplets based on SNPs 
in snRNA-seq reads and generates a VCF file of snRNA-seq-based geno-
types of the clusters. The number of clusters was specified to be eight. 
The snRNA-seq-based VCF file was filtered for genotype quality > 30 
and compared with available WGS genotypes using the bcftools gtch-
eck command. Each WGS-genotyped individual was assigned to one 
of the droplet clusters by visually inspecting a heat map of the num-
ber of discordant SNP sites between snRNA-seq and WGS. The above 
two procedures converged to a table that mapped droplet barcodes 
onto inferred individuals. Each BAM file generated by Cell Ranger 
was split into eight per-individual BAM files, each of which contained 
reads from distinct individuals, using subset-bam (https://github.
com/10XGenomics/subset-bam/). UMI count matrices filtered by 
CellBender were split into eight per-individual UMI count matrices.

QC
To identify and exclude potential sample swaps, we assessed con-
cordance of genotypes between snRNA-seq and WGS. LOD scores, 
a metric of genotype concordance, were computed by comparing 
the per-individual BAM files with WGS genotypes of matched indi-
viduals using Picard CrosscheckFingerprints (v.2.25.4). We used a 

haplotype map downloaded from https://github.com/naumanjaved/
fingerprint_maps/. After inspecting a histogram of LOD scores, ten 
individuals whose LOD scores were less than 50.0 were filtered out. 
These individuals received few cells by the demultiplexing procedure. 
As another measure to detect sample swaps, we checked RNA expres-
sion levels of the XIST gene and confirmed that they were consistent 
with clinical sex. Five individuals were further excluded because they 
failed QC of WGS. Four were marked as potential sample swaps among 
WGS, and the other was marked as an outlier of genotype principal 
component analysis.

Four individual-level sequencing metrics were computed from the 
per-individual UMI count matrices: estimated number of cells, median 
UMI counts per cell, median genes per cell and total genes detected. 
After inspecting these metrics, individuals whose median UMI counts 
per cell were less than 1,500 were excluded. Thirteen individuals were 
found to be sequenced twice in distinct batches. After comparing 
sequencing metrics, one of these duplicates was excluded from further 
analyses. After these QC processes, 424 individuals remained.

Cell-type classifications
To annotate for cell type, we fitted a weighted ElasticNet-regularized 
logistic regression classifier over the data of our previous work111, pre-
dicting one of the eight major cell types for every nucleus: excitatory 
neurons, inhibitory neurons, astrocytes, microglia, oligodendrocytes, 
oligodendrocyte precursor cells, endothelial and pericytes. The gene 
expression matrix was log normalized (using NormalizeData method, 
Seurat package) and scaled over the top 700 variable features exclud-
ing noncoding RNA (using the FindVariableFeatures method, setting 
the selection method to vst and ScaleData method, in Seurat package).

We trained five different models with a mixing parameter of 
alpha = 0 (Ridge), 0.25, 0.5, 0.75 and 1 (Lasso), over a randomly selected 
75% of the data (n = 139,311). Samples were weighted as 1/ for the number 
of nuclei of cell type present in the training set. This step ensured that 
even lowly represented cell types such as endothelial and pericytes will 
be properly learned. To select the models’ regularization parameters, 
we applied tenfold cross-validation (using cv.glmnet method, glmnet 
package). Fitted models were evaluated using the held-out 25% of the 
data (n = 43,428), and their accuracy with respect to the misclassifica-
tion error was calculated. As all models achieved very high accuracies, 
with misclassifications mostly between excitatory and inhibitory neu-
rons, we selected the ElasticNet model with a mixing parameter using 
an alpha level of 0.25 to induce sparsity to the model. Fitted models 
used only 121 of the 700 available features and achieved a test accuracy 
of 99.95, with most misclassified nuclei being between inhibitory and 
excitatory neurons. The nuclei assigned to the microglial cluster were 
extracted and used in our analyses.

Leveraging the CMAP to identify chemical and genetic targets 
for in vitro recapitulation
The CMAP20,21 is a catalog of gene expression signatures for a series 
of different genetic and pharmacologic perturbations across a wide 
variety of different cell lines. To identify chemical targets that might 
drive signatures associated with our distinct microglial subsets in vitro, 
upregulated gene lists were assembled for each cluster corresponding 
to genes upregulated in comparison to three or more clusters. The web 
interface found at clue.io was used to interface with the CMAP database, 
and the ListMaker tool was used to assemble lists, which were then 
submitted as inputs to the Query tool. The v.1.0 L1000 gene expression 
data compendium was used for all analyses. Output lists were down-
loaded and ranked by ‘median_tau_score’. Results were aggregated 
into families: 1 and 6, 4 and 9, and 8 and 10. Chemical perturbagens of 
interest were selected from those with a ‘median_tau_score’ above 90 
and chosen based on prior knowledge and the pathways they targeted. 
Full output lists from CMAP separated by cluster can be found in Sup-
plementary Table 7.
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Drug screening in the HMC3 model system
Compounds of interest were obtained from a wide range of reputable 
vendors and resuspended in DEPC-treated water (Invitrogen, AM9915G), 
PBS (Corning, 21-040-CV) or DMSO (Sigma-Aldrich, 472301). To keep the 
design of our experiment as similar as possible to the CMAP study, the 
target stock concentration was 10 mM, but this was adjusted depend-
ing on the solubility of each compound. Extensive dose titration with 
doses ranging from 0.01 µM to 0.1 mM was conducted to determine the 
highest tolerable dose for each compound. Each concentration of drug 
was plated in triplicate with early-passage HMC3 cells (American Type 
Culture Collection, CRL-3304), and the viability was read out using Cal-
cein AM (Invitrogen, C1430) and propidium iodide (Invitrogen, P3566) 
using a Celigo plate (Nexcelom Bioscience) reader at 6 h and 24 h. An 
optimal dose of each drug was then chosen based on cell morphology 
and viability. Subsequently, optimal doses were applied to plated HMC3s 
and collected for RNA extraction after 6 h and 24 h. In-well lysis was per-
formed with RLT buffer (QIAGEN, 74136) containing 2-mercaptoethanol 
(Thermo Fisher Scientific, 63689), and RNA extraction was performed 
with the QIAGEN RNEasy mini plus kit (QIAGEN, 74136) following the 
manufacturer’s instructions. gDNA eliminator columns were used to 
remove contaminating genomic DNA. Initial RNA quality and quantity 
were assessed using Nanodrop (Thermo Fisher Scientific) followed 
by cDNA preparation using the iScript cDNA Synthesis kit (Bio-Rad, 
1708891). cDNA was subsequently purified with AMPure XP beads 
(Thermo Fisher Scientific, A63880) using a 1:1.8 ratio of cDNA:beads.

RT–qPCR analysis
Real-time qPCR reactions to amplify 1 ng of total cDNA were performed 
in a QuantStudio 3 Real-Time PCR Cycler (A28132, Applied Biosystems) 
using the Applied Biosystems Fast SYBR Green Master Mix (Thermo 
Fisher Scientific, 4385612). CT values were normalized using hypox-
anthine phosphoribosyltransferase 1 (Hprt1) as the housekeeping 
gene. Primers were tested for their efficiency beforehand, and the ΔΔCt 
method was applied for analysis of relative gene expression. The melting 
curves of each product were analyzed to ensure the specificity of the PCR 
product. The following primers were used: HPRT1 - fw: CCTGGCGTCGT-
GATTAGTGAT, rev: AGACGTTCAGTCCTGTCCATAA; SRGAP2 - fw:  
GTTGTGACTTAGGCTACCATGC, rev: TGCTTCGACTGTTCCAGGTTT; 
MEF2A – fw: GGTCTGCCACCTCAGAACTTT, rev: CCCTGGGTTAGTG-
TAGGACAA; TYROBP – fw: ACTGAGACCGAGTCGCCTTAT, rev: ATACG-
GCCTCTGTGTGTTGAG; GPX1 – fw: CAGTCGGTGTATGCCTTCTCG, 
rev: GAGGGACGCCACATTCTCG; CXCR4 – fw: ACGCCACCAACAGTCA-
GAG, rev: AGTCGGGAATAGTCAGCAGGA; SRGN – fw: GGACTACTCTG-
GATCAGGCTT, rev: CAAGAGACCTAAGGTTGTCATGG. For visualization, 
the mean for each gene is shown with error bars that denote the stand-
ard deviation. Individual points are plotted to visualize the distribution 
of the data.

Bulk RNA-seq of compound-treated microglia
Around 0.5 × 106 HMC3 microglial cells were seeded into a six-well plate 
and incubated overnight. The next day, microglia were treated with 
the respective concentrations of camptothecin (1 µM; EMD Millipore, 
390238), narciclasine (0.1 µM; MilliporeSigma, SML2805), Torin-2 
(10 µM; Cayman Chemical Company, 14185) or DMSO (Sigma-Aldrich, 
472301) as control and incubated for 24 h before collection. Cells 
were trypsinized (Gen Clone, 25-510 F), counted, the cell viability was 
assessed and cells were then resuspended in 350 µl RLT Lysis buffer 
(QIAGEN, 74136) containing 2-mercaptoethanol (Thermo Fisher Sci-
entific, 63689), and isolated using a QIAGEN Plus Mini kit (QIAGEN, 
74136). RNA quality was assessed using 2100 Bioanalyzer G2938C 
using an Agilent RNA 6000 Nano Kit (Agilent, 5067-1511) and Qubit 4 
Fluorometer (Invitrogen) using Qubit 1X dsDNA HS Assay kit (Thermo 
Fisher Scientific, Q33231) before further processing for RNA-seq.

mRNA libraries were prepped using the Illumina TruSeq Stranded 
mRNA Library prep (Illumina, 20020595), in accordance with 

manufacturer recommendations, and using IDT for Illumina TruSeq 
DNA UD Indices (Illumina, 20022370) for adaptors. Briefly, 500 ng of 
total RNA was used for purification and fragmentation of mRNA. Puri-
fied mRNA underwent first-strand and second-strand cDNA synthesis. 
cDNA was then adenylated, ligated to Illumina sequencing adaptors and 
amplified by PCR (using ten cycles). The cDNA libraries were quantified 
using the Fragment Analyzer 5300 (Advanced Analytical) kit FA-NGS-HS 
(Agilent, DNF-474-1000) and Spectramax M2 (Molecular Devices) kit 
Picogreen (Life Technologies, P7589). Libraries were sequenced on an 
Illumina NovaSeq sequencer, using 2 × 100-bp cycles.

Sequencing QC was performed using Picard v.1.83 and RSeQC 
v.2.6.1. STAR v.2.5.2a was used to align reads to the GRCh38 genome, 
using Gencode v.25 annotation. Bowtie2 v.2.1.0 was used to measure 
rRNA abundance. Annotated genes were quantified with featureCounts 
v.1.4.3-p1.

To analyze the data, a generalized linear model within DESeq2 
(ref. 101) was used to test for differentially expressed genes across 
each of our three treatment conditions in comparison to control. The 
DESeq object was constructed with a standard one-factor model, using 
‘~treatment’ as the model for analysis, and genes with less than ten 
overall counts across all samples were discarded before analysis. For 
analysis of similarity between samples, we used the variance stabilizing 
transformation in DESeq2, then computed PCA on the resultant matrix. 
Differential expression was performed with the DESeq function, and 
thresholds for significance were set as an FDR alpha of less than 0.01 and 
a LFC of 1.5. Shrinkage of LFC was performed with the ashr package112, 
and shrunk LFC values were used for downstream visualization. GO 
annotation was performed with TopGO38, and GO results were sum-
marized with rrvgo39. To examine specific genes associated with given 
cluster families in each treatment condition, the top 20 nonoverlap-
ping markers for each member of the grouped clusters (that is, the 
top 20 genes for cluster 1, the top 20 genes for cluster 6 that are not in 
the top 20 gene list for cluster 1) that were present in the differentially 
expressed gene list for that given condition, regardless of the direction 
of change (up or down) were chosen for visualization.

Generation and analysis of global quantitative proteomic data
For global quantitative proteomics of compound-treated HMC3 
microglia cells, diaPASEF113 (data independent acquisition)-based 
proteomics was used. In brief, 0.5 × 106 HMC3 microglial cells were 
seeded into a six-well plate and incubated overnight. The next day, 
cells were treated with the respective concentrations of camptothecin 
(1 µM; EMD Millipore, 390238), narciclasine (0.1 µM; MilliporeSigma, 
SML2805), Torin-2 (10 µM; Cayman Chemical Company, 14185) or 
DMSO (Sigma-Aldrich, 472301) as control and incubated for 24 h before 
collection. Cells were trypsinized (Gen Clone, 25-510F), counted, and 
the cell viability was assessed. Cells were then washed with ice-cold PBS 
(Corning, 21-040-CV) and cellular pellets were snap frozen and stored 
at −80 °C until further processing.

Subsequently, cells were lysed in lysis buffer114 (1% SDC, 100 mM 
Tris-HCl, pH 8.5, and protease inhibitors; MilliporeSigma, D6750, 
9290-OP) and boiled for 15 min at 60 °C, at 1,500 rpm. Protein reduc-
tion and alkylation of cysteine was performed with 10 mM TCEP 
(MilliporeSigma, C4706) and 40 mM 2-chloroacetamide (Millipore-
Sigma, C0267) at 45 °C for 15 min followed by sonication in a water 
bath, cooled down to RT. Protein digestion was processed for over-
night by adding LysC and trypsin in a 1:50 ratio (µg of the enzyme 
to µg of protein; Promega, V5071) at 37 °C and 1,400 rpm. Peptides 
were acidified by adding 1% trifluoroacetic acid (TFA) (Thermo Fisher 
Scientific, 28904), vortexed, and subjected to StageTip clean-up via 
styrenedivinylbenzene-reversed-phase sulfonate114. Peptides were 
loaded on one 14-gauge StageTip plug. Peptides were washed two 
times with 200 µl 1% TFA 99% ethyl acetate (Thermo Fisher Scientific, 
28904; MilliporeSigma, 270989) followed 200 µl 0.2% TFA/5% acetoni-
trile (ACN; Thermo Fisher Scientific, 28904; Thermo Fisher Scientific, 
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A955) in a centrifuge at 3,000 rpm, followed by elution with 60 µl of  
1% ammonia/50% ACN (Honeywell-Fluka, 4427310X1ML; Thermo Fisher 
Scientific, A955) into microcentrifuge tubes and dried at 45 °C in a 
SpeedVac centrifuge. Samples were resuspended in 10 μl of LC buffer 
(3% ACN/0.1% formic acid; Fisher Scientific, A11710X1-AMP). Peptide 
concentrations were determined using NanoDrop (Thermo Fisher 
Scientific) and 200 ng of each sample were used for diaPASEF analysis 
on a timsTOFPro (Bruker). Peptides were separated within 120 min 
at a flow rate of 400 nl min−1 on a reversed-phase C18 column with an 
integrated CaptiveSpray Emitter (25 cm × 75 µm, 1.6 µm, IonOpticks). 
Mobile phases A and B were with 0.1% formic acid in water and 0.1% 
formic acid (Fisher Scientific, A11710X1-AMP) in ACN (Thermo Fisher 
Scientific, A955). The fraction of B was linearly increased from 2% to 
23% within 90 min, followed by an increase to 35% within 10 min and 
a further increase to 80% before re-equilibration. The timsTOF Pro 
(Bruker) was operated in diaPASEF mode113 and data were acquired 
at defined 32 × 25-Th isolation windows from 400 to 1,200 m/z. To 
adapt the MS1 cycle time in diaPASEF, we set the repetitions to 2 in the 
16-scan diaPASEF scheme. The collision energy was ramped linearly as 
a function of the mobility from 59 eV at 1/K0 = 1.6 Vs cm−2 to 20 eV at  
1/K0 = 0.6 Vs cm−2. The acquired diaPASEF raw files were searched with 
the UniProt Human proteome database in the DIA-NN search engine 
with default settings of the library-free search algorithm115. The FDR 
was set to 1% at the peptide precursor and protein level.

Results obtained from DIA-NN were further analyzed in R. To 
preliminarily filter the data, peptides without a valid matching gene 
symbol, as well as peptides that were detected in a fourth of our 
samples or fewer were removed. For further analyses, total intensity 
log-normalized protein abundances were used. PCA was performed 
on the dataset in its entirety to assess relative similarity of treatment 
conditions. Next, pairwise differential testing between DMSO control 
and each of our treated conditions was conducted using a Welch’s103 
t-test with the Benjamini–Hochberg correction98, setting a threshold 
of 0.05 for the corrected P value and a threshold of 1 for the log2 fold 
change. Top differentially expressed genes were then used for GO 
annotation with topGO (‘Bulk RNA-seq of compound-treated micro-
glia’). As there were fewer differentially expressed genes overall, all 
genes associated with each cluster family that overlapped with the 
differentially expressed gene list for each condition, irrespective of 
direction (up or down) were selected for plotting.

Visualizing gene expression across clusters with DotPlots
Seurat’s DotPlot function was used to concurrently visualize gene 
expression and percentage of cells in each cluster expressing said 
genes. Using this function, a single circle is plotted for each cluster 
for each given gene. The size of this circle represents the percentage 
of cells within a cluster that express the gene, and it is absent entirely if 
fewer than 10% of cells in a given cluster expressed a gene. Conversely, 
the color of the circle represents the average expression of the gene. 
This is computed by computing the mean of expression for each clus-
ter, then scaling and zero-centering the average expression level for 
each discrete cluster. The viridis ‘magma’ color palette was used for 
this visualization. Legends for the size and color scheme for each dot 
plot accompany each figure. In addition, for Fig. 2c, the ‘cluster.idents’ 
parameter was used to hierarchically cluster our different clusters by 
the marker genes involved using complete linkage, enabling clearer 
visualization of broad differences. The cluster dendogram was manu-
ally recomputed and added to the dot plot with the ggtree116 package. 
Notably, data visualization was performed with Seurat v.4.0.4 instead 
of v.3.2.0.

Statistical analysis and data visualization
Statistical analysis was conducted as described in the associated meth-
ods sections above. Specific P values (both significant and not), if not 
found in the figures, may be found in Supplementary Information 

tables before and after testing for multiple correction. T values and 
degrees of freedom are also provided where relevant. Unless oth-
erwise noted, all measurements are taken from distinct samples. In 
general, statistical methods were not used to recalculate or predeter-
mine sample sizes. All plots were created in R v.4.1.0 using either base 
R visualization packages, ggplot2 (ref. 117) with ggrepel118, ggfortify119, 
patchwork120, cowplot121 and ggsci122, or packages mentioned in the 
methods text. Heat maps were made with the pheatmap123 package. 
Volcano plots were made with the EnhancedVolcano124 package. All 
boxplots denote the 25th percentile, median and 75th percentile, with 
whiskers representing 1.5 times the interquartile range in both direc-
tions. Outliers, if any, are represented as circles beyond the whiskers.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw scRNA-seq data (fastq files) generated from CD45+ cells isolated 
from autopsy samples were deposited to the Gene Expression Omnibus 
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number 
GSE204702. Bulk RNA-seq data from compound-treated HMC3 cells 
were deposited to the GEO under accession number GSE202556. Bulk 
proteomic data from compound-treated HMC3 cells were deposited 
to ProteomeXChange (http://www.proteomexchange.org/) under 
accession number PXD033844. Data repurposed for label transfer 
was retrieved from the GEO under accession numbers GSE133432, 
GSE178317 and GSE103224.

Code availability
Code used to perform preprocessing, clustering, cluster validation 
and label transfer of scRNA-seq data in the current study is available 
publicly at https://github.com/jtuddenham/single-cell-microglia-v2/. 
The CellProfiler pipeline used to analyze joint immunofluorescence–
RNAscope data is available as Supplementary Information (Sup-
plementary Table 5), and in the aforementioned GitHub repository. 
Code for visualization, analysis of bulk RNA-seq/proteomic data and 
downstream analysis of CellProfiler outputs is available from the cor-
responding author upon request.
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Extended Data Fig. 1 | Proportions of overarching cell types in our dataset. 
(A) Different cell types are discriminable in UMAP space or by marker genes. 
Unsupervised Jaccard-Louvain clustering on a kNN neighbor graph delineates 
distinct cell types, including adaptive immune cells, monocytes, glial/neuronal 
cells, and erythrocytes. UMAP plots are binned in hexagons: each single hexagon 
represents a merged representation of all cells falling within the region. The 
central UMAP plot is colored by the majority cell type. Different cell types are 
easily distinguishable in 2-D UMAP plots. The other schex-UMAP plots show gene 
expression values of selected characteristic marker genes projected onto cells. 
The color gradient bar represents log-normalized gene expression values. Yellow 
represents the maximal expressed value, while purple represents the lowest 
expression values. Markers of distinct immune subpopulations are detected in 
our data: CD8 T-cells (CD8A), NK cells (GZMB), B cells (MS4A1). Similarly, different 
non-neuronal cells can be detected in our analysis: astrocytes (GFAP), neurons 
(SNAP25), and oligodendrocytes (OLIG2). Monocytes (LYZ) localize close to 
our microglial cells and were used for comparative expression of marker genes 

in Fig. 2b. Red blood cells (HBB) were also easily discriminable. (B) Microglia 
are the predominant cell type recovered across regions and diseases. Bar 
plots showing the relative representation of different cell types across different 
metadata parameters, with each bar summing to 100%. Overall, 95.7% of cells 
are microglial, 2.2% are adaptive immune, 1.5% are glial/neuronal, 0.4% are 
monocytic, and 0.3% are erythrocytes. The upper bar plot shows proportion 
of each overarching cell group across regions, while the lower plot shows the 
same across diseases. Mono monocytes, RBC red blood cells, LOAD late-onset 
Alzheimer’s disease, EOAD early onset Alzheimer’s disease, MCI mild cognitive 
impairment, CNTRL control, DLBD-PD diffuse Lewy body disease-Parkinson’s 
disease, PSP progressive supranuclear palsy, TLE temporal lobe epilepsy, MS 
multiple sclerosis, ALS amyotrophic lateral sclerosis, FTD frontotemporal 
dementia, HD Huntington’s disease, DNET dysembryoplastic neuroepithelial 
tumor, BA Brodmann area, AWS anterior watershed, OC occipital cortex, TNC 
temporal neocortex, H hippocampus, TH thalamus, SC spinal cord, SN substantia 
nigra, FN facial nucleus.
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Extended Data Fig. 2 | Quality control metrics across our data after 
downsampling to account for 10x chemistry differences. (A-F). Violin plots 
showing the distribution of our cellular data with overlaid boxplots. The center of 
boxplots is the median, and the hinges of the box span the 25% to 75% percentiles. 
Whiskers represent 1.5 IQR from the nearest hinge. Outliers are not shown 
in this visualization, nor are minima or maxima. Further information about 
metadata traits and number of cells included in each violin plot may be found in 
Supplementary Table 1 under ‘QC_’ tabs. The distributions of unique molecular 
identifiers (UMIs) and genes detected on a per-cell level after downsampling 
are similar across donors (A), clusters (B), genders (C), 10x chemistry versions 
(D), regions, (E), and diagnoses (F). Notably, after downsampling, differences 
between 10x chemistry versions in these metrics are largely eliminated. 
(G) Validation of population stability by resampling and reclustering 
demonstrates that overlap of gene expression is largely observed for clusters 
with similarly related families, such as 2 and 4, or for intermediate subsets 
such as 5 and 3. To evaluate clustering stability, we randomly sampled ¾ of the 

cells from our dataset and ran our clustering pipeline with identical parameters. 
We recorded the frequency of ‘misclassification’, where cells were re-clustered 
into clusters different from the one that contained most cells with the same 
original classification. This process was repeated between pairs of cells, and 
repeated 50 times for each comparison. Cells were considered to be classified 
into the ‘correct’ class if they were assigned correctly in ¾ of classification 
runs. Otherwise, they were considered ‘misclassified’ into a different cluster. 
Classification frequency is visualized in a heatmap here. LOAD late-onset 
Alzheimer’s disease, EOAD early onset Alzheimer’s disease, MCI mild cognitive 
impairment, CNTRL control, DLBD-PD diffuse Lewy body disease-Parkinson’s 
disease, PSP progressive supranuclear palsy, TLE temporal lobe epilepsy, MS 
multiple sclerosis, ALS amyotrophic lateral sclerosis, FTD frontotemporal 
dementia, HD Huntington’s disease, DNET dysembryoplastic neuroepithelial 
tumor, BA Brodmann area, AWS anterior watershed, OC occipital cortex, TNC 
temporal neocortex, H hippocampus, TH thalamus, SC spinal cord, SN substantia 
nigra, FN facial nucleus.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Microglial proportions across individual donors and 
donor-region pairings. (A) Proportions of microglial subtypes across single 
donors. Proportions of microglial subtypes are plotted by donor, with selected 
metadata annotated in a header bar above. Each bar represents a single donor 
and sums to 100%. Samples are clustered hierarchically based on proportions 
of each subtype. Donors have variability in the exact proportions of different 
subtypes but exhibit consistent amounts of the most common subtypes in our 
dataset, clusters 1 through 6. (B) Proportions of microglial subtypes across 
region-donor pairings. Samples are aggregated to donor-region pairings (for 
example, AD1-BA9) to give a proportion of different clusters for each region for 
each individual. Boxplots are computed for specific region-disease pairings 
showing the median (center), 25% (left hinge), and 75% (right hinge), for the 

proportion of cells across all samples for which that combination of disease and 
region was sampled. Whiskers represent 1.5 IQR from the nearest hinge, and 
outliers are not shown, nor are minima or maxima. Proportions are shown on 
the x-axis, and the scale varies depending on the cluster in question. [Number of 
independent samples per category: TNC_TLE (6), TNC_PSP (1), TH_MS (2), SN_PSP 
(1), SN_LOAD (3), SN_DLBD-PD (5), SN_CNTRL (1), SC_ALS/FTD (2), SC_ALS (9), 
OC_TLE (1), OC_Stroke_lesion (1), Lesion_MS (1), H_TLE (2), H_PSP (1), H_LOAD (14), 
H_HD (1), H_FTD (1), H_EOAD (2), H_CNTRL (1), FN_ALS (4), DNET_DNET (1), BA9_
Stroke_lesion (1), BA9_PSP (1), BA9_MS (2), BA9_MCI (4), BA9_LOAD (35), BA9_HD (1),  
BA9_FTD (1), BA9_EOAD (2), BA9_DLBD-PD (5), BA9_CNTRL (1), BA9_ALS/FTD (2),  
BA9_ALS (8), BA4_CNTRL (1), BA4_ALS/FTD (2), BA4_ALS (9), BA20_LOAD (9), 
BA20_HD (1), BA20_EOAD (2), AWS_MS (2), AWS_MCI (3), AWS_LOAD (13)].
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Further exploration of microglial phenotypes with 
pseudotime analysis and GO annotation validates our trajectory map and 
reveals subsets associated with motility, lipid trafficking, and proliferation. 
(A) Cluster 5, an intermediate cluster, shows association with motility. On 
the left, the size of the circle represents the percentage of cells in a cluster that 
express the gene, with no circle plotted if less than 10% of cells in a cluster express 
the gene. The color of the circle represents the z-scored expression of the gene. 
Cluster 5 expresses a transcriptional signature partially overlapping with the 
core homeostatic or transitional clusters, 2 and 3, but expresses unique sets of 
genes associated with motility. GO annotation was performed with topGO and 
summarized with rrvgo. Parent terms are shown in white, overlaid over child 
terms. Terms associated with motility are enriched in cluster 5. (B) Cluster 12 is 

associated with oxidative phosphorylation and proliferation. (C) Cluster 
11 interfaces with lipids and beta-amyloid. (D) GO annotation of clusters 
8/10 parallels results of Reactome pathway analysis, highlighting common 
immunological activation but divergence in other aspects of phenotype. 
(E) Trajectories of state shift in pseudotime analysis parallel those seen in 
other analyses. Monocle3 was used to build a pseudotime trajectory across 
our dataset, setting the root point at the boundary of clusters 2 and 3. Shifts 
in pseudotime from this root point reinforces the directionality laid out in the 
constellation diagram, suggesting that a broad intermediate gradient between a 
series of terminal points exists, with pseudotime scores in 6-7, 4, and 10 showing 
most divergence from the root point. GO gene ontology.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Additional representative images from our joint 
RNAscope/IF and CellProfiler measures highlight morphological differences 
between expression-defined subtypes. Representative images are shown for 
both panel 1 (A) and panel 2 (B) across different diseases. (C) Compactness is 
highest in the medium classes of CD74, GPX1, and SPP1-defined expression 
groups. Compactness (a measure of ramification, where high values indicate 
high ramification) is shown across CD74-, GPX1-, and SPP1-expressing IBA1+ 
microglial cells quantified using CellProfiler. For this and following panels, 
significance was calculated with two-sided, two-sample Welch’s t-tests. Multiple 
testing correction was performed with Holm-Bonferroni correction. For boxplots 
in these visualizations, the center is the median, and the hinges of the box span 
the 25% to 75% percentiles. Whiskers represent 1.5 IQR from the nearest hinge. 
Outliers are shown as circles, but minima and maxima are not explicitly depicted. 

Significance thresholds for p-values: >0.05 = ns, <0.05 = *, <0.01 = **, <0.005 = ***. 
(D) Compactness is higher in the CXCR4+ class. (E) Eccentricity is highest in 
the low classes for CD74 and GPX1. Eccentricity (a measure of shape, where 0 is a 
circle and 1 is a line), is shown across CD74- and GPX1- expressing Iba1+ microglia. 
(F) CD74 distance is highest in the CD74 medium group, but also in the CXCR4+ 
group. CD74 distance (calculated as the median of all puncta for a given cell 
from the cellular centroid) is shown across CD74-, and CXCR4-expressing Iba1+ 
microglia. Number of cells per expression class are as follows. CD74: low (3756), 
medium (3333), high (329), GPX1: low (1404), medium (1653), high (329), SPP1: low 
(3216), medium (388), high (125), CXCR4: positive (322), negative (7096). 16 tissue 
sections were stained with panel 1 (CD74/CXCR4) and eight were stained with 
panel 2 (GPX1/SPP1).
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Extended Data Fig. 6 | In situ merFISH validation of microglia subtypes.  
(A) Projection of microglial cells into the established scRNAseq model. 
UMAP space showing predicted cluster subtypes within a projected UMAP space 
(established model shown in greyed-out background). Seven out of twelve 
microglial subtypes were identified across AD (blue) and non-AD (yellow) cortex 

tissue, with different observed proportions. Clusters 8/10 show depletion in AD 
cortex ( < 1%) compared to non-AD cortex (35.7%). (B) Expression signatures of 
predicted clusters in situ. Microglia predicted to belong to clusters 8/10 show 
a greater average expression and percent expression of CXCR4, SRGN, and CD74. 
Showing clusters with at least 5 predicted microglia.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Performance metrics across models trained for 
different datasets. Each row contains a different performance metric, while 
each column represents a single dataset. Training and validation sets were 
identical, but mNN correction incorporates the query dataset, slightly modifying 
input data. Accuracy metrics are derived from analysis of the holdout validation 
set, consisting of approximately 50% of the original dataset not used for training 
either SVM or XGB models (104902 cells). The first row presents histograms of 
XGBoost classification confidence for cells in the validation set, highlighting 
cells below 70% confidence in yellow and below 50% in red (the latter cells are 
dropped). Most cells in the validation set are classified with high confidence. 
Row 2 contains a UMAP visualization of classification confidence, revealing 
higher confidence for cells at the UMAP periphery and lower confidence for 
intermediate cells. Row 3 shows confusion matrices for the validation set. Row 
4 presents sensitivity and specificity per class, which are comparable across 
different datasets. Row 5 shows boxplots for XGB classification confidence across 

the 4 classes. Boxplots represent the median (center), 25% (lower hinge), and 75% 
(upper hinge) percentiles. Whiskers extend to 1.5 times the IQR from the nearest 
hinge, with more extreme values represented as circles. Minima and maxima are 
not explicitly depicted. Classification confidence varies substantially depending 
on the data, with the ROSMAP data being the only dataset where classification 
confidence for families 167 and 24 is generally comparable to that for 3 and 5. 
Row 6 contains histograms of XGBoost classification confidence for the query 
cells. Notably, the glioblastoma and xenograft data have similar classification 
confidence to the validation set, but the ROSMAP data, and to a lesser extent, 
the Dräger data, diverge noticeably. Finally, row 7 shows marker gene expression 
across assigned labels in the query datasets. The size of the circle represents the 
percentage of cells in each cluster expressing the gene (no circle plotted if less 
than 10% of cells in a cluster express the gene). The color of the circle represents 
z-scored expression of the gene. Despite systematic differences, label transfer 
aligns expression profiles effectively.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Screening of in silico predictions identifies successful 
hits and compounds that fail to drive predicted signatures. (A) Schematic 
overview of workflow for compound treatment. To explore the correct dosage 
for downstream studies, we conducted dose titration to examine viability of 
cells after treatment with varying dosages of our drugs. After choosing optimal 
concentrations, we conducted initial screening with qPCR to select candidates 
for final validation, then conducted final validation with bulk RNA-seq and 
proteomics. (B)-(D) qPCR results for different cluster families. Results not 
shown in Fig. 8b-d are shown here. Some compounds had effects on specific 

marker genes, but these did not pass our criteria for further study. Bars represent 
mean fold change expression, and error bars represent SD. All replicates are 
biological. Number of replicates per experiment as follows - Dorsomorphin:  
6hrs: CXCR4 - n = 6, SRGN – n = 7; 24hrs: both n = 6, BX-795: 6hrs: CXCR4 - n = 5,  
SRGN – n = 8; 24hrs: CXCR4 - n = 3, SRGN – n = 5, BMS-2455421: 6hrs: both - n = 4; 
24hrs: CXCR4 - n = 3, SRGN – n = 4, BRD: 6hrs: both - n = 7; 24hrs: TYROPB - n = 6, 
GPX1 – n = 7, Budesonide: 6hrs: n = 3; 24hrs: n = 3, Naltrexone: 6hrs: n = 3;  
24hrs: n = 3, Cytochalasin b: 6hrs: SRGAP2 - n = 6, MEF2A – n = 5; 24hrs: both n = 6.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Different compounds modulate different aspects 
of the cluster 1/6 signature at the transcriptomic level. (A) Camptothecin 
downregulates the cluster 1/6 signature. Bulk RNA-seq was generated from 
HMC3 cells treated with our candidate drugs for 24 h. Data was analyzed with 
DESeq2, which fits a negative binomial model to the data then uses Wald 
significance tests with Benjamini-Hochberg correction, and fold change 
shrinkage was performed with ashr. To examine the genes associated with cluster 
families, we took the top 20 non-overlapping genes for each individual cluster 
in our overarching groupings that were present in the differentially expressed 
gene list for each compound, irrespective of directionality and plotted them 
in volcano plots. FDR threshold was set to 0.01 and fold change threshold was 
set at 1.5. (B) Narciclasine does not upregulate the cluster 1/6 signature. 

(C) Narciclasine upregulates GO processes also found in cluster 1/6. GO 
annotation was computed on differentially expressed genes that passed an 
FDR threshold of 0.01 and a fold change threshold of 1.5. Terms were grouped 
based on similar etiology and parent terms were overlaid. Notably, Narciclasine 
drives metabolic shifts such as in nitrogen-containing metabolism, heterocyclic 
metabolism, and nucleic acid metabolism, that are strongly enriched in clusters 
1/6 (Fig. 3a). (D) Narciclasine and Torin-2 drive distinct modules of cluster 1/6 
marker genes. Cluster 1/6 genes were selected and shown in a row-scaled, zero-
centered heatmap. Columns are individual replicates, and rows are genes. These 
two compounds appear to drive separate modules of genes associated with 
cluster 1/6. Camptothecin downregulates almost all 1/6 associated genes.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 10 | Representative flow gating images. Cells that were stained with anti-CD11b and anti-CD45 antibodies and 7AAD were sorted by flow 
cytometry. Flow gates demonstrate selection of live singlets that are CD45-positive.

http://www.nature.com/natureneuroscience
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection CellRanger software V3.1.0 (from 10x Genomics) was used to align and quantify single-cell RNA-seq transcripts for our single-cell data and 

CellRanger V6.0.0 was used to align and quantify single-nucleus data. Nikon Elements (NIS-Element AR 5.21.03) was used to acquire images 

from tissue sections. For bulk RNA-seq, Picard version 1.83 was used for QC, RSeQC version 2.6.1. STAR version 2.5.2a was used to align reads, 

Bowtie2 version 2.1.0 was used to measure rRNA abundance, and annotated genes were quantified with featureCounts version 1.4.3-p1. For 

bulk proteomic data, the DIA-NN search engine was used to search the acquired diaPASEF raw files. BD FACS Software 1.2.0.142. was used to 

collect and gate flow cytometry data for sorting of single microglia. 

Data analysis R statistical software (v4.1.0) was used to analyze single-cell and bulk transcriptomic and proteomic data, and all custom code is available at 

https://github.com/jtuddenham/single-cell-microglia-v2. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw scRNA-seq data (fastq files) generated from CD45+ cells isolated from autopsy samples were deposited to GEO (https://www.ncbi.nlm.nih.gov/geo/) under 

accession number GSE204702, or Synapse, with ID number syn61001870. Bulk RNA-seq data from compound-treated HMC3 cells were deposited to GEO under 

accession number GSE202556. Bulk proteomic data from compound-treated HMC3 cells were deposited to ProteomeXChange (http://www.proteomexchange.org/) 

under accession number PXD033844. Correspondence & material/data requests should be addressed to Philip L. De Jager. 

Data repurposed for label transfer was retrieved from GEO, under accession numbers GSE133432, GSE178317, and GSE103224. Bulk RNA-seq data from ROSMAP 

used to derive associations of gene expression with clinicopathological traits can be accessed on Synapse (syn25741873).   

Datasets/databases used in this study included: CMAP (GSE92742)

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and gender were self-reported in this study. We have a total of 26 male donors and 48 female donors. As our interest 

was in examining microglial diversity independent of metadata parameters, we did not perform sex- or gender-based 

analysis.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

We did not perform race- or ethnicity-based analysis.

Population characteristics Details of the acquisition of autopsy samples from Rush University Medical Center/Rush Alzheimer’s Disease Center (RADC) in 

Chicago, IL (Dr. Bennett) and Columbia University Medical Center/New York Brain Bank in New York, NY (Drs. Vonsattel and 

Teich), as well as surgically resected brain specimens from Brigham and Women’s Hospital in Boston, MA (Drs. Sarkis, 

Cosgrove, Helgager, Golden, and Pennell) were detailed in our prior publication (Olah et al. 2020, Nature Communications). 

In addition, samples were obtained from donation programs at Massachusetts General Hospital, Boston, MA (Drs. Bradley T. 

Hyman and Matthew Frosch), Banner Sun Health Research Institute, Sun City (Dr. Thomas G Beach), and Rocky Mountain MS 

Center, Denver, CO (Dr. John Corboy). All brain specimens were obtained through informed consent and/or brain donation 

program at the respective organizations. All procedures and research protocols were approved by the corresponding ethical 

committees of our collaborator’s institutions as well as the Institutional Review Board (IRB) of Columbia University Medical 

Center (protocol AAAR4962). Detailed descriptions of the Religious Orders Study and the Memory and Aging Project (ROS/

MAP) can be found in the following publications: PMIDs 29865057, 22471860, 22471867. Further information on the brain 

donation system at Massachusetts General Hospital can be found at https://www.madrc.org/brain-autopsy-and-donation-

information. Further information on the brain donation system at Rocky Mountain Multiple Sclerosis center can be found at: 

https://www.mscenter.org/research/tissue-bank/information-for-researchers. Description of the brain donation system at 

Sun Health Research institute can be found here: PMID 18347928. The description of the brain bank at Columbia University 

Medical Center can be found here: PMID: 29496134. All donors were consented for the use of their tissue for research 

purposes. Age range for donors ranged between 22 and 90+, specific diagnoses included ALS, ALS/FTD, Control, DLBD-PD, 

DNET, EOAD, FTD, HD, LOAD, MCI, MS, PSP, Stroke, and TLE. Treatment information and genotypic information were not 

uniformly available for donors.

Recruitment See above.

Ethics oversight This study was approved by ethics committees from 1) Rush University, Chicago, IL, 2) Columbia University, New York, NY, 3) 

Brigham and Women’s Hospital, Boston, MA, 4) Massachusetts General Hospital, Boston, MA, 5) Banner Sun Health Research 

Institute, Sun City (Dr. Thomas G Beach), and 6) Rocky Mountain MS Center, Denver, CO.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were not calculated ahead of time. Moreover, as we do not ask specific questions about association of microglial proportions 

with specific diseases or regions, we do not require specific sample numbers for this type of analysis. Our primary constraint was ensuring that 

there was sufficient representation of cell type heterogeneity across our sample pool; as such, we sampled as extensively as possible. Single-

cell RNA-seq studies of human tissue also cannot control the number of cells per donor, as it is defined by the quality of the sample. 

Data exclusions First, for samples that used hashing antibodies, we removed unlabeled cells and doublets ascertained using demuxmix (https://github.com/

cu-ctcn/demuxmix). Next, we excluded cells with fewer than 500 transcripts or more than 10,000 transcripts (Unique Molecular Identifiers), 

as well as cells with more than 10% mitochondrial reads. These thresholds accord with the standards of the field and remove doublets and 

low-quality/dying cells. These standards were established ahead of time, and help ensure that downstream analyses are not polluted by low-

quality data. 

Replication When possible, we replicated the results of our analyses using similar databases. For example, for our indirect disease association, we 

replicated patterns of enrichment of multiple sclerosis susceptibility genes from a recent publication by the International Multiple Sclerosis 

Genetics Consortium extensively mapping genomic risk loci in MS (PMID: 31604244) using data from the GWAS catalog to evaluate 

enrichment of GWAS-based risk genes in our clusters.  

Similarly, for our compound stimulation work, we sought to replicate the results of our initial qPCR screen showing upregulation of cluster-

associated genes in our 3 compounds of interest: Torin-2, Narciclasine, and Camptothecin. We had at least 4 independent replicates for each 

of our compound treatment conditions for qPCR. 

In addition, we replicated the results of our initial screen for Torin-2 and Campthothecin at the transcriptomic level using bulk RNA-

sequencing, finding that Torin-2 and Camptothecin are especially congruent with the qPCR results, as Narciclasine drives a slightly different 

aspect of the broad transcriptomic signature we were targeting. Bulk RNA-seq experiments had 3 independent replicates per treatment 

condition. 

Notably, we also sought to replicate the effect of compound stimulation at the proteomic level, finding that Camptothecin still drives the 

predicted signature at the proteomic level, although Torin-2 and Narciclasine do not drive the expected result at this level. This latter result is 

not wholly surprising, as the discordance between RNA and protein is well documented, especially in microglia, and our expected target 

signature was defined entirely at the RNA level. As with bulk RNA-seq experiments, proteomic experiments were conducted with 3 

independent replicates per treatment condition.

Randomization Aside from compound treatment, where the treatment of interested defined the groupings used for analysis, none of our analyses required 

specification of sample groups so no randomization was performed. To correct for potential batch effects and effects of different 10x 

technologies, we downsampled our 10x v3 data to the same depth as our v2 data and used SCTransform and mNN to correct for batch 

effects, as described in our methods section.

Blinding In this study, we did not have a hypothesis to test, and thus, blinding of team members to the characteristics of the samples was not 

necessary. None of the algorithms for clustering or label transfer took sample or donor metadata into account.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used TotalSeq™-B0255 anti-human Hashtag 5 Antibody (Biolegend, Cat #: 394639; RRID: AB_2820042) [1 µg per 100 µl staining volume 

volume] 

TotalSeq™-B0256 anti-human Hashtag 6 Antibody (Biolegend, Cat #: 394641; RRID: AB_2820042) [1 µg per 100 µl staining volume 

volume] 

TotalSeq™-B0257 anti-human Hashtag 7 Antibody (Biolegend, Cat #: 394643; RRID: AB_2820043) [1 µg per 100 µl staining volume 

volume] 

TotalSeq™-B0258 anti-human Hashtag 8 Antibody (Biolegend, Cat #: 394645; RRID: AB_2820044) [1 µg per 100 µl staining volume 

volume] 

TotalSeq™-B0259 anti-human Hashtag 9 Antibody (Biolegend, Cat # 394647; RRID: AB_2820045) [1 µg per 100 µl staining volume 



4

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

volume] 

TotalSeq™-B0260 anti-human Hashtag 10 Antibody (Biolegend, Cat #: 394649; RRID: AB_2820046)  

Alexa Fluor® 488 anti-mouse/human CD11b Antibody (Biolegend, Cat #: 101217; Lot #: multiple) [0.5 µg per 100 µl staining volume 

volume] 

Alexa Fluor® 647 anti-human CD45 Antibody (Biolegend, Cat #: 304018; Lot #: multiple) [0.5 µg per 100 µl staining volume volume] 

Goat anti-Human Iba1 (Wako, Cat #: 01127991; Lot #: SKK1868) [dilution 1:50] 

Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (Invitrogen, Cat #: A11055; Lot #: 2211210) 

[dilution 1:500]

Validation As per the manufacturer's website: "Each lot of this antibody [TotalSeq-B] is quality control tested by immunofluorescent staining 

with flow cytometric analysis and the oligomer sequence is confirmed by sequencing. TotalSeq™-B antibodies are compatible with 

10x Genomics Single Cell Gene Expression Solutions".  Validation on human PBMCs is available under the application note from 

BioLegend titled "Efficient Multiplexing of Samples Using TotalSeq™ Hashtag Antibody Oligonucleotide Conjugates for Single-Cell RNA 

and Proteomics Studies". 

Anti-Iba1 has been validated by the manufacturer and multiple subsequent publications demonstrating its utility in 

immunohistochemistry and western blotting (see manufacturer’s website). It has been used by our group and others to detect 

microglia in the brain (PMID: 33257666). Biolegend’s anti-human CD11b and CD45 antibodies have been used by our group for 

several years, and transcriptomic analysis of cells sorted with these antibodies confirm that they primarily label brain myeloid cells, 

the majority of which are microglia (PMIDs: 29416036 and 33257666).  

The Donkey anti-goat secondary antibody has been extensively validated by the manufacturer for use in flow cytometry, ICC, IF, and 

IHC. It has over 2000 references.   

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HMC3 (human, ATCC)

Authentication No sequencing-based authentication of the identity of this cell line was performed. Conversely, we tested expression of 

microglial marker genes by qPCR every 3 passages to ensure that we were working with a model system that transcriptionally 

resembled our cell of interest, microglia.

Mycoplasma contamination Cell lines were not tested for mycoplasma, but no evidence of infection was observed.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified lines were used in this study. 

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Procurement of specimens is described above. The isolation of microglia was performed according to our published protocol 

(Olah et al. 2020, Nature Communications), with minor modifications. In case of the cortical autopsy samples (BA9/46, BA4, 

BA17/18/19), the cortex (grey matter and the underlying white matter (subcortical white matter) were dissected under a 

stereomicroscope. The subcortical white matter samples were not used in this study. The epilepsy surgery samples of 

temporal lobe (BA20/21) were processed without dissection as in this case the cortical white and grey matter was not always 
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distinguishable due to the surgical procedure. The substantia nigra (SN) and the thalamus (TH) were dissected by separation 

from the surrounding white matter tracts. The hippocampus samples (H) contained the dentate gyrus, CA4/CA3/CA2 and CA1 

regions, both white and grey matter. The spinal cord sample (SC) was sampled at the level of lumbar section and included 

both white and grey matter. The anterior watershed area (AWS) deep white matter did not need any further dissection. All 

steps of the protocol were performed on ice. The dissected tissue was placed in HBSS (Lonza, 10-508F) and weighed. 

Subsequently the tissue was homogenized in a 15 ml glass tissue grinder - 0.5 g at a time. The resulting homogenate was 

filtered through a 70 um filter and spun down at 300rcf for 10 minutes. The pellet was resuspended in 2 ml staining buffer 

(RPMI (Fisher, 72400120) containing 1% B27) per 0.5 g of initial tissue and incubated with anti-myelin magnetic beads 

(Miltenyi, 130-096-733) for 15 minutes according to the manufacturer’s specification. The homogenate was than washed 

once with staining buffer and the myelin was depleted using Miltenyi large separation columns (Miltenyi, 130-042-202). The 

cell suspension was spun down and was then incubated with anti-CD11b AlexaFluor488 (BioLegend, 301318) and anti-CD45 

AlexaFluor647 (BioLegend, 304018) antibodies as well as 7AAD (BD Pharmingen, 559925) and cell hashing antibodies (for 

catalogue numbers of cell hashing antibodies see Table S1) for 20 minutes on ice. Subsequently the cell suspension was 

washed twice with staining buffer, filtered through a 70 µm filter and the CD11b+/CD45+/7AAD- cells or CD45+/7AAD- cells 

were sorted on a BD FACS Aria II or BD Influx cell sorter. Cells from each brain region were sorted in a separate A1 well of a 

96 well PCR plate (Eppendorf, 951020401) containing 100 µl of PBS buffer with 0.3% BSA. Following sorting cell from 

different brain regions were combined and immediately submitted to single cell capture, reverse transcription and library 

construction on the 10x Chromium platform. All sorting was performed using a 100 µm nozzle. The sorting times varied 

according to the quality of the sample but was on average between 10 and 20 minutes per sample. The sorting speed was 

kept between 8000 - 10,000 events per second.

Instrument BD’s Aria Ilu and BD Influx sorters were used for fluorescent activated cell sorting of microglial cells from human brain. 

Software BD’s FACSDiva version 8.0.1 software was used during fluorescent activated cell sorting of microglial cells from human brain.

Cell population abundance Microglial cells represented on average 0.4% of all the events. Among the 7AAD- live cells the CD11b+/CD45+ cells 

represented 50% (RBCs will also show up as 7AAD- since they lack a nucleus). The analysis of sorted cells showed that they 

were ~96% microglia (CD11b+/CD45+/7AAD-) cells.

Gating strategy The detailed description of the gating strategy was included in our previous publications (PMIDs: 29416036 and 33257666). 

Briefly, cells were gated on the FSC/SSC scatter plots (Gate 1), from which the dead cells were excluded based on their 7AAD 

positivity (Gate 2: 7AAD- events). The third gate was placed on the CD11b/CD45 double positive events (Gate 3: CD11b+/

CD45+).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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