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Frequency of Microvascular Pathology
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of Alzheimer’s Disease with
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Objective: Blood-based biomarkers for Alzheimer’s disease (AD), representing antemortem indicators of AD patho-
physiology, have greatly improved the accuracy of diagnosis. However, these biomarkers may not capture a frequent
coincident pathology, such as cerebrovascular disease.

Methods: We measured plasma amyloid-$40, amyloid-$42, total tau, tau phosphorylated at threonine 181, tau phos-
phorylated at threonine 217, glial fibrillary acidic protein, and neurofilament light chain in 685 multiancestral individuals
who had clinical assessments and brain magnetic resonance imaging. The cohort was represented by individuals of
European, African American, and Caribbean Hispanic ancestry. Participants were then classified as biomarker-positive
or -negative for AD based on previously established cutoffs: 2.65 pg/mL for, tau phosphorylated at threonine 181 and
0.39 pg/mL for tau phosphorylated at threonine 217. We used magnetic resonance images to compare white matter
hyperintensity volume (WMH), silent brain infarcts, microhemorrhages, and hippocampus volume across groups by
their clinical diagnosis and biomarker status.

Results: In the P-tau181 group (n = 685), 70 individuals (10.2%) had dementia or amnestic mild cognitive impairment.
A total of 40 (57%) were biomarker-positive for AD, and 30 were classified as other dementia. Among 615 without
dementia, 265 (40.3%) were preclinical AD, and 348 (50.8%) were biomarker-negative controls. In the tau phosphory-
lated at threonine 217 group (n = 535), 54 (10.1%) had dementia or amnestic mild cognitive impairment, including
33 biomarker-positive for AD and 21 with other dementia, whereas 183 (38.0%) were preclinical AD and 298 (61.9%)
were biomarker-negative controls. Across both classifications, biomarker-positive for AD and other dementia individ-
uals showed greater WMH volumes, more infarcts, and smaller hippocampus. However, P-tau217 positivity was more
sensitive to WMH volume differences, whereas tau phosphorylated at threonine 181 better captured hippocampal
atrophy and silent brain infarcts. Interestingly, ethnic differences may also influence detection of changes in WMH vol-
umes, hippocampal volume, and infarcts in relation to specific biomarkers.
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Interpretation: The results indicate that cerebrovascular disease is consistently involved in dementia either directly or
as a coincident pathology in AD. These results underscore the need to incorporate both blood-based biomarkers and

structural imaging in the evaluation of patients with dementia.

he diagnoses for Alzheimer’s disease (AD) and mild
Tcognitive impairment (MCI) have been based on clin-
ical criteria'™ that require cognitive and functional
decline. The addition of cerebrospinal fluid biomarkers
provided the basis for a framework necessary to improve
the diagnosis. The “A/T/N” criteria specified the presence
of amyloidosis, tau pathology, and neurodegeneration,
considered imperative to the diagnosis of AD,”° but the
authors acknowledged that cerebrovascular disease is a fre-
quent copathology.”

Although the incorporation of biomarkers has con-
tributed to diagnostic specificity, there can be variability
in their application,®”'" depending on the presence of
comorbid disease and social factors.'>™'# The stratification
of individuals into biomarker-positive or -negative demen-
tia, and biomarker-positive or -negative controls raises sev-
eral critical questions, 1 of which is whether this
classification captures the known pathologic heterogeneity
of AD with and without the presence of cerebrovascular
disease.

In this cross-sectional study, we integrated magnetic
resonance imaging (MRI) and blood-based biomarkers to
investigate how white matter hyperintensity volume
(WMH) volume, silent brain infarcts, microhemorrhages,
hippocampal volume, and blood-based biomarkers charac-
terize cognitive impairment and dementia among individ-
uals in a community-based study in northern Manhattan,
New York.

Methods

Source Population

The Washington Heights-Hamilton Heights-Inwood
Columbia Aging Project (WHICAP) is a prospective
cohort study of clinical and genetic risk factors for demen-
tia. Individuals were recruited as representative of those
living in the communities of northern Manhattan who
were aged 2065 years, and the study was completed in
3 waves in 1992, 1999, and 2009, all using similar study
procedures. At the study entry, each person underwent a
structured interview of general health and function,
followed by a comprehensive assessment including medi-
cal, neurological, and psychiatric histories, and standard-
ized physical, neurological, and neuropsychological
examinations. Individuals were followed every 18-
24 months with repeated examinations that were similar
to the initial examination.
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The institutional review board of Columbia University
approved the study, and all participants provided written
informed consent.

After data were collected, a review was conducted in
a diagnostic consensus conference attended by 2 physicians
and 2 neuropsychologists with expertise in dementia diag-
nosis. The panel used the results from the neuropsycho-
logical battery and evidence of impairment in social or
occupational function. Initially, all-cause dementia was
determined based on criteria from the Diagnostic and Sta-
tistical Manual of Mental Disorders, 4th and 5th Edi-
tions.">'® Furthermore, we used the criteria from the
National Institute on Aging and Alzheimer’s Association
criteria to diagnose probable or possible AD.” For partici-
pants without dementia, MCI was assigned, as previously
described specifically for this community,'” if the partici-
pant had memory complaints or had cognitive impairment
in 21 cognitive domains, but with preserved activities of
daily living. Amnestic MCI (aMCI) was defined by the
modified version of the Petersen criteria, as described

. 18-20
previously.

Blood-Based Biomarkers

Blood samples were collected by standard venipuncture in
dipotassium ethylenediaminetetraacetic acid tubes. Plasma
was prepared by centrifugation at 2,000g for 15 min at
4°C within 2 h after collection, aliquoted in polypropyl-
ene tubes, and frozen and stored at —80°C. Plasma bio-
marker assays were performed between using the single
molecule array technology Quanterix Simoa®*' HD-X
platform (Quanterix, Billerica, MA, USA). All samples
were assayed in duplicate using 3 Quanterix kits: Neurol-
ogy 3-Plex A (catalog No. 101995) for amyloid-$40 and
42 (Ap40, Ap42), and total tau (t-tau); pTau-181 Advan-
tage V2 (catalog No. 103714) for tau phosphorylated at
threonine 181 (P-taul81); tau phosphorylated at threo-
nine 217 (P-tau217) and Neurology 2-Plex B (catalog
No. 103520) for neurofilament light chain (NfL) and glial
fibrillary acidic protein (GFAP). Quantification functional
lower limits for these analytes are 2.7 for Ap40, 0.6 for
Ap42, 0.3 for T-tau, 0.3 for P-taul81, 0.06
for P-tau217,0.8 for NfL, and 16.6 for GFAP, all in
pg/mL. Mean coefhicients of variation are <5%. Ratios of
Ap42/AP40, P-taul81/AP42 and P-tau2l7/AP42 were
calculated. Based on the literature, we a priori decided to
focus on P-taul81,”? P-tau217,2>%* neurodegeneration
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marker NfL,2>%/ neuroinflammatory reactive astrogliosis
marker GFAP,”® AB42/Ap40,%°7" P-taul81/AB42,% and
P-tau217/Ap42,%> whereas analyses did not include the
individual measures of AB42, Af40, and t-tau due to their
lesser  performance in classifying AD and neu-
rodf:gener:itiotl.27’34 Blood for DNA extraction was also
collected, and apolipoprotein E (APOE) genotyping was
performed at LGC Genomics (Teddington, UK) and CD
Genomics (New York, NY, USA).

MRI

Structural MRI scans for 246 (36.6%) participants were
obtained using 1.5-T magnet samples, and 427 (63.4%)
on a 3.0-T magnet.”” We adjusted for field strength in
each set of the analyses. MRI scans were selected for ana-
lyses using the scan date that was closest to the blood
collection date.

We derived hippocampal volumes using FreeSurfer,
as previously described.”® FreeSurfer segmentations were
visually inspected and manually corrected, if necessary, by
a trained operator.

Cerebrovascular  disease  (white matter  hyper-
intensities, microhemorrhages, and brain infarcts) was
measured using software developed in-house.”® Briefly,
fluid-attenuated inversion recovery (FLAIR) images were
reconstructed, reoriented, skull stripped, and bias field
corrected. A Gaussian mixture model and expectation—
maximization algorithm was applied within the white mat-
ter segment of each FLAIR image to extract 2 components
representing hyperintense and non-hyperintense voxels. A
Roberts edge detection function was applied to probability
distribution maps representing the segmented WMH
within the FLAIR images to label WMH voxels. The
labeled voxels were added together and multiplied by their
dimensions to yield total WMH volume in cm”’.

Microhemorrhages  were  visually rated on
T,*-weighted MRI following established criteria.””” The
primary measure is the presence or absence of micro-
hemorrhages, and their locations were ascertained by
trained raters. Brain infarcts were defined visually and
rated as discrete hypointense lesions that were >5 mm on
T, and confirmed on the FLAIR image as a hypointense
lesion with a partial or complete hyperintense ring. For
the statistical analysis of microhemorrhages and brain
infarct, we used dichotomized values for each participant,
categorizing them based on the presence or absence of

microhemorrhages and brain infarcts, respectively.

Statistical Analysis

Data analyses were performed using R software version
4.2.0 (hetps://www.r-project.org/). Individuals were classi-
fied into 4 groups based on a previously established

P-taul81 cut score of 2.648 pg/mL4o: biomarker-negative
controls (BM-CTL), biomarker-positive controls (BM
+ CTL), biomarker-negative with dementia (BM-Dem),
and biomarker-positive with dementia (BM + AD). In
addition to P-taul81, the individuals were classified based
on a P-tau2l7 cut score of 0.39 pg/mL, which is deter-
mined using the same protocol as P-taul81. Proportions
across groups were assessed using the y* test for categorical
variables, whereas the Kruskal-Wallis test was applied to
continuous variables, with significance defined as p <0.05.
Outliers whose blood-based biomarker (A$40, Ap42, Ap
ratio, total Tau, P-taul81, P-tau217, P-taul81/
ApP42 ratio, P-tau217/ApB42 ratio, NfL, and GFAP) levels
exceeded 1.5-fold the interquartile range beyond the first
(Q1) or third (Q3) quartiles were removed.

The correlations among the raw structural MRI
measures and plasma biomarkers were analyzed using
Pearson’s partial correlation method within BM-CTL,
BM + CTL, and BM + AD groups, classified based on
the P-taul81 cut score. The same analyses were repeated
using the groups defined by the P-tau217 cutoff. Due to
the small sample sizes, the BM + CTL and BM + AD
groups were combined in the correlation analyses. We
investigated correlations among structural MRI measures,
including WMH volume and hippocampal volume, and
other plasma biomarkers including Af40, Ap42, Ap ratio,
total Tau, P-taul81, P-tau217, P-taul81/Af42 ratio,
P-tau217/Ap2 ratio, NfL, and GFAP. These analyses were
adjusted for age, sex, ethnicity, intracranial volume, and
magnetic field strength as covariates. The proportion of
individuals scanned at 1.5 T versus 3.0 T differed between
the BM-CTL and BM + CTL groups, but not the BM-
Dem or BM + AD. Nevertheless, we adjusted for field
strength in all analyses that included MRI outcomes. All
the plasma biomarkers, including AB40, Af42, Ap ratio,
total Tau, P-taul81, P-tau2l7, P-taul81/Af42 ratio,
P-tau217/Ap42 ratio, NfL and GFAP, were adjusted for
age, sex, and ethnic group in the correlation analysis. Out-
liers within the BM-CTL, BM + CTL, and BM + AD
groups were excluded in the plasma biomarker data prior
to analysis. The Pearson’s partial correlation were plotted
with the ‘pheatmap’®’ and “corrplot™*? packages in R soft-
ware. The scatter plots showing the correlation of MRI
measures with plasma biomarkers were generated using
the ‘ggpubr’® package in R software.

Individuals were classified as biomarker-positive or
-negative based on a P-taul81 cutoff of 2.648 pg/mL, and
for subsequent analyses, classification as biomarker-
positive or -negative was based on a P-tau217 cutoff of
0.39 pg/mL. Differences in WMH volume, hippocampal
volume, NfL, and GFAP were analyzed among BM-CTL,
BM + CTL, BM-Dem, and BM + AD groups using
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analysis of covariance (ANCOVA). Extreme outliers for
NfL (37 outliers removed) and GFAP (34 outliers
removed) were removed if they exceeded 1.5-fold the
interquartile range beyond the first (Ql) or third
(Q3) quartiles. Similarly, differences in the frequency of
silent brain infarcts and microhemorrhages were analyzed
using logistic regression among different clinical groups.
The WMH volume and hippocampal volume were
adjusted for age, sex, ethnic group, field strength, and
intracranial volume. Analyses involving, NfL, GFAP,
silent brain infarcts, and microhemorrhages were adjusted
for age, sex, and ethnic group. Subsequently, similar ana-
lyses stratified by ethnicity were performed with adjust-
ments for the same covariates excluding ethnic group. We
also evaluated the ethnicity differences within each clinical
group of neuroimaging measures using ANCOVA by
adjusting for age, sex, field strength and intracranial vol-
ume as covariates.

MRI measures and plasma biomarkers were com-
pared between APOE-e4 carriers and non-carriers using
ANCOVA. All the plasma biomarkers were adjusted for
age, sex, and ethnic group as covariates, whereas the MRI
phenotypes were adjusted for the same covariates as
described above. The distribution of MRI measures and
blood-based biomarkers (Figure SIA-D) was assessed, and
the ANCOVA analysis was performed using the log trans-
formed values (Figure S2A—-C) if there was a skewness in
the distribution along with analyses on raw values. The
NIfL and GFAP data were skewed, thus all raw values were
log-transformed and 11 identified outliers (out of 685 indi-
viduals) were removed. Then, the ANCOVA was repeated
using the log-transformed data across the clinical groups
to determine whether the findings differed from those
obtained with the raw data. Additionally, APOF-¢4 car-
riers and non-carriers were stratified by biomarker-positive
and -negative, and analyzed for differences in MRI mea-
sures and plasma biomarkers among these clinical groups
using ANCOVA with similar covariate adjustments as
those previously described.

Power Analysis

Power analyses for the ANCOVA models (WMH, hippo-
campal volume, NfL, and GFAP) were conducted using
the ‘pwr’ package in R software.** Power analyses for
logistic regression models involving microbleeds and silent
brain infarcts were performed using the ‘pwrss’ package
in R* Assuming an effect size of 0.15 and 3 to
5 covariates, all ANCOVA comparisons within the
P-taul81- and P-tau217-defined clinical groups achieved
adequate power ranging from 0.85 to 0.99. In contrast,
for the analyses involving microbleeds and silent brain
infarcts, with an expected effect size of 2.0 and a desired

power of 0.80, only the comparisons between the BM-
CTL and BM + CTL groups were adequately powered.

Results

Demographics of Study Participants

A total of 685 individuals were included based on
P-taul81-based clinical grouping. Among them,
70 (10.2%) individuals had dementia or aMCI. Of these,
40 (57%) were biomarker-positive and considered as hav-
ing BM + AD, whereas 30 were biomarker-negative and
considered as BM-Dem. There were 615 (81%) individ-
uals without dementia or with minor cognitive deficits,
267 (40.3%) of whom were biomarker-positive and con-
sidered BM + CTL. The remaining 348 (50.8%) individ-
uals were cognitively unimpaired and biomarker-negative,
and considered BM-CTL. As seen in Tables 1 and 2,
those with dementia (BM-Dem) were older and had fewer
years of education than the BM-CTL or BM + CTL
groups. There were also more women in the BM-Dem
group compared with the other groups. Although the fre-
quency of an APOE-e4 allele was highest in the BM
+ AD group, the difference was not statistically signifi-
cant, possibly due to the small number of individuals in
that group.

In the P-tau217-based classification group, 535 par-
ticipants were assessed. Among them, 54 (10.13%) indi-
viduals had dementia or aMCI, and within this impaired
subgroup, 33 (61.11%) were biomarker-positive and con-
sidered as having BM + AD, whereas 21 were biomarker-
negative and considered as BM-Dem. The remaining
481 participants (89.9%) showed no dementia or only
minor cognitive deficits. Of these, 183 (38.0%) were
biomarker-positive (BM + CTL) and 298 (61.9%)
were biomarker-negative (BM-CTL). Like the P-taul81
grouping, BM-Dem individuals were older and less edu-
cated (Tables 3 and 4). APOE-e4 frequency was again
highest in BM + AD, but not significant, possibly due to
the small number of individuals in that group.

Relationship Between Neuroimaging Measures
and Blood-Based Biomarkers

Correlation analyses were conducted between MRI mea-
sures and blood-based biomarkers within the BM-CTL
group, and a combined group of BM + CTL and BM
+ AD. These analyses were performed separately for clini-
cal classifications based on both P-taul81 and P-tau217.
Significant correlations (p < 0.005) were observed between
MRI measures and biomarkers including Ap40, Ap42,
Ap42/40 ratio, total tau, P-taul81, P-tau217, P-taul81/
Ap42 ratio, P-tau217/AP42 ratio, NfL, and GFAP across
both classification schemes (Figures 1A, B, and 2C, D).
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TABLE 1. Demographic Characteristics of Study Participants Based on P-Tau181 Defined Groups

N
Age, mean (SD)
Women (%)
Education, mean (SD)
APOE ¢4 (%)
Diabetes (V)
Hypertension (V)
Microbleeds
15T (N)
Positive (%)
3.0T (V)
Positive (%)
Silent brain infarcts
1.5 T (N)
Positive (%)
3.0T (V)

Positive (%)

Biomarker
negative control

(BM — CTL)

348 (50.8%)
75.05 (6.07)
67%
12.44 (4.71)
85 (24.64%)
112 (32.2%)
278 (79.9%)

231
12.9%

96
48.9%
247
26.3%

White matter hyperintensity volume (cm?)

15T
Mean (SD)
30T
Mean (SD)
Hippocampus volume (mm?)
15T
Mean (SD)
30T
Mean (SD)
Intracranial volume (mm?)
1.5 T Mean
3.0 T Mean
Field strength
15T
30T

18.17
(18.39)
6.77
(9.33)

6746.12
(865.59)
7257.01
(822.26)

1,316,801
1,483,599

96
249

Biomarker
positive control

(BM + CTL)

267 (38.9%)
77.41 (6.97)
55.8%
11. 95 (5.00)
71 (26.14%)
81 (30.3%)
232 (86.9%)

129
19.4%

123
49.6%
137
35.0%

13.73
(16.04)
9.33
(10.86)

6850.53
(850.25)
6859.06
(912.17)

1,304,781
1,481,228

123
139

Biomarker
negative dementia
(BM — Dem)
30 (4.4%)
80.93 (7.77)
83.33%

7.67 (4.83)

9 (30%)

15 50%)

28 (93.3%)

19
10.5%

62.5%
19
31.6%

29.52
(27.46)
11.51
(13.53)

6368.63
(1177.77)
6751.11
(789.62)

1,342,526
1,416,514

8
20

cm’® = cubic centimeter; mm® = cubic millimeter; N = total number; SD = standard deviation.

Biomarker positive
Alzheimer’s disease

(BM + AD)

40 (5.8%)
80.23 (8.39)
52.50%
8.63 (4.83)
15 (37.50%)
12 (30%)
36 (90%)

18
11.1%

19
47.4%
18
61.1%

21.59
(14.34)

26.59
(24.82)

6631.05
(827.99)
6695.65
(795.99)

1,306,466
1,528,191

19
19

p-value

<0.0001
0.03

<0.0001
0.349
0.18
0.03

N/A

0.36

0.90

0.01

0.002

<0.0001

0.75

<0.0001

0.88

0.27

<0.0001
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TABLE 2. Blood Based Biomarkers
Biomarker Biomarker
Biomarker negative Biomarker positive ~ negative dementia  positive Alzheimer’s
control (BM — CTL)  control (BM + CTL) (BM — Dem) disease (BM + AD)  p-value

N 348 (50.8%) 267 (38.9%) 30 (4.4%) 40 (5.8%)
P-ul81 (pg/mL)

Mean (SD) 1.90 (0.50) 4.99 (5.49) 1.99 (0.43) 4.58 (2.20) <0.0001
P-tau217 (pg/mL)

Mean (SD) 0.31 (0.15) 0.57 (0.37) 0.36 (0.20) 0.86 (0.51) <0.0001
AB40 (pg/mL)

Mean (SD) 248.35 (81.97) 304.17 (119.23) 263.06 (113.04) 297.52 (3.83) <0.0001
Ap42 (pg/mL)

Mean (SD) 10.34 (3.66) 11.89 (4.53) 10.40 (4.23) 11.21 (3.83) 0.001
Total tau (pg/mL)

Mean (SD) 3.04 (1.30) 4.95 (2.03) 3.18 (1.54) 3.90 (1.80) 0.03
AB 42/40 ratio

Mean (SD) 0.05 (0.04) 0.04 (0.014) 0.04 (0.01) 0.04 (0.01) <0.0001
P-taul81/ApB42 ratio

Mean (SD) 0.29 (1.01) 0.49 (0.66) 0.35 (0.66) 0.48 (0.31) <0.0001
P-tau217/AB42 ratio

Mean (SD) 0.04 (0.04) 0.06 (0.05) 0.05 (0.05) 0.09 (0.09) <0.0001
NfL (pg/mL)

Mean (SD) 21.84 (15.84) 34.02 (23.64) 24.51 (10.18) 34.10 (15.53) <0.0001
GFAP (pg/mL)

Mean (SD) 168.52 (86.23) 253.05 (177.93) 196.18 (85.38) 283.66 (144.27) <0.0001

N = total number; SD = standard deviation.

These associations remained significant after correcting
multiple comparisons (p = 0.05/144 = 3.47 x 10~%).
Although WMH volume showed a nominally signif-
icant association with hippocampal volume (p = 0.04) in
the P-taul81-based BM-CTL group, this did not remain
significant after correction for multiple comparisons. Simi-
larly, in the P-tau217-based combined group (BM + CTL
and BM + AD), WMH was
Ap42 (p = 0.01) and hippocampal volume was associated
with GFAP (p = 0.003), but neither survived correction

for multiple testing. No other significant associations were

associated  with

observed between WMH or hippocampal volume and the
remaining blood-based biomarkers in any group. The scat-
ter plots showing the correlations between MRI measures

and blood-based biomarkers are provided in the

Figures S3-S6.

Comparison of Neuroimaging Measures and
Plasma Biomarkers Across Diagnostic Groups

We compared differences in WMH volume and hippo-
campal volume among the BM-CTL, BM + CTL, BM-
Dem, and BM + AD groups defined by P-taul81 levels
(Figure 2A, B). The BM-Dem (F = 5.840; p = 0.02) and
BM + AD (F=33.18; p=1.77 x 10~°) groups had
larger WMH volumes compared with the BM-CTL group
(Figure 2A). Additionally, the BM 4+ AD (F = 24.65;
p=1.18 x 10°°) groups had larger WMH volume
compared with the BM + CTL group. Due to the skewed

Volume 00, No. 0

5UB0 117 SUOLLLIOD AER10 3 e jdde 8Ly Aq peuenob aJe SILe YO ‘38N J0 SN Joj AJGIT BUIIUO /B|IA UO (SUOTIPUOO-PUE-SWLEYWIOO A3 1A ARe1q 1BU1UO//SANL) SUOIPUCD PUE SWi | au) 95 *[GZ02/60/22] Uo Areiq i auluo AB]1M ‘Sa1iq 1 AISAIN BIqUINIoD AQ 90002 BUE/Z00T OT/10p/CY" B A Jq1jpuuo//-SdIY WOI} pOpROUMOQ ‘0 ‘6vZ8TEST



Gunasekaran et al: Microvascular Pathology and Hippocampal Atrophy in Alzheimer's Disease

TABLE 3. Demographic Characteristics of Study Participants Based on P-Tau217 Defined Groups.

Biomarker Biomarker positive
Biomarker negative =~ Biomarker positive negative dementia Alzheimer’s disease
control (BM — CTL) control (BM + CTL) (BM — Dem) (BM + AD) p-value

N 295 (50.8%) 183 (38.9%) 21 (4.4%) 33 (5.8%)
Age, mean (SD) 74.98 (6.15) 78.25 (6.82) 81.33 (8.42) 82.42 (7.14) <0.0001
Women (%) 69% 60.01% 66.67% 69.70% 0.23
Education, mean (SD) 12.15 (4.82) 12.74 (4.92) 7.05 (4.22) 8.87 (5.30) <0.0001
APOE &4 (%) 68 (23.05%) 58 (31.69%) 5 (23.81%) 13 (39.39%) 0.06
Diabetes (V) 99 (33.5%) 60 (32.9%) 9 (42.9%) 10 (30.3%) 0.8
Hypertension (V) 244 (82.7%) 149 (81.4%) 19 (90.1%) 31 (93.9%) 0.24
Microbleeds

1.5T (V) 0 0 0 0 N/A

Positive (%)

3.0 T (N) 224 118 15 21 0.57

Positive (%) 12.9% 18.6% 13.3% 9.5%
Silent brain infarcts

15T (V) 57 55 3 10 0.91

Positive (%) 45.6% 49.1% 33.3% 40.0%

3.0 T (V) 237 127 16 20 0.04

Positive (%) 26.6% 33.1% 50.0% 45.0%

White matter hyperintensity volume (cm?)
1.5 T Mean (SD) 14.80 (19.69) 12.80 (13.07) 22.59 (19.23) 27.86 (25.00) 0.002
3.0 T Mean (SD) 6.82 (8.15) 9.72 (12.72) 15.23 (17.97) 22.60 (23.25) <0.0001

Hippocampus volume (mm®)

15T 6794.93 6738.73 5605 6831.4 0.1
Mean (SD) (723.77) (872.15) (526.97) (581.11)

30T 7159.33 7066.54 6884.59 6642.36 0.04
Mean (SD) (817.96) (986.22) (679.15) (845.53)

Intracranial volume (mm?)

1.5 T Mean 1296078.01 1320869.18 1272362.89 31686.55 0.84

3.0 T Mean 1481093.94 1485471.99 1473186.77 1465392.14 0.84
Field strength

15T 57 55 3 10 <0.0001

30T 240 127 17 21

cm® = cubic centimeter; mm> = cubic millimeter; N = total number; SD = standard deviation.
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TABLE 4. Blood Based Biomarkers
Biomarker positive
Biomarker negative ~ Biomarker positive ~ Biomarker negative  Alzheimer’s disease
control BM—CTL) control (BM + CTL) dementia (BM — Dem) (BM + AD) p-value

N 295 (50.8%) 183 (38.9%) 21 (4.4%) 33 (5.8%)
P-taul81 (pg/mL)

Mean (SD) 2.42 (2.23) 3.96 (2.74) 2.29 (1.21) 4.09 (2.59) <0.0001
P-tau217 (pg/mL)

Mean (SD) 0.26 (0.07) 0.67 (0.33) 0.25 (0.08) 0.87 (0.45) <0.0001
Ap40 (pg/mL)

Mean (SD) 261.32 (82.06) 284.36 (115.77) 276.72 (98.16) 285.68 (111.54) 0.07
Ap42 (pg/mL)

Mean (SD) 11.17 (3.67) 11.15 (4.34) 11.04 (3.54) 10.92 (4.33) 0.90
Total tau (pg/mL)

Mean (SD) 3.07 (1.60) 3.26 (1.62) 3.71 (1.89) 3.34 (1.46) 0.21
AB 42/40 ratio

Mean (SD) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) <0.0001
P-taul81/ApP42 ratio

Mean (SD) 0.25 (0.31) 0.40 (0.31) 0.22 (0.09) 0.47 (0.37) <0.0001
P-tau217/AB42 ratio

Mean (SD) 0.03 (0.04) 0.07 (0.05) 0.02 (0.02) 0.10 (0.09) <0.0001
NfL (pg/mL)

Mean (SD) 22.35 (15.57) 31.78 (21.20) 25.82 (10.32) 34.95 (16.62) <0.0001
GFAP (pg/mL)

Mean (SD) 173.86 (139.99) 234.99 (132.73) 193.74 (128.36) 279.25 (121.88) <0.0001

N = total number; SD = standard deviation.

distribution of WMH, log-transformed WMH volumes
were compared between the groups. Similar associations
for larger volumes were observed with the log-
transformed WMHs. Similarly, BM + CTL (F = 13.76;
p =227 x 107, BM-Dem (F = 7.99; p = 4.97 x 1077),
and BM + AD (F=9.87; p=1.81 X 107%) had smaller
hippocampal volume compared with BM-CTL (Figure 2B),
indicating that greater hippocampal atrophy was observed in
both forms of dementia, as well as in individuals in the pre-
clinical stage of AD.

Similarly, we assessed WMH and hippocampal vol-
umes across clinical groups defined by P-tau217 (Figure 3A,
B). BM + AD (F=41.73; p = 3.95 x 10'%), BM-Dem
(F=8.33; p=4.19 x 107°), and BM + CTL (F = 4.21;
P =0.04) groups showed larger WMH volumes compared

with  BM-CTL (Figure 3A). BM + AD (F=22.02;
p =499 x 107°) also had larger WMH volumes compared
with  BM + CTL. Log-transformed WMH values also
showed similar patterns. This suggests that P-tau217 classifi-
cation distinguishes WMH differences slightly better than
P-taul81, despite a smaller sample size. For hippocampal
volume, both BM + AD (F = 6.87; p = 9.05 x 10°) and
BM-Dem (F = 4.68; p = 0.03) had smaller volumes than
BM-CTL (Figure 3B). However, these hippocampal changes
were more pronounced under the P-taul81-based grouping
than under P-tau217. Most results remained unchanged for
the P-taul81-based clinical grouping after applying multiple
testing correction for neuroimaging measures
(p = 0.05/24 = 2.00 x 1072), whereas in the P-tau2l7
based analysis, the BM + AD group remained significant.
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FIGURE 1: Correlation between plasma biomarkers and neuroimaging measures. Partial correlations are shown between plasma
biomarkers and magnetic resonance imaging phenotypes, including white matter hyperintensity (WMH) volume and
hippocampal volume. (A, B) Correlations for groups defined by tau phosphorylated at threonine 181 (P-tau181): (A) biomarker-
negative cognitively normal controls (BM-CTL), and (B) biomarker-positive controls (BM + CTL) combined with Alzheimer’s
disease cases (BM + AD). (C, D) Corresponding correlations for groups defined by tau phosphorylated at threonine 217 (P-
tau217): (C) BM-CTL and (D) BM + CTL + BM + AD. Plasma biomarkers include Ap40, Ap42, total tau (T-tau), P-tau181,
P-tau217, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), Ag42/40 ratio, P-tau181/Ap42 ratio, and P-tau217/
Ap42 ratio. WMH and hippocampal volumes were adjusted for age, sex, ethnicity, intracranial volume, and magnetic field
strength. Plasma biomarkers were adjusted for age, sex, and ethnicity. The heatmap color scale indicates the correlation
coefficient (r), ranging from —1 to +1. The red asterisks within each box denote significant correlations (*p < 0.05, **p < 0.01,

and ***p < 0.001).

NfL and GFAP Levels Increase in Relation to BM
+ CTL and BM + AD

Not unexpectedly, NfL and GFAP levels differed across
the P-taul81-based clinical groups (Figure 2C, D). BM
+ CTL (F=155.34; p=1.01 x 107°"), BM-Dem
(F=10.50; p=131x10"7), and BM +AD
(F=101.82; p=3.09 x 1072 groups had increased
NfL levels compared with BM-CTL (Figure 2C).

Likewise, BM + CTL (F=6.68; p =0.01) and BM
+AD (F=11.05; p=1.48 x 10°) had higher NfL
levels compared with individuals in the BM-Dem group
(Figure 2C). In the P-tau217 based diagnostic groups,
BM + AD (F=34.46; p=1.10 x 10°°), BM-Dem
(F=5.74; p=0.17), and BM + CTL (F=71.57;
2 =3.55 x 10" showed higher levels of NfL compared
with  BM-CTL (Figure 3C). BM + AD (F=4.08;
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FIGURE 2: Comparison of neuroimaging measures and plasma biomarkers across clinical groups defined by P-tau181. Blood
biomarkers and magnetic resonance imaging phenotypes including total white matter hyperintensities (WMH) and hippocampal
volume were compared across different clinical groups stratified by tau phosphorylated at threonine 181 biomarker status.
(A) Total WMH volume, (B) total hippocampal volume, (C) neurofilament light (NfL), and (D) glial fibrillary acidic protein (GFAP)
association significance levels are shown above each comparison group (*p < 0.05, **p < 0.01, ***p < 0.001). The boxplot shows
the median, interquartile range (IQR), and the range of values from the smallest to the largest that do not exceed 1.5-fold

the IQR.

p = 0.04) also had higher levels of NfL. compared with
BM-Dem (Figure 3C).

Compared with BM-CTL, BM + CTL individuals
(F=93.67; p=124x 107%°, BM-Dem (F=5.85;
2 =0.02), and BM + AD (F=80.57; p = 1.55 x 10")
had increased GFAP levels (Figure 2D). Compared with
BM-Dem, GFAP levels were increased in BM + CTL
(F=4.07; p=0.04) and BM+AD (F=13.05
p=6.10 x 1074 Figure 2D). Likewise, within the
P-tau217 based clinical groups, BM + AD (F=47.61;
p=287x10") and BM+CIL (F=51.9%
p =236 x 10713 showed higher GFAP levels than BM-
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CTL (Figure 3D). Furthermore, BM + AD had significantly
greater GFAP than BM-Dem (F = 18.48; p = 8.37 x 107°),
and BM + CTL (F = 5.77; p = 0.02) also exceeded BM-
Dem (Figure 3D). Overall, both P-taul81- and
P-tau217-based classifications capture alterations in NfL
and GFAP levels. Almost all the analysis remained signifi-
cant after multiple corrections for NfL and GFAP
(p = 0.05/24 = 2.00 x 1077).

Among the P-taul81-based clinical groups, the fre-
quencies of silent brain infarcts in the BM + CTL
(42.6%) and BM + AD (56.41%) groups were signifi-
cantly higher than in the BM-CTL (32.36%) and BM-

Volume 00, No. 0

5UB0 117 SUOLLLIOD AER10 3 e jdde 8Ly Aq peuenob aJe SILe YO ‘38N J0 SN Joj AJGIT BUIIUO /B|IA UO (SUOTIPUOO-PUE-SWLEYWIOO A3 1A ARe1q 1BU1UO//SANL) SUOIPUCD PUE SWi | au) 95 *[GZ02/60/22] Uo Areiq i auluo AB]1M ‘Sa1iq 1 AISAIN BIqUINIoD AQ 90002 BUE/Z00T OT/10p/CY" B A Jq1jpuuo//-SdIY WOI} pOpROUMOQ ‘0 ‘6vZ8TEST



Gunasekaran et al: Microvascular Pathology and Hippocampal Atrophy in Alzheimer's Disease

A)
White matter hyperintensity volume
*k%k
*%
*
100+ Sk
s .
§ 75 :
- o
£
3 .
S 50
T o
= >
= .
T 251
L .-..
v 3
o o2t

BM-CTL BM+CTL BM-Dem BM+AD

C)
NfL
*%k%
100 .
*k%k *
751 — .
m o ¢
£ 501 ola
L .
o
25 L
.J',\
O-

GFAP

BM-CTL BM+CTL BM-Dem BM+AD

Hippocampus volume

*%*

12.51 *
2100
S
[%2]
g .
£ 7.5
8
o
g e
£ 501 o
3
ke

2.5

BM-CTL BM+CTL BM-Dem BM+AD
GFAP
* k%
*
6004 Hkk . S— .
400+ o [

200
R

BM-CTL BM+CTL BM-Dem BM+AD

FIGURE 3: Comparison of neuroimaging measures and plasma biomarkers across clinical groups defined by tau phosphorylated
at threonine 217 (P-tau217). Blood biomarkers and magnetic resonance imaging phenotypes including total white matter
hyperintensities (WMH) and hippocampal volume were compared across different clinical groups stratified by P-tau217
biomarker status. (A) Total WMH volume, (B) total hippocampal volume, (C) neurofilament light (NfL), and (D) glial fibrillary acidic
protein (GFAP) association significance levels are shown above each comparison group (*p < 0.05, **p < 0.01, ***p < 0.001). The
boxplot shows the median, interquartile range (IQR), and the range of values from the smallest to the largest that do not exceed

1.5-fold the IQR.

Dem (37.93%) groups (Figure S7A). Furthermore, the
frequency of silent brain infarcts was highest among BM
+AD (8=023; p=9.51 x 10°) and BM + CTL
(#=0.19; p=0.03) individuals (Figure S7A). The
P-tau217-based clinical groups showed no significant dif-
ferences in silent brain infarct frequencies, except for the
BM-Dem group (50%; f = 0.24; p = 0.03), which was
significantly higher than BM-CTL (38.25%; Figure S7C).
These differences did not remain significant after multiple
corrections  (p = 0.05/24 = 2.00 x 1073). There were
also no significant differences in microhemorrhage fre-
quencies across the 4 groups classified by either P-taul81
or P-tau217 (Figure S7B, D).

The association of APOF-e4 with MRI outcomes
(WMH and hippocampal volume) and blood-based bio-
markers (NfL, GFAP, Ap40, Ap42, T-tau, P-taul8l,
P-tau217, Ap ratio, P-taul81/Af42 ratio, and P-tau217/
AP42 ratio) was also evaluated (Figure S8A-L). Among
these, APOE-e4 was associated with lower levels of plasma
ApA40 (Figure S8E; F = 4.275; p = 0.04), higher levels of
P-tau217 (Figure S8I; F = 6.89; p = 0.009), and higher
levels of P-tau217/Ap42 ratio (Figure S8L; F=9.52;
2 = 0.002) compared with non-APOE-€4 carriers.

Additionally, we examined the association across
biomarker groups classified as P-taul81-positive and
-negative among APOE-e4 carrier and non-carriers.
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WMH volume was significantly higher in APOE non-&4
(BM+) compared with APOE non-e¢4 (BM—; F = 4.83;
» = 0.03; Figure S9A). WMHs showed a trend toward
larger volume in APOFE-¢4 (BM+) compared with APOE-
&4 (BM—), but no significant association was found due
to the small sample size. Similarly, hippocampal volume
was significantly smaller in APOE non-e4 (BM+) com-
pared with APOE non-¢4 (BM—; F=9.65;
=20 x 10~%). Furthermore, hippocampal volume was
also significantly reduced in APOE non-e4 (BM+) com-
pared with APOE-e4 (BM—; F = 6.804; p = 9.55 x 10 7;
Figure S9B). In the biomarker group cdlassified by
P-tau217-positive and -negative, and stratified by APOE-e4
carrier and non-carriers, APOE-e4 (BM+; F=4.79;
p=0.03) and APOE none4 (BM+; F=38.9;
2 =3.19 x 107°) had larger WMH volume compared with
APOE-e4 (BM—; Figure S10A). As observed in Figures 2A
and 3A, the WMH volume was better defined when based
on P-tau217 rather than with P-taul81. However, the hip-
pocampal volume showed no significant changes across the
P-tau217 based grouping, which contrasted with P-taul81
based grouping (Figure S10B).

Similarly, in both P-taul81- and P-tau217-based
grouping, higher NfLL and GFAP levels were associated
with APOE-¢4 (BM+; p < 0.05) carriers and APOE non-
€4 (BM+; p <0.05) carriers compared with APOE-e4
(BM—) and APOE non-¢4 (BM—) groups (Figures S9C,
D, and S10C, D).

Differences by Ethnic Group With Respect to
P-tau181 and P-tau217

Although non-Hispanic white, African American, and
Caribbean Hispanic individuals showed differences in
structural MRI brain measures across BM-CTL, BM
+ CTL, BM-Dem, and BM + AD groups classified by
P-taul81, only the Caribbean Hispanic and African
American groups showed statistically significant differences
in the WMH (Figure S11A-C). Only the Caribbean His-
panic group showed differences in the hippocampal vol-
ume across the BM-CTL, BM + CTL, BM-Dem, and
BM + AD groups, as well (Figure S11D-F).

In the groups classified by P-tau217, the African
American group showed statistically significant differences
in the WMH volume across BM + CTL, BM-Dem, and
BM + AD groups. Additionally, the BM + AD group in
the Caribbean Hispanic individuals and Non-Hispanic
white individuals showed larger WMH volume compared
with BM-CTL (Figure S14A-C). However, no significant
differences were found for hippocampal volume across the
clinical group in any of the ethnic groups (Figure S14D, F).

Among the P-taul81-based clinical groups, the levels
of NfL and GFAP were elevated in BM + AD and BM
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+ CTL (p < 0.05) across all 3 ethnic groups compared
with BM-CTL. Interestingly, BM + AD showed a strong
association with elevated levels of NfL in non-Hispanic
white and Caribbean Hispanic individuals, but only a
moderate association was found in African American
(p =0.01) individuals compared with BM-CTL
(Figure S12A-C). Increased GFAP levels were associated
with BM + AD across all 3 ethnic groups compared with
BM-CTL. Similarly, elevated GFAP levels are associated
with BM + CTL compared  with BM-CTL
(Figure S12D-F). In the P-tau217-based clinical groups,
higher levels of NfL and GFAP were observed consistently
across all ethnic groups; specifically, BM + AD and BM
+ CTL had significantly higher levels compared with
BM-CTL (p < 0.05; Figure S15).

In the P-taul81-based clinical grouping, the fre-
quency of brain infarcts was higher in BM 4 AD than in
BM-CTL, with African American (f = 0.35; p = 0.02)
and  Caribbean Hispanic individuals (= 0.30;
p =0.02) showing significant differences. Additionally,
silent brain infarcts were more frequent in the BM-Dem
group among African American individuals (f = 0.37;
p =0.03) compared with BM-CTL, but no differences
were found in non-Hispanic white individuals
(Figure S13A-C). We found no significant differences in
the frequency of microhemorrhages in any of the 4 groups,
but attributed this to the small sample size
(Figure S13D-F). However, in the P-tau217-based clinical
grouping, brain infarct and microhemorrhage frequencies
did not differ significantly across any ethnicities among
different clinical categories (Figure SIGA-F).

We also evaluated ethnic differences within each
P-taul81- and P-tau217-based clinical category for WMH
burden  and  hippocampal  volume. In  the
P-taul81-defined BM-CTL group, African American indi-
viduals had significantly larger WMH volumes than non-
Hispanic white and Caribbean Hispanic individuals
(p <0.05). Similarly, within the P-tau217-defined BM-
CTL group, both African American and Caribbean His-
panic individuals showed larger WMH volumes than non-
Hispanic ~ white  individuals  (p <0.05).  Among
P-tau217-defined BM-AD participants, African American
individuals showed larger WMH volumes than Caribbean
Hispanic individuals (p < 0.05).

For hippocampal volume, in the P-taul81-defined
BM + CTL group, African American and Caribbean His-
panic individuals had significantly smaller volumes than
non-Hispanic white individuals (p < 0.05). Likewise,
within the P-tau217-defined BM-CTL group, both Afri-
can American and Caribbean Hispanic individuals showed
smaller hippocampal volumes than non-Hispanic white

individuals (p < 0.05). In the BM 4 AD group (regardless
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of P-taul81 or P-tau217 stratification), no significant eth-
nic differences were observed for either WMHs or hippo-

campal volume.

Discussion

In this community-based study of older individuals living
in northern Manhattan, New York, we investigated the
MRI measures of cerebrovascular pathology and hippo-
campal volume in 4 groups defined by clinical measures
and blood-based biomarkers for AD. Compared with BM-
CTL, individuals characterized as BM + AD, BM
+ CTL, and BM-Dem had larger WMH volumes, more
silent brain infarcts, and smaller hippocampal volumes.
African American and Caribbean Hispanic individuals
showed significant WMH differences across clinical
groups, with only Caribbean Hispanic individuals showing
substantial hippocampal volume changes. Across all eth-
nicities, the BM + AD and BM + CTL groups had ele-
vated NfL and GFAP levels. Brain infarcts were more
frequent in BM + AD among African American and
Caribbean Hispanic individuals, with no significant differ-
ences noted for microhemorrhages. Ethnic-specific ana-
lyses suggested that associations between WMH or
hippocampal volume and biomarker status may vary by
ancestry. Interestingly, APOE-¢4 was significantly associ-
ated with lower AB40 levels, higher P-tau217 levels, and
increased P-tau217/Ap 42 ratios, but no other biomarkers
showed significant associations with the APOE-¢4 geno-
type. APOE non-e4 carriers who were P-taul8l
biomarker-positive (BM+) had larger WMH volumes and
smaller hippocampal volumes compared with those who
were P-taul81 biomarker-negative (BM—). Although
APOE-e4 BM+ individuals tended to have larger WMH
volumes than BM— individuals, this difference did not
reach statistical significance. Similarly, both APOE &-4 car-
riers and non-carriers who were P-tau217 biomarker-
positive (BM+) had larger WMH volumes than P-tau217
biomarker-negative (BM—) participants, suggesting that
P-tau217 may be more sensitive to WMH volumes. How-
ever, in contrast to P-taul81, APOE-e4 carriers and non-
carriers that were P-tau217 biomarker-positive (BM+) did
not show significant differences in hippocampal volume
with the BM-group. This suggests that P-taul81 may bet-
ter reflect hippocampal atrophy than P-tau217, although
the smaller sample size in the P-tau217 group should be
taken into consideration. As differences are observed in
both APOE-¢4 carriers and non-carriers, these findings
suggest that changes in WMH and hippocampal volumes
are more closely linked to disease-stage biomarker eleva-
tion and not APOE-e4 status alone. In addition, higher
levels of NfLL and GFAP were observed in both P-taul81-

and P-tau217-positive individuals, regardless of their
APOE-¢4 carrier status.

WMH are known to increase dramatically with age,
even among individuals without dementia.“° Since the ini-
tial descriptions of “leukoaraiosis,” WMH were presumed
to represent small vessel ischemic injury. They are associ-
ated with pre-existing comorbidities, such as hypertension
and diabetes, as well as cognitive impairment and stroke.
However, WMH may also reflect demyelination and axo-
nal degeneration,47 and are also associated with cerebral

amyloid angiopathy®®*’

and neurodegeneration within
the parenchyma.’ It has been suggested that WMH on
brain MRI represent vascular- and non-vascular-related
effects associated with aging and dementia,”">? but this
point remains controversial.”> Postmortem studies indicate
that WMH are related to myelin loss, gliosis, and small
infarcts.”™*®  Individuals with dementia who were
biomarker-negative showed increased WMH volumes
compared with cognitively normal individuals. Despite the
lack of biomarker positivity, this elevated WMH volume
in dementia is likely attributed to the presence of cerebro-
vascular disease. The increased frequency of silent brain
infarcts in the combined BM + CTL and BM + AD
groups might suggest a vascular etiology of the WMH.
Comorbid diseases are also associated with AD and
lead to cerebrovascular disease,”® including hypertension
(55.1%), diabetes (25.7%), and cardiovascular disease
(22.7%).”” Several recent studies suggest that both type
2 diabetes and hypertension are the leading risk factors for
WMH among the aging population, and for stroke and
dementia.*>*%" Diabetes affects millions worldwide,’®
and is a risk factor for AD®"®? and vascular dementia, and
causes alterations in insulin resistance, which disrupt amy-
loid metabolism, insulin signaling, and cause inflamma-
tion.”> Hypertension is also associated with AD,**
especially in middle age, resulting in ischemic small vessel
disease, arterial stiffness, stroke, and endothelial dysfunc-
tion.”> African American and Hispanic individuals also
3766-68 obesity, and

In our cohort, hypertension

have a higher frequency of diabetes,
metabolic syndrome.®”~*
(90%) and diabetes (30%) were highly prevalent among
individuals with AD. In this study, we found that hyper-
tension was significantly associated with WMH
(F=6.15; p = 0.01), and the frequency of diabetes was
higher among African American (33.18%) and Hispanic
individuals (42.14%) compared to non-Hispanic white
individuals (17.64%). Along with comorbidities, some fac-
tors, such as hypertension and antihypertensives, alcohol,
body mass index, and renal disease can directly alter P-tau
levels, 10717577

Among blood-based biomarkers, P-taul81 and

P-tau217 are both strongly associated with amyloidosis
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and AD. Elevated levels of P-taul81 and P-tau217 are
considered reliable and valid biomarkers for detecting AD
pathology and monitoring disease progrcession.4()’78’79
P-taul81 and P-tau217 are both associated with progres-
sion to AD among individuals with MCIL>>7¢ Although
associated with progressive changes in memory and cogni-
tion, P-taul81 and P-tau217 are also correlated with
reduced hippocampal volume and increased WMH vol-
ume in the Alzheimer’s Disease Neuroimaging Initiative

80,81 . . . . . . 82
and in a previous investigation in WHICAP.

cohort
Consistent with these previous studies, we found that not
only WMH volume, but also hippocampal volume and
silent brain infarcts were associated with both P-taul8l
and P-tau217 levels. Unique to other studies, WHICAP
includes individuals of Caribbean Hispanic and African
ancestry.

We observed strong associations between P-taul81
and P-tau217, GFAP, and NfL. These biomarkers have
been investigated in both cerebrospinal fluid and plasma,
and have been used for establishing diagnoses and moni-
toring disease progression.g3_86 Although GFAP and NfL
are non-specific biomarkers reflecting damage to the brain
and spinal cord, they are strongly related to neu-
rodegeneration and, therefore, useful in assessing disease
progression.

Our study did have limitations. The number of indi-
viduals in the BM + AD and BM-Dem diagnostic groups
were small. P-taul81 is an excellent blood-based bio-
marker, but P-tau217 appears to have better sensitivity
and specificity.”>**” We found these 2 measures of
P-tau were strongly correlated. Nevertheless, we consider
the relationships between P-taul81 and P-tau217, the
other blood-based biomarkers, and the imaging findings
to be clinically important, and will be maintained with
other P-tau biomarkers.

Taken together, these results suggest that combining
MRI imaging with blood-based biomarkers offers clarity
regarding the existence of cerebrovascular copathologies in
AD. In addition, if we assume the BM + CTL reflects the
preclinical stage of AD, then cerebrovascular pathology
may appear very early in the development of AD. The
presence of cerebrovascular disease among individuals with
other forms of dementia is not unexpected. In a large
study including postmortem data of individuals with
dementia, the frequency of participants with a predomi-
nate vascular cause for dementia in the absence of AD or
other neurodegenerative disorders was 20.9%.”° The
results presented here are consistent with these findings,
indicating that cerebrovascular pathology can be the
underlying pathology coincident to AD or independent of
AD. In addition, the results here also indicate that small
vessel disease is a frequent copathology in AD, and
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strongly associated with the key biomarkers for this dis-
ease, P-taul81 and P-tau217, GFAP, and NfL.
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