
Article https://doi.org/10.1038/s41467-025-62478-3

The spatial landscape of glial pathology and
T cell response in Parkinson’s disease
substantia nigra

Maxwell Ma1, Fahad Paryani1,13, Kelly Jakubiak 1,2,13, Shengnan Xia1,
Susumu Antoku1, Adithya Kannan 3, Jaeseung Lee 1, Nacoya Madden1,
Shailesh Senthil Kumar 1, Juncheng Li1,2, David Chen 4,5, Gunnar Hargus1,6,
Aayushi Mahajan3, Xena Flowers1,7, Ashley S. Harms 2,8, David Sulzer 2,6,9,10,11,
James E. Goldman 1,2,6, Peter A. Sims 4,5,12 & Osama Al-Dalahmah 1,2,6

Parkinson’s Disease (PD) is an incurable neurodegenerative disease that causes
movement disorders. Neurons in PD aggregate α-synuclein and are depleted
from the substantia nigra (SN), which is a movement control hub. The pre-
sence of α-synuclein-reactive T cells in PD patient blood suggests a role for
adaptive immunity in the pathogenesis of PD. However, the characteristics of
this response within the brain are not well understood. Here, we employed
single-nucleus RNAseq, spatial transcriptomics, and T cell receptor (TCR)
sequencing to analyze T cell and glial cell states in post-mortem PD brain
tissue. CD8 + T cells were enriched in the PD SN and characterized by clonal
expansion and TCR sequenceswith homology to those reactive toα-synuclein.
Furthermore, PD T cells were spatially correlated with CD44+ astrocytes,
which increased in the PD SN. Silencing CD44 in cultured astrocytes atte-
nuated neuroinflammatory signatures, suggesting a potential therapeutic
target. These findings provide insight into the neurodegenerative niche
underlying T cell-mediated neuroinflammation in PD.

Parkinson’s disease (PD) is a common neurodegenerative disease,
with an incidence exceeded only by Alzheimer’s disease (AD)1. PD
neuropathology is characterized by the aggregates of alpha-
synuclein in neurons, known as Lewy bodies and Lewy neurites2,
that accompany loss of dopaminergic neurons in the substantia
nigra (SN)3. While current treatments alleviate PD symptoms4, they
do not slow PD progression, and a better understanding of the

disease pathophysiology is needed to identify therapeutic
strategies.

Neuropathological studies have previously identified auto-
immune features associated with PD, including an increase in T cell
populations in the SN of PD patients5. Transcriptomic studies have
documented gene expression changes in neurons and glia in PD6–10;
however, T cells have been challenging to study in the human PD brain
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due to the limited detection of lymphocytes. T cells in the peripheral
blood specifically recognize and proliferate in response to an α-
synuclein antigen challenge in PD patients11–13, and the association
between neurodegeneration and microglial activation is well-
established in other neurodegenerative diseases such as AD14. Still,
little is known about these phenomena in the PD brain. The brain
microenvironment in the PD SN is considered pro-inflammatory15, and
pro-inflammatory microglia may contribute to the pathogenesis and
neuronal death in PD16. It has also been suggested that microglia are
activated in PD by exosomes secreted from neurons with α-synuclein
aggregates17 and by neuromelanin following dopaminergic neuron cell
death18. Astrocytes have also been shown to adopt abnormal pheno-
types in PD neuropathology that could be associated with antigen
presentation pathways19,20. Thus, the interaction between brain
microenvironment cells and cells of the immune system is worth fur-
ther investigation.

In animal models, mice that overexpress α-synuclein exhibit
dopaminergic neurodegeneration following a bout of enteric
infection21, and this is associated with a substantial entry of peripheral
T cells into the brain22–24. The presentation of mitochondrial antigens
has also been implicated in adaptive immunity in animal models of
PD25,26, and pharmacological strategies blocking T cell entry into the
gut or brain are protective against dopaminergic23 and enteric neuro-
nal loss21. Finally, T cells have been shown to adopt reactive pheno-
types in PD in the cerebrospinal fluid and peripheral blood and
contribute to neurodegeneration alongside microglia13,27–29.

Together, the clinical and basic data point to an important role for
infiltrating T cells in the brain during PD pathogenesis. However, pre-
vious studies have mainly focused on the characterization of periph-
eral T cells in the blood30–35 and cerebrospinal fluid13,36, leaving the
central role of T cells in the human SN in PD unknown. Additionally,
many studies characterizing T cells of the PD brain rely on immuno-
histochemistry (IHC) and/or murine data29,37–39, so questions about
transcriptional profiles of T cells in the human PD brain remain
unanswered. As such, there has also been little effort to compare
peripheral and parenchymal CNS T cells in PD.

To address the abovementioned gaps in PD research, we created a
resource forT cell and glial pathology in the humanpostmortembrain.
Using this resource, we characterized the phenotypes of the adaptive
immune response in the human PD brain, specifically from the cingu-
late cortex and SN. We have used multiple cutting-edge technologies
paired with advanced computational techniques, including molecular
analysis of one of the highest numbers of PD brain T cells that have
been reported in previous study cohorts6–8,10,40–42. We then defined the
spatial relationships between T cells and other cells in the brain
microenvironment, mainly focusing on microglia and astrocytes.
Astrocytes play important roles in neurodegeneration in PD as well as
other neurodegenerative diseases43, and we have previously described
neuroprotective anddisease-associated astrocyte states inHD44. In this
work, we define spatial and regional differences in astrocyte
states in PD.

In this study, we analyzed human postmortem cingulate cortex
and substantia nigra specimens from PD and control brain donors to
elucidate the roles of T cells and glia in PD pathology. We used single-
nucleus RNA sequencing, TCR sequencing, and histopathology to
characterize T cell phenotypes and clonality. Moreover, we char-
acterized microglial and astrocytic phenotypic changes in both the
cingulate and substantia nigra. Using spatial transcriptomics and
multiplex immunohistochemistry studies, we confirmed changes in
spatial colocalization between T cells, disease-associated astrocytes,
and microglia in PD. Finally, we investigated the impact of silencing a
key disease-associated astrocyte state protein, CD44, on gene
expression and signaling pathways. Ultimately, our studies provide a
detailed understanding of the neurodegenerative niche in PD, impli-
cating T cells and astrocytes as potential therapeutic targets.

Results
T cell receptor sequencing reveals clonal expansion in the sub-
stantia nigra of Parkinson’s disease subjects
Previous studies in postmortem tissue have indicated that T cells are
increased in the parenchyma of the substantia nigra (SN) of subjects
with PD5,29. Consistent with these past findings, we observed that
CD8 + T cells were significantly increased in the PD SN in our cohort of
PD and controls (Fig. 1a, b). Also, the number of T cells has been
reported to increase in the frontal cortex of Diffuse LewyBodyDisease
(DLBD) or PD with dementia (PDD)37. Since the cingulate cortex is
typically also severely involved in DLBD, we quantified CD3 +T cells in
the cingulate cortex parenchyma and the subcortical white matter
(Fig. S1A, C). The results did not reveal significant differences in the
density of CD3 +T cells in either region in DLBD (Fig. S1B, D), but the
densities of CD3+ cells were higher overall in the white matter com-
pared to the cortical parenchyma (Fig. S1E), where they were con-
centrated mainly around penetrating vessels. We did not count T cells
that were located within vessel lumina.

While immunohistochemistry allows us to localize and quantify T
cells, it does not tell us whether these cells are clonally expanded or
allow us to investigate T cell heterogeneity. To investigate in more
detail the significance of the T cell population in PD and to examine
whether T cells in the PD/DLBDbrain are clonally expanded rather than
non-specifically polyclonal, we compared the T cell receptor (TCR) α-
chain repertoires in PD/DLBD and control samples using TCR
sequencing in 44 brain donors (cingulate:n = 11 PD and 6 controls, SN:
n = 13 PD and 15 controls - see Supplementary Data 1 for demographic
data). We chose the cingulate cortex in PDD/DLBD because it exhibits
neurodegeneration but does not display increased T cell infiltration
(Fig. S1). Our cohort did not have paired SN and cingulate samples, and
some controls had other common neuropathological changes that did
not include synucleinopathy. For simplicity, we refer to cortical PDD/
DLBD as PD henceforward. As a quality control step, we determined
that all libraries displayed adequate saturation (Fig. S2A and Supple-
mentary Data 2).

As a first survey of TCR repertoires in the SN and the cingulate
cortex, we compared the number of unique TCR α-chain clonotypes in
PD and control SN and cingulate (Fig. 1c) using a linear model that
included age, sex, and common Alzheimer’s type neuropathologic
changes (Braak stage) - seemethods. Therewas a significant increase in
the number of unique clonotypes in PD compared to controls in the
SN, but not in the cingulate (Fig. 1d). This data is consistent with our
quantitative immunohistochemistry identifying more T cells in the SN
(Fig. 1a, b) and not the cingulate cortex (Fig S1). To gain more insight
into the characteristics of TCRs in PD, we performed repertoire ana-
lysis and specifically examined Hill’s diversity, Hill’s evenness, and
Shannon’s entropy indices. These metrics allow us to explore reper-
toire diversity and infer clonal expansion (Fig. 1d). The results showed
thatHill’s diversity ofα-chain repertoireswas increased in PD in the SN,
but the result was not evident in the cingulate cortex. Shannon’s
entropy showed a similar trend (Fig. 1d).

Based on the above results, we focused on the SN and performed
additional TCR repertoire analysis to include the β-chain. To achieve
this, we used a unique molecular identifier (UMI)-based method
(Repseq+ – seemethods), which allows us to simultaneously sequence
both theα-chain and the β-chain from the sameRNA sample and count
RNA molecules using UMIs. Our cohort included 12 PD and 13 control
SN samples– see Fig. S2B and Supplementary Data 2 for saturation
metrics. As expected, the number of clonotypes discovered using this
method was lower than read-based methods (Fig. 1e). Comparing the
numbers of unique α-chain and β-chain clonotypes did not show sig-
nificant differences between PD and control SN (Fig. 1e). Nonetheless,
repertoire analysis of the α-chain and β-chain clonotypes showed that
in the β-chain clonotypes of PD, there was significantly increased
diversity (Hill’s diversity) and reduced evenness (Fig. 1f), and the
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Fig. 1 | T cell receptor sequencing identifies clonal expansion in T cells of the
substantia nigra in Parkinson’s disease. a Representative immunohistochemistry
forCD8 (red) andCD68 (brown) in the substantia nigra (SN) of control (con) and PD
donors. Black arrows indicate CD8+ cells, enlarged in the insets. Scale bar: 50μm.
b Quantification of CD8+ T cell density in the SN parenchyma. n = 6/group. Two-
tailed t-test p-value is indicated. Data is shown as mean +/- SEM. c Boxplots
depicting the number of unique alpha-chain clonotypes in the cingulate cortex
(ctx) and SN. Ctx-con n = 6, ctx-PD n = 11, SN-con n = 14, SN-PD n = 13. Two-tailed
regression p-values are indicated. d TCR repertoire diversity metric of data in c.
Two-tailed regression p-values are indicated. e Boxplots depicting the number of
SN unique alpha-chain and beta-chain clonotypes. Con-n = 13, PD-n = 12. One-tailed
regression p-values are indicated. f Diversity metrics for SN alpha-chains (hTRA)
and beta-chains (hTRB). N’s as in e. one-tailed regression p-values are indicated.
g Line plots representing cumulative library contribution (y-axis) vs. the proportion

of clonotypes/sample (x-axis). P values of 2.12e-6 and 1.11e-6 were determined with
a two-sided Kolmogorov-Smirnov test, d values = 0.02 and 0.05 for alpha-chains
and beta-chains, respectively. h Boxplots depicting DE50 values for alpha-chains
and beta-chain TCR repertoires. Two-tailed regression p-values and n’s are indi-
cated. i Heatmap showing the contribution of each condition (columns) to TCR-
beta Gliph clusters. Two included CDR3s from both PD brain and PD patient blood
T cells challenged with α-Syn peptides in two external datasets (asterisks). The
percentile rank of theUMI count of the highest contributing PDbraindonor sample
clonotype to each Gliph cluster (rows) is indicated on the side-bar. Lower percen-
tiles correspond to higher normalized clonotype counts. j Logoplots showing the
consensus CDR3 sequences of the clusters indicated by the asterisks in i. For
boxplots in c–f and h, the line indicates the median; the bounds represent the 1st
and 3rd quartiles. The whiskers extend from the edges of the box to the smallest
and largest values within 1.5 times the interquartile range.
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α-chain clonotypes showed similar trends. These results indicate that
while PD TCR repertoires are more diverse, which could be explained
by increased T cell infiltration, PD TCR repertoires were not evenly
distributed among clones, thus supporting the notion of T cell clonal
expansion in the PD SN.

The above results are consistent with our immunohistochemical
results, which showed increased numbers of T cells in the PD SN. They
also provide evidence for clonal expansion in PD brain, given the
reduced repertoire evenness. To more directly measure clonal
expansion, we calculated the cumulative proportions of clonotypes in
each donor that accounted for increasing proportions of the reper-
toire (Fig. S2C). Aggregating these cumulative clonotype-repertoire
distributions by condition showed a significant shift of the PD cumu-
lative distributions to the left, in both the α-chain and β-chain clono-
types (Fig. 1g). These results indicate that fewer clonotypes in PD
account for larger fractions of the total UMIs per repertoire, providing
independent confirmation of T cell clonal expansion in the PD brain.
To confirm this conclusion, we measured the fraction of clonotypes
that accounted for 50% of the total reads across all clonotypes
(Diversity-equality 50, or DE5045). We found that for β-chain but not
the α-chain clonotypes, the DE50 was significantly lower in PD vs
control, which further indicates the presence of clonal expansion
(Fig. 1h). The TCRseq count matrices are provided in Supplementary
Data 3. Altogether, our findings show that in the PD SN, there is an
increased infiltration of clonally expanded T cells.

T cells that recognize alpha-synuclein in the periphery have a
broad diversity of TCRs11. However, as blood samples were not
acquired from the subjects prior to death, we could not directly
determine whether peripheral TCR sequences had been expanded in
the brain. Therefore, we compared our repertoires to those descri-
bed in the literature from the peripheral blood of PD donors. To do
so, we employed GLIPH246 analysis, which provides insights into the
potential antigen-specificity of T cells in the SN of PD. We compared
PD-derived CDR3 amino acid sequences (TCRb) to those described
by Singhania et al.11 and Gate et al.13, where peripheral blood-derived
T cells were challenged by α-synuclein peptides, control (pertussis
toxin Singhania et al.), or remained unchallenged (Gate et al.13), and
clustered the CDR3 amino acid sequences using GLIPH2. We identi-
fied 556 clusters characterized by public, across-donor similarities in
the CDR3 structure or local, within-donor sequence similarities
(Fig. S3A). Of all clusters, 78 had members that spanned multiple
treatment groups and conditions (Fig. 1i). Interestingly, there were
several clusters whose members were solely from PD patient brains
and peripheral blood. Of these, there were two clusters that only
included CDR3s from PD and from PD patient blood T cells chal-
lenged with α-synuclein peptides across two external datasets (Fig. 1I
asterisks and Fig. 1J). Several PD SN clonotypes that contributed to
publicmotif clusters, including thosemarkedwith asterisks, had high
UMI counts. These clonotypes also ranked highly in their relative
contribution to the overall clonotypes within their respective sam-
ples. The presence of these clones suggests that T cells in the PD SN
may recognize peptides related to α-synuclein. Furthermore, these
SN-resident clones are possibly clonally expanded.

We next calculated the probability of finding shared CDR3 motifs
using Fisher’s exact test between PD SN, control SN, α-synuclein
reactive peripheral blood T cells, and control peripheral blood T cells
(Fig. S3B). The results showed that theoverlap amonggroups isgreater
than one would expect by chance; however, there was no association
between condition (PD vs. control) and α-synuclein reactivity in the
blood (Chi-squared test: X2 = 0.077711,p-value = 0.7804). Thus, it is not
clear whether the overlap we find between the α-synuclein reactive
peripheral blood T cells and the PD SN is related to disease status.
Further experiments are needed to assess the functional significance
of the TCRs shared between the PD SN and α-synuclein reactive per-
ipheral blood T cells.

Single-nucleus RNA sequencing reveals cell-type specific
DEGs in PD
To determine how PD affects the transcriptional profile of cells in the
SN and cingulate cortex, we generated single-nucleus RNAseq
(snRNAseq) datasets from the cingulate cortex (n = 10 PD and n = 8
controls) and the SN (n = 13 PD and n = 15 controls - Supplementary
Data 1) to examine T cell gene signatures at the single cell level. The SN
dataset includes 207,859nuclei, with 96,244 derived fromPD subjects,
including 831 SN T cells, of which 535 were from PD donors. The cin-
gulate dataset comprises 57,425 nuclei, 32,442 from PD subjects, of
which no T cells were retrieved. We projected these nuclei in UMAP
space, and, using cluster analysis (see methods), assigned cell types/
lineages and disease status in the SN (Fig. 2a, b) and cingulate (Fig. 2d,
e). This data was also projected in UMAP space and color-coded by
donor and sex in the SN (Fig. S4A-B) and cingulate (Fig. S4C-D). The
expression of select canonical marker genes per lineage for the SN and
cingulate is shown in Fig. 2c, f, respectively. The cluster markers are
reported in Supplementary Data 4-5 for the SN and cingulate. Metrics
on cell numbers and the proportion of each cell type per sample in
both regions are provided in Supplementary Data 1 and Fig. S4E–H.
Consistent with the neuropathologic literature, differential abundance
analysis demonstrated that dopaminergic neurons were depleted in
the SN based on compositional analysis (Fig. S4I). We asked if T cells
were increased in the PD SN, as we have seen in the immunohis-
tochemistry results presented in Fig. 1a, b. Differential abundance
analysis also showed that T cells were enriched in the PD SN (Fig. S4I),
confirming the results from histopathologic analysis.

We determined the differentially expressed genes (DEGs)
between PD and control in each of the broad lineages in the SN and
cingulate (Supplementary Data 4-5). We performed this analysis while
correcting for relevant biological variables – age, sex, and Alzheimer’s
type changes – as outlined in the methods section. We found that the
largest number of altered DEGs in PD were in neurons and oligoden-
drocytes in both SN and the cingulate (Fig. S4J and Fig. S4K). There
were also DEGs in astrocytes andmyeloid cells in both regions, as well
as in T cells in the SN. Notably, the number of DEGs does not neces-
sarily reflect only how perturbed a cell type is in disease but can be
affected by the abundance of a cell type and sampling, among other
factors47.

Prior studies have detailed neuronal and glial pathology in PD at
the single-nucleus level6,7. With the goal of identifying glial and T cell
pathology in PD, we first confirmed the detection of previously
described transcriptomic changes in the PD SN. Thus, we subclustered
SN and cingulate neuronal nuclei and identified populations similar to
thosewepreviously described in the SN of control and frontotemporal
dementia with Parkinsonism donors48 (Fig. S5A, B). Cingulate cortex
neuronal clusters were also similar to the ones we described in control
and Huntington disease cingulate cortices44 (Fig. S5C, D). The dis-
tribution of neuronal subtypes was relatively consistent across donors
(Fig. S5E, F). Examining the overlap between DEGs revealed that most
were region-specific, with more DEGs shared between cortical neu-
rons, including CUX2 and NRG1 glutamatergic neurons, which exhib-
ited the largest numbers of DEGs (Fig. S5G, H).

We then focused on TH+ dopaminergic neurons, which have been
investigated previously7, and compared our DEGs in TH+ dopaminer-
gic neurons to DEGs described by Kamath et al.7. Of note, the reported
DEGs in Kamath et al.7 have coefficients quantifying the effect of dis-
ease on gene expression with associated P values. These coefficients
are not directly comparable to log-fold changes. Thus, we compared
the adjusted P values from the genes dysregulated in dopaminergic
neurons reported in Kamath et al. to the adjusted P values associated
with our DEGs. This is a measure of concordance of confidence in the
dysregulation of genes rather than a comparison of effect size. All of
the DEGs we discovered were significantly dysregulated in Kamath
et al.7, including ALDH1A1, TH, KCNJ6, and SNCA (Fig. 2g). This result is
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also consistent with published datasets8. As expected, TH was
decreased in PD dopaminergic neurons (Fig. 2h). These data show the
conservation of DEGs in dopaminergic neurons across different
cohorts.

We next compared the KEGG pathways enriched in cortical CUX2
and NRG1 glutamatergic neurons, nigral dopaminergic neurons, and
SEMA3E_TSHZ2 glutamatergic neurons, which we showed to be
depleted in HD44. As expected, there was overlap in the enriched

pathways related to neurodegeneration, PD, and oxidative phosphor-
ylation. However, several amino-acid metabolic pathways, such as
tyrosine and beta-alanine metabolism, were only enriched in dopami-
nergic nigral neurons. In contrast, ubiquitin-mediated proteolysis was
enriched in cortical glutamatergic neurons only (Fig. S5I). These find-
ings point to regional and cell-type specific pathologies in PD.

We analyzed our dataset using a recently developed approach
called single-cell Hierarchical Poisson Factorization49 (scHPF; see
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methods). This method derives factors, or gene sets, that capture the
sources of gene expression variability in the dataset, which could be
lineage-related, disease-related, or related to other factors. When we
applied scHPF to the SN snRNAseq dataset, we retrieved factors that
corresponded to cell types (Fig. 2i and Supplementary Data 6).
Example gene scores in each of the scHPF factors are shown in Fig. 2j,
where cell-type specific genes for TH+ neurons, astrocytes, T cells, and
other cell types are shown, underscoring the power and validity of the
technique. Given that scHPF can identify cellular lineages and subtypes
without the need for clustering, when used on a given lineage, it has
the potential to discover cellular states or even disease-associated
states.

Single-nucleus RNA sequencing defines a T cell PD disease sig-
nature and CD8+ resident memory phenotype
We next turned our attention to immune cells, in particular, T cells.
Projecting immune cells in their own UMAP space showed that T cells
are distinct frommyeloid cells in our dataset (Fig. 3a). Consistent with
previous reports38,50, including our own (Fig. 1a, b), most T cells were
CD8+ (Fig. 3b). We then used scHPF to extract PD-related factors by
performing scHPF on T cells. T cell factor gene loadings, patient con-
tribution to factors, and cell scores are provided in Supplementary
Data 6. The factor scores of representative immune-related gene
members of the T cell factors are shown in Fig. 3c.

Interestingly, the results show that several TRM and memory
genes had high scores in T cell Factor 5, including IL7R51, EOMES52,
TBX2153, and ZNF683 (Hobit)54 (Fig. 3c). This factor also includes
other genes associated with activation, such as PRDM1 (BLIMP-1)55,
IL-2 signaling (IL2RB, SOS1, CD2, JAK3, LCK), which is associated with
activation56, and memory T cell survival (BCL2)57. There are also
genes involved in interleukin signaling (IL7R, IL17RA, IL16) and
trafficking (CCR5 and CXCR6)58 (Fig. 3c and Supplementary Data 6).
Together, this signature associates Factor 5 with a TRM state and T
cell activation.

T cell Factor 1 included genes associated with effector T cell
function with expression of granzyme B (GZMB), T cell activation such
as IL3259, HLA-DRA and HLA-DRB1, CXCR360, and proliferation (CD37)61

(Fig. 3c). It is noteworthy that other memory and activation genes like
CD38 and CD4462 exhibited higher scores in T cell Factor 4, suggesting
that there are different programs associated with T cell activation.
When measured on the population level, T cell Factor 1 was higher in
control T cells (Wilcoxon rank sum test, W = 40779, P value < 2.2e-16),
while PDT cells had higher scores in T cell Factor 5 (Wilcoxon rank sum
test, W= 102191, P value = 3.366e-06), nominating the latter as a “dis-
ease factor” (Fig. 3d). We demonstrate several T cell Factor 5 genes in a
dot plot (Fig. 3e). Interestingly, differential gene expression analysis
comparing PD to control T cells at the donor level (pseudobulk)
showed that T cell resident memory genes FOS, RGS1, RGS2, and
GADD45B, were nominally significantly increased in PD (Fig. S3C). We
then measured the donor contributions to each scHPF factor, adding
anothermeasureof correlation todisease status at thepatient level. PD
donors had significantly lower contributions to T cell Factor 1, which is
associated with effector function, while there was variability in other

factors, including T cell Factor 5 (Fig. 3f). Additional covariate analysis
showed that T cell factor 3was lower inmales, andTcell factors 1, 3 and
4 were associated with increased age. None of these covariates were
significant in T cell factor 5 (Fig. S3D).

To further examine Factor 5 genes, we used preranked GSEA
analysis tomeasure the enrichment of a T cell resident memory (TRM)
gene set50,63–70 (Supplementary Data 7; Fig. 3g) in T cell Factor 5. We
found that the TRMgene setwas, in fact, enriched in the T cell Factor 5,
and both TRMand Factor 5 geneswere enriched in T cell genes, ranked
by fold change compared to controls (Fig. 3g), suggesting that PD
T cells are more TRM-like.

To validate the memory phenotype of CD8 +T cells in PD SN, we
used an antibody against CD103, which is expressed in TRMs71.
The density of CD103+ cells was higher in PD compared to controls in
the SN (Fig. 3h–j), andCD103 colocalizedwith CD3 (Fig. 3l), supporting
the transcriptomic results indicating that T cells in the PD SN adopt a
memory resident phenotype. We performed additional validation
studies and found that both CD69 and PD1—the latter being a marker
of exhaustion—were expressed in the PD SN (Fig. S6A, B). Taken
together, these results indicate that PD SN T cells demonstrate a more
prominent memory phenotype, which we interpret as being more
antigen-experienced, although we note that it is possible that some of
these T cells exhibit exhaustion.

Myeloid cells in the PD SN show increased activation and
enrichment of neuroinflammatory pathways
Given the role of antigen-presenting cells or glial cells in T cell inter-
actions, we analyzed subclustered immune cells to discover different
states and phenotypes in isolation of T cells and other brain cells in the
SN and cingulate cortex (Fig. 4a–f). Notably, snRNAseq has limitations
in recapitulating myeloid states compared to scRNAseq72. The het-
erogeneity of microglial states can be remarkable in neurodegenera-
tion, and these may represent a continuum of states73. Here, we opted
for a broad clustering system based on select marker genes. The
results revealed three myeloid states: quiescent/homeostatic micro-
glia, activated microglia, and monocyte-like myeloid cells better
known as border-associated macrophages (BAMs) that were dis-
tributed between PD and control nuclei in the cingulate (Fig. 4a, b) and
the SN (Fig. 4d–e). There was variability in the capture rate for the
different classes (Fig. S7A-B). Selectmarkers of each nigral and cortical
subcluster are shown in Figs. 4c, f, respectively (SupplementaryData 4-
5), including CD74, C3, and SPP1 for disease-associated or activated
microglia andMRC1 for BAMs. We note that the cortical BAM cluster is
likely heterogeneous, and othermyeloid statesmay be included in this
cluster. The quiescent clusters exhibited lower expression levels of a
number of activated microglial genes (Supplementary Data 4-5), and
there are several differences between activated microglia in the cin-
gulate and the SN. For example, CD163 was expressed in activated
microglia in the cortex but not in the SN, where it was expressed in
BAMs. We focused on activated microglia and compared gene
expression changes between PD and control. Examining the log-fold
changes for the DEGs in the SN and the cingulate showed several
notable patterns (Fig. 4G). Several genes were concordantly

Fig. 2 | Single-nucleus RNA sequencing reports differences in gene expression
patterns of PD lineages and identifies a PD T cell signature. a Uniformmanifold
approximation and projection (UMAP) graphs showing nuclei from the substantia
nigra color-coded by cell type/lineage. b Same as a but color-coded by condition.
c Dot plot of select gene (x-axis) marker expression in major lineages in the sub-
stantia nigra (y-axis). Size indicates percentage expression, and color indicates
normalized expression levels. d Same as a but for the cingulate cortex. e Same as b
but for the cingulate cortex. f same as c but for the cingulate cortex. g Comparison
between the differentially expressed genes (DEGs) in PD vs. control dopaminergic
neurons in our dataset and those inKamath et al. 7. The scatterplot showsDEGswith

the Kamath et al. reported -log10 adjusted p-value on the x-axis and our -log10
adjusted p-value on the y-axis. The color of each DEG indicates if it is significant in
both datasets vs only in Kamath et al. All of the DEGs we discovered were reported
in Kamath et al. P values are two-sided.hViolin plot showing the gene expression of
TH in control (orange) and PD (blue) in dopaminergic neurons (logFC PD vs. con-
trol:−0.374, two-sidedp-value 1.66e-7, asdetermined viadifferential gene analysis).
i Heatmap showing the scores of single cell hierarchical Poisson factorization
(scHPF) gene factors (columns) projected on lineages (rows). j Heatmap showing
the gene loadings for select cell select genes in each of the single-cell Hierarchical
Poisson Factorization (scHPF) factors.
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differentially increased in both regions, such as SPP1, CSTB, and CSTD,
or decreased, such as CLU, B2M, and FTL. There were also region-
specific changes; for example, CD14, CD163, and GLUL were increased
in the SN and decreased in the cingulate. Conversely, IFNGR1, CD74,
and ITM2B were increased in the cingulate and decreased in the SN
(Fig. 4g and Supplementary Data 4-5). These changes suggest that
nigral and cortical microglia may react differently to

neurodegeneration, which may be a function of the severity of neu-
rodegeneration and regional differences in microglial responses.

To gain a deeper understanding of the gene expression changes in
activated microglia in the SN and cingulate, we performed KEGG
pathways enrichment analysis (Fig. 4h). Several KEGG pathways were
enriched in activatedmicroglia DEGs in the SN and cingulate, including
pathways of neurodegeneration and PD. However, the enrichment of
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pathways involved in cytosolic DNA sensing was significant only in SN-
activated microglia Fig. 4h. While the enrichment scores for antigen
presentation, Th17 cell differentiation, Th1 and Th2 differentiation, T
cell receptor signaling were enriched in both regions, some pathways
were only enriched in cingulate cortex activated microglia such as Fc
gamma R-mediated phagocytosis, MAPK signaling, and JAK/STAT
pathways. Overall, the KEGG pathway enrichment highlighted heigh-
tened activation of microglia in PD in a more pronounced way in the
SN. To validate microglial activation in the PD SN, we quantified the
density of CD68+ microglia in the SN. As expected, CD68+ microglia
were more abundant in the PD SN than in controls (Fig. 4i, j). Alto-
gether, our data implicate increased microglial activation in the
pathology of PD.

Due to the relative rarity of SN BAMs (207 nuclei in PD and 332
nuclei in control - SupplementaryData 1 and Fig. S7) and the number of
covariates we account for in the DEG pipeline (age, sex, and AD neu-
ropathologic change), none of the DEGs survived P value adjustment
(Supplementary Data 4). To discover changes in BAMs in PD, we took a
more supervised approach and measured the enrichment of known
BAM signatures in a murine PDmodel24 in ranked BAM genes in PD vs.
control nuclei. The results showed that severalmurine BAM signatures
enriched in a PDmousemodelwere enriched in genes thatwere higher
in PD-derived BAMs (Fig. 4k). These included the markers of pro-
liferative and activated BAMs. These data indicate that BAMs in PD SN
resemble those activated by a more acute murine model of PD driven
by α-synuclein overexpression – implicating PD BAMs in the patho-
genesis of the disease.

Differential regional dysregulation of astrocytes in PD
Astrocytes play several roles in PD43 and are central to neuroin-
flammation. We have shown that astrocytes can be distinguished by
CD44 expression into fibrous-like and protoplasmic states44. Using
snRNAseq, we discovered 31,508 astrocytic nuclei (SN: n = 10,118 PD
andn = 14,714 control nuclei; cingulate: PDn = 3,772, control n = 2,904)
and clustered them intoprotoplasmic andfibrous-like astrocytes in the
cingulate cortex (Fig. 5a, b) and SN (Fig. 5d, e). Protoplasmic astrocytes
expressed higher levels of the glutamate transporter SLC1A2,
the sodium bicarbonate cotransporter SLC4A4, and the glutamine
synthetase gene GLUL, while fibrous-like astrocytes expressed higher
levels of GFAP, S100B, and CD44 (Fig. 5c, f).

For downstream analysis, we focused on protoplasmic astrocytes,
as they represent the majority of nuclei (Fig. S8A, B). Differential gene
expression analysis revealed several patterns of astrocytic dysregula-
tion in PD. As expected, the expression of GFAP was increased in
protoplasmic astrocytes in both the cingulate cortex and SN (Fig. 5g).
When we quantified the proportion of GFAP-high astrocytes by
immunofluorescent staining, we found that more were GFAP-high in
the cingulate, while there was a reduction in the proportion of GFAP-
high astrocytes in the SN (Fig. S9E, F, G). This is compatible with pre-
vious reports74,75 that foundunchangedor reducedGFAPprotein levels
in the PD SN. Conversely, metallothionein gene expression (e.g., MT3
and MT2A) showed differences between the two regions, where they

were increased in the protoplasmic astrocytes in the cingulate cortex
but decreased in the SN. We confirmed this finding using multiplex
immunofluorescence for MT3 (Fig. S9A–D, G). This result is reminis-
cent of changes seen in Huntington’s disease (HD), where we also saw
an increase in metallothioneins, including MT3, in the relatively less
severely affected cingulate cortex but not the severely degenerated
caudate nucleus44.

We compared our SN astrocytic DEGs to those described in mid-
brain astrocytes in Smajic et al.10. Several of the DEGs we discovered
overlap with those described in Smajic et al.10, including CD44, CP,
CHI3L1, and NEAT1 (Fig. S8C). Interestingly, while themetallothioneins
MT2A and MT1G were reduced in the SN in our cohort, these genes
were increased in the midbrains Smajic et al. analyzed (Fig. S8C). Also,
GFAP and SERPINA3 were increased only in nigral astrocytes in our
dataset (Fig. S8C). This could be because our analysis was that of
neuroanatomically dissected SN, while in Smajic et al, sections of the
midbrain were analyzed, which included anatomic regions other
than the SN.

Next, we compared the DEGs in the cingulate cortex to those
described by Zhu et al.42 in the prefrontal cortex of PD (Fig. S8D). In
both datasets, protoplasmic genes like SLC1A3 and ATP1B2 were sig-
nificantly reduced. Other protoplasmic genes like SLC1A2 and FGFR3
were decreased only in the cingulate cortex, which may be due to
regional cortical differences, and because astrocytes were not sub-
clustered into protoplasmic and fibrous-like in Zhu et al. Several
metallothionein genes, including MT3, MT2A, and MT1G, and chaper-
one genes involved in protein folding likeCRYAB, HSPA1A, andHSPA1B,
were increased in both datasets (Fig. S8D). Previously, we have shown
that MT3-high astrocytes were neuroprotective in vitro44. The upre-
gulation of metallothioneins in frontal and cingulate astrocytes, but
not in nigral astrocytes, may be a clue to why neurodegeneration is
more severe in the SN than in the cortex; however, future experiments
are needed to test this hypothesis.

Interestingly, one of the genes significantly increased in SN pro-
toplasmic astrocytes was CD44 (Fig. 5G). We previously reported that
CD44 increases inprotoplasmic astrocytes in the severely degenerated
caudate in HD but not the less severely affected cingulate cortex44.
Thus, CD44 may represent a biomarker of disease-associated astro-
cytes, since we also showed it increases in astrocytes in other neuro-
logic insults such as ischemia and seizures76 and in glioblastoma-
associated astrocytes77. We validated this finding by performing mul-
tiplex immunofluorescence for GFAP and CD44 in PD and control SN
sections, wherewe identified a significant increase in the proportion of
CD44+ /GFAP+ astrocytes in the PD SN (Fig. 5H, I). Together, these
findings support that in the PD SN, like in the HD caudate and other
pathologies, astrocytes adopt a CD44 + , fibrous-like state.

To further understand the general pathways dysregulated in PD
astrocytes, we examined KEGG pathway enrichment in the DEGs (both
increased and decreased) in the SN and cingulate protoplasmic
astrocytes (Fig. 5j; Supplementary Data 4-5). In both brain regions, we
found enrichment of pathways related to neurodegeneration, PD dis-
ease, and immune activation, including IL-17 and MAPK kinase

Fig. 3 | Validation of T cell phenotypes in the SN. a Uniform manifold approx-
imation and projection (UMAP) graphs showing substantia nigramyeloid and T cell
nuclei. b Feature plots showing the normalized expression of select T cell genes in
the UMAP space. c Loadings (scores) of select T cell-related genes from scHPF
performed on SN T cells. d Heatmap of average cell score of PD and control nuclei
in each T cell scHPF factor. Columns represent factors; rows represent conditions.
Blue indicates a low score; red indicates a high enrichment score. e Dotplots
showing the normalized expression of select Factor 5 genes in PD and control
T cells. f Boxplots of the donor contribution to each T cell factor. Wilcoxon test,
two-tailed, p-values are indicated. Control-n = 12, PD-n = 9. The line indicates the
median, and the bounds represent the 1st and 3rd quartile. The whiskers extend
from the edges of the box to the smallest and largest values within 1.5 times the

interquartile range. g Pre-ranked gene set enrichment analysis of the CD8 +T cell
resident memory (TRM) gene set in T cell Factor 5 genes ranked by the gene
loadings (left),CD8 + TRM gene set in T cell genes ranked by logFC in PD vs control
(middle), and T cell Factor genes in T cell genes ranked by logFC in PD vs control
(right). Normalized enrichment scores (NES) and adjusted two-sided p-values are
indicated. h Immunohistochemical stains for CD103 (brown) in the SN. iMultiplex
immunofluorescence of a PD SN showing colocalization between CD103 (red) and
CD3 (green). Nuclei (DAPI) are shown in blue. Scale bar = 25 µm. Representative of
colocalization from two donors (biological replicates). j Quantification of the
density of CD103-positive cells per unit area in the SN. Unpaired one-tailed t-test
with n = 4 for control and n = 5 for PD donors. P-value is indicated. Data is shown as
mean +/- SEM.
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signaling in PD astrocyte DEGs. In the SN, further enrichment of other
inflammatory pathways, such as NFκβ, was evident, while pathways
related to sphingolipid signaling were enriched in cingulate astrocytes
(Fig. 5j). Other shared pathways include cellular senescence and Ras
signaling (Fig. 5j and Supplementary Data 4-5).

Given the detection of these neuroinflammatory phenotypes, we
specifically asked if the JAK/STAT signaling pathway, an established

neuroinflammatory pathway in astrocytes78, was enriched in PD
astrocytes. Using pre-ranked GSEA for the JAK/STAT KEGG pathway in
genes ranked by their relative expression in SN PD versus control, we
found that JAK/STAT signaling was enriched in nigral PD astrocyte
genes (Fig. 5k).

Together, these results implicate astrocytes in the neuroin-
flammatory network in PD. We conceive of astrocytes as present on a
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spectrum of states, with one state being a homeostatic protoplasmic-
astrocyte-like state and another being a GFAP-high, reactive, fibrous-
astrocyte-like state. There are likely other potential states, including
compensatory ones, e.g., metallothionein-high44, and disease-
associated ones, for example, C3-high79 and CD44-high44,76,80.

To gain a deeper understanding of astrocyte-state transitions,
which we have described in HD, hypoxia, and seizures44,80, we used
gene trajectory analysis, which orders genes along trajectories of gene
expression and indicates potential dynamics of gene expression
changes as cells transition from one state to another81. We extracted
gene programs that vary along an axis of variation in the cingulate
(Fig. S10A, B) and the SN (Fig. S10D, E). This analysis allowed us to
deconvolve gene expression programs at different points along a
trajectory of state transitions. We identified several gene expression
programs that included several astrocyteDEGs in the cortex (Fig. S10B)
and the SN (Fig. S10E), including SLC4A4 (decreased in the PD SN –

gene program 2) and CD44 (increased in PD - gene program 9), WIF1
(decreased in cingulate PD – gene program 1) and MT1G (increased in
cingulate PD – gene program 6). Of particular interest were programs
8-10 in the SN and cingulate, which showed a significant pre-
ponderance of fibrous-like astrocytes and PD-derived astrocytes
(Fig. S10C, F). In the SN but not the cingulate, PD astrocytes had higher
median scores in these gene programs (Fig. S10C, F). Together, these
results show that PD astrocytes are more polarized towards a fibrous-
like state with decreased metallothionein gene expression and ele-
vated CD44 expression in the SN, as we show in our validation studies
(Fig. 5h–l).

Spatial transcriptomics analysis reveals spatially diverse pat-
terns of pathology in PD
To spatially map PD signatures within the diverse brain micro-
environments, we conducted spatial transcriptomics on a subset of
our SN tissue samples (n = 5 PD and n = 5 control; Fig. S11A–J). First, to
evaluate cell-type-specific gene signatures in our spatial tran-
scriptomics data, we employed Robust Cell Type Deconvolution
(RCTD) to quantify the relative proportion of each cell-type/tran-
scriptional state in each locale. Next, we measured the spot-level
enrichment values for our T cell Factors 1 and 5 and identified spatial
clusters/transcriptional niches defined using BayesSpace82 (Fig. 6a;
Fig. S11A–J, Fig. S12A–J, and Supplementary Results). Through com-
parison of deconvolved dopaminergic neuron cell-type proportions
(Supplementary Data 1), TH expression values, and neuropathological
evaluation of corresponding H&E images, we annotated the Bayes-
Space clusters as either SN pars compacta (SNpc) or two white matter
clusters which were combined as “surrounding tissue” (Fig. 6b and
Fig. S12A–J,Supplementary Results, and Supplementary Data 8). The
SNpc region is defined by TH expression in addition to high propor-
tions of dopaminergic neurons, as defined by deconvolution (see
methods and Supplementary Data 8 for cluster markers). As expected,
TH expression was higher in the SNpc compared to the surrounding
tissue (Supplementary Data 8).

To specifically examine the interactions between T cells and
astrocytes, we measured enrichment of the scores in T cell Factor 5
(TRM factor), T cell factor 1 (effector T cell), and genes increased in PD
astrocytes in the SNpc and surrounding tissue regions. We found a
significant increase in PD in T cell Factor 5 scores in the surrounding
tissue regions, and astrocyte DEGs exhibited higher enrichment scores
in both the SNpc and the surrounding tissue (Fig. 6c). The scores of T
cell Factors 1 and 5 data are projected in spatial feature plots in
Fig. S12A–J, which shows high expression of T cell Factor 1 in the SNpc
and the surrounding tissue and relative depletion of T cell Factor 5
from the SNpc (linear mixed effect coefficients for comparing the
surrounding tissue to the SNpc for Factor 5 and Factor 1: 0.0845 and
0.0109, respectively; P values: <2e-16 and 9.45e-16, respectively).
Together, these data add a spatial dimension to the changes we
observed at the single-cell level and indicate that astrocyte changes are
pervasive in the SNpc and the surrounding tissue, and TRM signatures
are enriched in the surrounding tissue, where large penetrating vessels
are more abundant and harbor more T cells.

We next extracted spatial DEGs using our same pipeline that
accounts for age, sex, and Alzheimer’s changes to compare PD vs.
controls in the SNpc and surrounding tissue (Supplementary Data 9
and Fig. 6d). As expected, TH was most decreased in PD in the SNPc
compared to the surrounding tissue (Fig. 6d and Supplementary
Data 9). ALDH1A1, one of the most significantly downregulated genes
in dopaminergic neurons,whichwe foundconserved in other datasets,
as shown in Fig. 2g, wasonlydecreased in the SNpc. Several geneswere
decreased in both regions, which included astrocytic genes like MT3
and APOE, and increased in both regions, such as GFAP and GLUL,
consistent with our snRNAseq results (Fig. 5g and Supplementary
Data 4). Also consistent with snRNAseq was the reduction of CD74, a
gene downregulated in activated microglia in the SN (Fig. 4g). Inter-
estingly, CD44 was increased only in the surrounding tissue (Fig. 6d).
This is consistent with the localization of CD44+ astrocytes around
large vessels in the white matter. Together, the results from ST add a
spatial dimension to our snRNAseq results.

Finally, we used an unbiased approach to analyze ST niche-
specific DEGs and measured the enrichment of KEGG pathways in
the SN and surrounding white matter (Fig. 6e and Supplementary
Data 9). Enriched in DEGs of both regions were pathways related to
neurodegeneration, including PD, prion disease, and oxidative
phosphorylation. Pathways related to inflammation, including
antigen processing and presentation, IL-17 signaling, and Th17 cell
differentiation, were also enriched in both regions. Interestingly,
pathways related to the pentose phosphate pathway and fructose
metabolism were enriched in the SNpc only, suggesting that dif-
ferent metabolic pathways are affected in the SNpc, which is con-
sistent with our data on dopaminergic neurons (Fig. S5).
Conversely, pathways related to TNF signaling, apoptosis, and
MAPK signaling were enriched in the surrounding tissue only.
Together, these results suggest that there are distinct, cell-type-
specific, spatially defined pathologic signatures in PD.

Fig. 4 | Patterns of dysregulation of myeloid cells in the substantia nigra and
cingulate cortex. UMAP plots of cingulate cortex myeloid cells grouped by con-
dition (a) and lineage/subtype (b). c Dot plot of select gene (y-axis) marker
expression in cingulate myeloid lineages (x-axis). Size indicates percentage
expression, and color indicates normalized expression levels. d same as a but for
the substantia nigra (SN). e Same as b but for the SN. f Same as c but for the SN.
g Differentially expressed genes (DEGs) of activated microglia in PD vs. control are
shown by their log2 fold change (LFC) in the SN on the x-axis and the cingulate on
the y-axis. The color indicates if the genes are significantly differentially expressed
in the cingulate (Cing), SN, both, or none. DEGs were considered based on two-
sided adjusted p-values. h Dot plot showing KEGG pathway enrichment scores and
adjusted two-sided p-values of select pathways of activatedmicroglia in the SN and

cingulate cortex. The size of each dot represents its fold enrichment value, and the
color represents its –log10 two-sided p-value, with yellow denoting lower sig-
nificance and red indicating higher significance. Only statistically significant terms
are shown. i Representative immunohistochemistry showing CD68+ cells (brown
chromogen – green arrows) and CD8 + T cells (red chromogen - pink arrows) in the
SN from a control and a PD donor. Scale bar: 50 µm. jQuantification of CD68+ cells
as a proportion of all SN cells PD and controls. N = 8 for control and n = 6 for PD.
Two-tailed Mann-Whitney test p-value is indicated. Data is shown as mean +/- SEM.
k Preranked gene set enrichment analysis of previously described PD-murine BAM
cluster markers in PD BAM genes ranked by their fold change from control. Nor-
malized enrichment scores and adjusted two-sided p-values are indicated.
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Spatially defined cell-cell cohabitation patterns in the PD
Substantia Nigra
To determine the spatial relationships of cell types and T cell factor 5,
we performed spatial cross-correlation (SCC) analysis on the spot-level
cell-type proportion values in ST datasets (Fig. 7a). SCC allows us to
quantify how the cell types are correlated (SCC coefficients), assign
statistical significance to the coefficients using a permutation-based

method, and retrieve sample-level and disease condition-level statis-
tics. If cell types are spatially correlated, then positive SCC values will
be retrieved. If they are negatively spatially correlated, negative SCC
coefficients will be retrieved. Since determining SCC across thousands
of ST data points is computationally intensive and slow, we developed
an approach to parallelize the computation, accelerating it by ~1200-
fold (see methods and Fig. 7B and Supplementary Data 10).
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We used this approach to calculate changes in SCC between
different cell types/states in PD compared to control (Fig. 7C). There
were several changes in cell-cell colocalization patterns, including
changes in glial and immune cells – the cell types being investigated
herein. First, the spatial relationship between T cells and the T cell
Factor 5 was significant in PD but not in controls. Second, we iden-
tified several cell type combinations with increased SCC, including a)
activated microglia and endothelial cells, b) fibrous-like
CD44+ astrocytes and T cells, c) BAMs and CD44+ fibrous-like
astrocytes, d) T cells and endothelial cells, and e) T cells and oligo-
dendrocytes. A more detailed interpretation of SCC is provided in
the supplementary results section. Taken together with our DEG
results, these findings highlight statistically significant patterns of
increased spatial correlation and proximity between immune cells,
T cells, and other glial cells in the human postmortem PD SN, which
establishes a foundation to investigate neuroinflammation in PD.

Weperformed several validation studies to confirm the changes in
SCC in PD. First, to confirm the increase in SCC between T cells and
activated microglia in PD, we quantified the spatial relationships
between CD68+ activated microglia and CD8 +T cells using dual IHC
(Fig. 7d). We measured the minimum distance between CD68+
microglia and T cells in each section, compared the median distance
between the T cell/microglia nearest neighbors using a Wilcoxon test,
and found the minimum distance between T cells and activated
microglia was reduced in PD (Fig. 7e). Second, to confirm the increase
in SCC between T cells and fibrous-like CD44+ astrocytes in PD, we
performed multiplex immunofluorescence for GFAP, CD44, and CD3
(Fig. 7f). As with microglia, the minimum distance between T cells and
the closest CD44+ astrocyte was reduced in PD (Fig. 7g). Of note, we
found that CD3 +T cells expressed CD44 as well, which has been
reported to be a marker of memory status62,83. Finally, to validate the
increase in SCC between T cells and oligodendrocytes, we quantified
thedensity ofCD8 + T cells in theoligodendrocyte-richwhitematter of
the cerebral peduncle. We found significantly higher densities of
T cells in the white matter in PD (Fig. S13A, B). These findings validate
the spatial changes we identified in PD between glia and immune cells
using spatial transcriptomics.

CD44 loss of function reduces neuroinflammatory phenotypes
in cultured astrocytes
As shown above, CD44+ astrocytes gain spatial correlation to T cells in
the PD SN, CD44 was significantly increased in PD astrocytes, and PD
astrocytes showed an increase in pathways and genes involved in
neuroinflammation such as the JAK/STAT pathway (Fig. 5k). The
intercellular domain of CD44 can be cleaved off and binds transcrip-
tion factors in the nucleus, including STAT384. Thus, we hypothesized
that CD44 is necessary to mediate the signaling of pathways involved
in neuroinflammation, such as the JAK/STAT pathway. CD44 is
expressed in murine astrocytes in vitro (Fig. 8a, b), so we performed
knockdown studies to abolish its expression in this system.

We tested four shRNA constructs and identified two that abol-
ished CD44 expression in astrocytes, which we confirmed using

multiplex immunofluorescence andWestern blots (Fig. 8a, b). Next, we
measured transcriptomic changes in control versus CD44 knockdown
using RNAseq. We then interrogated the gene expression changes
using differential gene expression analysis (SupplementaryData 11 and
Fig. 8c) and pathway enrichment analysis (Fig. 8d, e).We compared the
log-fold changes of DEGs after CD44 knockdown to the SN proto-
plasmic astrocyteDEGs (Fig. 8c).CD44 andCP, whichwere increased in
SN astrocytes, were reduced by CD44 knockdown, and GFAP was no
longer significantly differentially expressed in CD44 knockdown.
Other genes that were decreased in SN protoplasmic astrocytes were
increased by CD44 knockdown, including SYNE1 and SON. Since JAK/
STAT andMAPK pathways were enriched in SN protoplasmicDEGs, we
investigated alterations to these pathways with our CD44 knockdown
model. Using decoupleR to measure pathway activation scores, we
found that CD44 knockdown significantly dampened JAK/STAT path-
way activation (Fig. 8d). Taking a more unbiased approach; we exam-
ined KEGG pathway enrichment in the CD44 knockdown DEGs
(Fig. 8e). The results showed that several KEGG pathways were enri-
ched in CD44 knockdown DEGs, including MAPK, sphingolipid sig-
naling, and JAK/STAT (Fig. 8e). This is particularly interesting because
JAK/STAT signaling was significantly enriched in PD astrocytes
(Fig. 5k). CD44 knockdown decreased many of the genes involved in
JAK/STAT signaling (Fig. 8e and Supplementary Data 11). These data
suggest that CD44 upregulation in astrocytes is necessary for JAK/
STAT activation, which is a neuroinflammatory pathway that is
increased in PD, thus nominating CD44 as a potential target to block
neuroinflammation in PD.

Discussion
The major findings in this work reveal that CD8 + T cells infiltrate the
SNpc, demonstrate a resident-memory phenotype, and are clonally
expanded. Importantly, we found similarities in the TCRs of PD
patients and peripheral blood TCRs isolated from different patients,
which react to α-synuclein. In contrast to the SN, the cingulate cortex
did not show increased T cell infiltration. Through spatial tran-
scriptomics, snRNAseq, and validation protein labeling studies, we
found that the T cells reside in an inflammatory niche within a
microenvironment consisting of activated microglia which upregulate
SPP1, a proinflammatory molecule we previously showed to be upre-
gulated in frontotemporal dementia SN48, and reactive astrocytes that
upregulate CD44, which our past studies have demonstrated to be
representative of a disease-associated astrocyte state44,76. Astrocytes in
the SNpc upregulated several neuroinflammatory pathways like JAK/
STAT and MAPK, and functional studies revealed that the knockdown
of CD44 decreases the activation of these pathways in vitro and res-
cues several gene expression changes we see in SN astrocytes. These
results nominate CD44+ astrocytes as a potential target to abort the
vicious neuroinflammatory cycle in PD.

In addition to the increase of clonal T cells in the PD SN, we
observed an increase in CD44+ fibrous-like astrocyte genes in the
substantia nigra, consistent with our gene trajectory analysis, which
was coupled with an absence of upregulation of the neuroprotective

Fig. 5 | Substantia nigra astrocytes in PD upregulate neuroinflammatory
pathways.UMAPplots of cingulate cortex astrocytes grouped by condition (a) and
lineage/subtype (b). c Dot plot of select gene (y-axis) marker expression in cingu-
late astrocytes lineages (x-axis). Size indicates percentage expression, and color
indicates normalized expression levels. d same as a but for the substantia nigra
(SN). e Same as b but for the SN. f Same as c but for the SN. g Differentially
expressed genes (DEGs) of protoplasmic astrocytes in PD vs. control are shown by
their log2 fold change (LFC) in the SN on the x-axis and the cingulate on the y-axis.
The color indicates if the genes are significantly differentially expressed in the
cingulate (Cing), SN, both, or none. DEGs were considered based on two-sided
adjusted p-values. h Representative multiplex immunofluorescence showing CD44
(red), GFAP (green), andDAPI+ nuclei in the SNfromacontrol and aPDdonor. Scale

bar: 20 µm. iQuantificationof theCD44+ astrocytes as a proportion of all SNGFAP+
astrocytes in PD and controls. N = 5 for control and n = 6 for PD. Two-tailed Mann-
Whitney test p-value is 0.0043. Data is shown as mean +/- SEM. j Dot plot showing
KEGG pathway enrichment scores and adjusted two-sided p-values of select path-
ways of protoplasmic astrocytes in the SNand cingulate cortex. The size of eachdot
represents its fold enrichment value, and the color represents its –log10 p-value,
with yellowdenoting lower significance and red indicating higher significance. Only
statistically significant terms are shown. k Preranked gene set enrichment analysis
of JAK/STAT KEGG pathway in PD protoplasmic astrocyte genes ranked by their
fold change fromcontrol. Normalized enrichment scores and adjusted two-sidedp-
values are indicated.
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Fig. 6 | Spatial transcriptomics analyses localize cell-type specific signatures to
local anatomic compartments in the PD substantia nigra. a Representative H&E
image (left) from tissue used for 10X Visium ST. n = 10 donors (biological repli-
cates). The SN is outlined and populated by neuromelanin (brown) containing
neurons. Scale bar: 1mm. Deconvolved proportions of dopaminergic neurons are
shown per spot (middle). Assigned BayesSpace clusters (right) are indicated.
b Heatmap of gene expression correlation of sample-level BayesSpace clusters.
Twowhitematter clusters (WM1 andWM2)and a substantia nigra (SNpc) cluster are
indicated. The two WM clusters were combined in the downstream analysis as
“surrounding tissue.” c Box plots of the distribution of enrichment scores of T cell
Factor 1 (upper), T cell Factor 5 (middle), and snRNAseq-derived astrocyte DEGs
(lower), which are enriched in the SNpc and surrounding tissue regions in control
and PD ST samples. The dots indicate the median score per donor. The line of the
boxplot indicates the median of the population of all spots; the bounds represent

the 1st and 3rd quartiles. The whiskers extend from the edges of the box to the
smallest and largest values within 1.5 times the interquartile range. Adjusted two-
sided p-values are indicated and determined with a linear mixed model – see
methods and source data. Control-n = 5, PD-n = 5. d DEGs in Visium Spatial tran-
scriptomics capture spots in PD vs. control are shown by their log2 fold change
(LFC) in the SNpc on the x-axis and the surrounding tissue on the y-axis. The color
indicates if the genes are significantly differentially expressed in the surrounding
tissue, SNpc, both, or none. DEGs were considered based on two-sided adjusted p-
values. e KEGG pathway enrichment analysis in PD vs control DEGs in SN and
surrounding tissue from ST data. The size of each dot represents its fold enrich-
ment value, and the color represents its –log10 adjusted two-sided p-value, with
yellow denoting lower significance and red indicating higher significance. Only
statistically significant terms are shown.
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protein MT3. This is similar to our previous findings in HD and high-
lights a region-specific response of astrocytes to neurodegeneration,
which may result from or contribute to regional vulnerability in
neurodegeneration44. Additional studies are needed to determine the
generalizability of this phenomenon and whether it is a driver of resi-
lience to neurodegeneration, a compensatory response to neurode-
generation, or both.

The spatial analyses yielded several technical and conceptual
advances. First, the TRM T cell Factor 5 was enriched in SN white
matter regions, and this enrichment was more pronounced in PD than
in controls. Conversely, T cell Factor 1 showed localization in both the

SNpc and the surroundingwhitematter andwas not different between
the conditions in the ST data. Astrocyte DEGs were enriched in both.
To further dissect these changes, which likely represent compositional
changes, we adapted our previous approach using SCC to define pat-
terns of cellular cohabitation in infiltrating glioma77. Here, we have
introduced a computational approach with massively parallel
GPU–acceleration that yielded computation time up to 1200 times
faster than CPU-based methods (see methods and Fig. 7b; Supple-
mentary Data 10). By leveraging the spatial data from multiple ST
donors to statistically measure changes in SCC, we defined a
network of spatially validated neuroinflammatory niches, where
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neurodegeneration in PD takes place. This network features activated
microglia, T cells with TRM and activation features, and CD44+
astrocytes. We confirmed these associations between T cells and
CD44+ astrocytes and T cells and activated microglia using histo-
pathologic studies.

The neuronal pathology we document in SN and cortical neurons
is consistent with prior snRNAseq reports6,7,10. It is interesting that
many of the pathways dysregulated in vulnerable SN dopaminergic
neurons were shared with cortical glutamatergic neurons. However,
key metabolic KEGG pathways, including beta-alanine and tyrosine
metabolism, were enriched only in the SN. These findings point to
potential differences in metabolic states that may underlie neuronal
vulnerability to neurodegeneration. However, further studies are
needed to investigate this phenomenon.

Taken together, our work outlines a potential immune-glial sig-
naling axis that includes fibrous-like CD44+ astrocytes, myeloid cells
(activated microglia and BAMs), and T cells, which may have the net
effect of eliciting a reactive, fibrous-like state in astrocytes, activation
of myeloid cells, and potentially T cell clonal expansion in PD. The
critical question remains to be answered: do T cells drive neuronal loss
in PD, or are they only necessary for perpetuating neurodegeneration?
Mouse model studies show that T cells indeed play critical roles in
driving neuronal death24,85 in the setting of overexpression of α-
synuclein.Whether expanded T cells can serve as amarker for tracking
the pace of neurodegeneration is anexciting avenueof researchwe are
actively pursuing. The presence of sharedmotifs between PD SN TCR’s
and peripheral blood α-synuclein reactive T cells from two external
studies is an interesting finding that merits further exploration. Thus,
additional studies are needed to experimentally test if CNS TCRs in the
PD SN do indeed react to α-synuclein.

Limitations
There are notable limitations of the current study. We do not have
paired peripheral blood and SN samples from the same donors;
therefore, we cannot draw conclusions about which brain-resident
clones are alsopresent in theperiphery.Wenote thatour studies areof
neuropathology in subjects with advanced PD and low numbers of
surviving SN dopaminergic neurons, and as such we cannot address
the issues of whether T cells in the PD SN have increased interactions
with neurons or changes in T cell characteristics at earlier disease
stages when the highest rates of neuronal damage occur. As quantified
by a board-certified neuropathologist (JEG), less than 1% (6 of 1151) of
CD8+ cells in the PD SN were observed next to neurons, discounting
statistical analyses of the phenomenon.

Methods
Human subjects and brain tissue
All study protocols were approved by the Columbia University Irving
Medical Center Institutional Review Board (Protocol number

AAAU1394). Postmortem cingulate cortex and SN specimens frozen
during autopsy from control (individuals whose brains did not show
significant neuropathology) and PD/DLB donors were obtained from
the New York Brain Bank. Consent from the next of kin was obtained
for all brain donations. The tissue was dissected by a board-certified
neuropathologist (OAD), or under the supervision of a board-
certified neuropathologist. Forty-four cases were selected for
snRNAseq and TCR sequencing, each with RNA integrity numbers >7,
and ten of these were selected for spatial transcriptomics analysis.
Cortical wedges, excluding subcortical white matter or SN tissue
measuring ~ 5 × 4 x 3mm, were dissected on a dry ice-cooled stage
and processed immediately as described below. The demographics
of the cases used are provided in Supplementary Data 1.

TCR sequencing
To prepare α-chain TCR libraries, we followed the iRepertoire Bulk
Reagent Universal User Manual (V20200818). The starting material
was 500ng RNA per sample. We used 9 barcodes - HTAIvc kits
(HTAIvc01, HTAIvc02, HTAIvc03, HTAIvc04, HTAIvc05, HTAIvc06,
HTAIvc07, HTAIvc08 andHTAIvc09).Wepooled one library fromeach
of the barcoded kits together for each sequencing run. The libraries
were pooled with 10% PhiX spike-in and sequenced with NextSeq High
Output 300 Cycles kits (Illumina) on an Illumina NextSeq 550 (read 1:
155 cycles; read 2: 155 cycles). Five total sequencing runs were
conducted.

To prepare combined α-chain and β-chain TCR libraries, we fol-
lowed the iRepertoire RepSeq+ protocol; 25 RNA samples were sub-
mitted to iRepertoire, Inc. (Huntsville, AL, US). 5 µl of RNA from each
sample was used as a template for iR-RepSeq + . Next-generation
sequencing libraries encompassing the TCR alpha and beta chains
were generated. RepSeq+ technology facilitates simultaneous ampli-
fication of TCR alpha and beta chains while mitigating common
sources of errors in AIRR-seq analyses86. The amplification protocol
employs primer pairs specific to each V-D-J combination, enabling tag
extension for subsequent global amplification of TCR αβ. Unique
molecular identifiers (UMIs) were incorporated during the reverse
transcription step to distinguish individual RNA molecules and mini-
mize the impact of PCR duplicates and sequencing errors.

Reverse transcription was performed using Qiagen OneStep RT-
PCR mix with C-gene primer mix, followed by selection of first-strand
cDNA selection and removal of remnant primers via SPRIselect bead
purification (Beckman Coulter). A second round of amplification was
conducted using a V-gene primer mix, followed by SPRIselect bead
purification. Library amplification was performed with primers tar-
geting communal sites engineered onto the 5′ ends of the C- and
V-primers. The final libraries contained Illumina dual-index sequencing
adapters, a 10-nucleotide random region, and an 8-nucleotide internal
barcode associated with the C-gene primer. Sequencing coverage
included fromwithin the framework 1 region to the C-region, inclusive

Fig. 7 | Spatial cross-correlation analysis reveals altered cellular cohabitation
patterns in PD. a Schematic explaining spatial cross-correlation (SCC). Robust cell-
type deconvolution (RCTD) is employed to determine the cellular composition of
each spot (capture area). Spot-level neighbor information is encoded in a binary
adjacency matrix, which is then combined with proportion matrices for each cell
type in a previously defined SCC equation. The output is an SCC value for each cell
typecombination. Created in BioRender. AlDalahmah,O. (2025) https://BioRender.
com/btedio9. b Plot of thematrix size (number of elements) by the amount of time
(seconds) taken to complete the SCC computation using our optimized algorithm,
which was conducted using the CPU (red) and GPU (blue). c Heatmap of change in
average SCC values for each cell-type combination, PD compared to control.
Increased values (red) denote an increase in SCC in PD compared to control;
decreased values (blue) denote a decrease. “+” symbols represent an increase in
SCC significance in PD compared to control or a lower aggregated two-sided p-
value. “-” symbols represent a decrease in significance. Grayed-out boxes represent

relationships that were not significant (aggregated p value > 0.05) in either PD or
control or that lost significance in PD compared to control. d Validation of
increased spatial correlation between T cells and activatedmicroglia in PD. IHC for
CD68 andCD3 in the SNof a control and a PDdonor.Green arrows indicateCD3+T-
cells, and yellow arrows indicate CD68+ microglia. e The average min-max scaled
minimum distance between a T cell and the nearest neighbor CD68+ cell was
measured. Two-tailedMann-Whitney test, n = 8 control and n = 6 PD. The p-value is
indicated. Data is shown as mean +/- SEM. f Validation of increased spatial corre-
lation between T cells and CD44+ astrocytes. Multiplex immuno-
fluorescence showingGFAP (red), CD44 (cyan), CD3 (green), andDAPI nuclei (blue)
in the SNof a control and a PDdonor. Yellow arrows indicate CD44+ astrocytes and
white arrows indicate T cells. Scale bar: 20 µm. g The average min-max scaled
minimum distance between a T cell and the nearest neighbor CD44+GFAP+
astrocyte was measured. Two-tailed Mann-Whitney test, n = 5 control and 6 PD. P-
value is indicated. Data is shown as mean +/- SEM.
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of CDR1, CDR2, and CDR3. Libraries were multiplexed, pooled, and
sequenced on 18% of a NextSeq 1000, P2 flow cell, 600 cycles, 36.6
million reads.

TCR sequencing analysis
Standard iRepertoire alpha-chain and RepSeq+ alpha- and beta-chain
sequencing raw data were analyzed using the iRmap program87,88.
Briefly, sequence readswerede-multiplexedaccording to Illuminadual
indices and barcode sequences. Merged reads were mapped to

germline V, D, J, and C reference sequences using an IMGT reference
library. CDR3 regions were identified, extracted, and translated into
amino acids. The dataset was condensed by collapsing UMIs and
CDR3 sequences to correct for sequencing and amplification errors.
Reads sharing identical CDR3 and UMI combinations were condensed
into a single UMI count. The resulting immune receptor sequence data
span from the first framework region to the beginning of the constant
region, including the CDR3 hypervariable region. For read-based
iRepertoire alpha-chain sequencing, consistent with previous
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descriptions89, the reads weremapped to the T cell receptor loci (TRA)
and associated with V- and J-cassettes and were extracted and trans-
lated in silico in all three readings. Reading frames containing a C…
FGXGamino acidmotif were identified as productive CDR3 amino acid
sequences. For each demultiplexed sample, all V- and J-cassettes were
then reference-corrected, and the number of reads identified with
each unique combination of V- and J-cassettes encoding a CDR3 amino
acid sequence was counted.

Saturation levels for all sample libraries were assessed using the
estimate_saturation function from the RNAseQC90 package in R, at a
depth of 200 and using 10 reps, and saturation curves were plotted for
each sample (Fig. S2A, B). Read depths and unique CDRs in each
dataset are provided in Supplementary Data 2.

Repertoire diversity metrics and clonal expansion
Repertoire diversity metrics were calculated using the chemodiv
package91 in R with default parameters. Shannon’s entropy, Hill’s
diversity, andHill’s evennesswere calculated based on clonotypes that
included the CDR3 amino acid sequence and the V(D)J recombination.
The diversity-equality 50 (DE5045) metric was calculated by measuring
the fraction of clonotypes that accounted for 50% of the total reads
across all clonotypes.

CDR3 sequence clustering
We combined our SN β-chain TCR UMI repertoires with β-chain TCR
UMI counts from Gate et al.13 and read counts from Singhania et al.11.
Next, we used GLIPH292 to extract conserved motifs across
CDR3 sequences using default parameters and the following argu-
ments: accept_sequences_with_C_F_start_end = F, sim_depth = 10000,
kmer_mindepth = 3. Cluster visualization was performed in turboGliph
using the plot_network function with default parameters. For Fig. S3B,
we used the SuperExactTest package93 to examine conserved CDR3
motif sequences shared between blood and brain samples from con-
trol and Parkinson’s disease (PD) patients. Conserved sequences from
each group were supplied as list inputs to the supertest function. The
background population size was set to n = 10,000, representing an
approximate upper bound on the number of conserved sequences. P-
values were computed for eachmulti-set intersection and adjusted for
multiple comparisons using the Bonferroni correction. Logoplots in
Fig. 1j were generated using weblogo.berkeley.edu with default
parameters.

Extraction of nuclei and snRNAseq procedure
Nuclei were isolated from frozen postmortem brain slices in accor-
dance with established protocols44,48,77,94. Libraries were prepared
using ChromiumNext GEM Single Cell 3’ Reagent Kit v3.1 (PN 120237),
with Chromium Single Cell A Chip Kit, 48 runs (PN 120236). Target cell
recovery was 10,000 cells per sample for cingulate samples and
20,000 cells for SN samples. The final number of nuclei was calculated
from the average of three counts onCountess II or III (ThermoFisher©)
using DAPI as a nuclear marker. The index plate used was a 10X Dual
Index Kit TT Set A (PN 1000215). Chromium Next GEM Single Cell 3ʹ

Reagent Kit v3.1 user guide (CG000315 Rev C) was followed. We used
10X Chromium v3 chemistry.

Sequencing and raw data analysis
Sequencing of the resultant libraries was performed on an Illumina
NOVAseq 6000 platformV4, 150bp paired end reads, 150 cycles. Read
alignment was performed using the CellRanger pipeline (v6.1.2 − 10X
genomics) to reference GRCh38.p12 (refdata-cellranger-GRCh38-1.2.0
file provided by 10x Genomics). Count matrices were generated from
BAM files using the default parameters of the CellRanger pipeline.
Filtering and QC were performed using DecontX95, with default para-
meters, for the cingulate dataset and CellBender96 for the SN dataset.
CellBender (version 0.2.0) was run to remove ambient RNA with the
additionof the ‘-cuda’flag to expedite the processing. Parameterswere
set with an expected cell count of 10,000, total droplets included at
30,000, FPR (false-positive rate) at 0.01, and a learning rate of 0.0001,
utilizing 150 epochs. The total runtime for each sample ranged from
30min to 1 h,with acceleration achieved through the useof theNVIDIA
A5000 GPU. Decontamination of background was not necessary in
cingulate samples. Nuclei with percent read aligning to mitochondrial
genes >14% were excluded. Genes were filtered by keeping features
with >500 counts per row in at least 100 cells. Doublets were identified
using scDblFinder97 and then removed.

Pre-clustering and clustering and classification of nuclei
Preclustering of nuclei was performed using Seurat’s shared nearest
neighbor smart local moving algorithm98. First, data was normalized
using SCTransform99, regressing out percent mitochondrial genes and
donors. Data integration across donors was achieved using the
Harmony100 package which effectively regressed out donor effects.
Harmony embeddings were used in the FindNeighbors step. Elbow
plots based on PCA for each data set were used to determine an
optimal number of principal components, and Clustree101 was used to
determine optimal resolution values for the FindClusters() step.
Seurat’s FindAllMarkers() functionwas used to determine basic cluster
markers, which were then used to assign broad lineage identities to
each cluster (astrocyte, neuron, oligodendrocyte, OPC, myeloid,
endothelial, vascular, T cell). To assist with cell type sublineage
assignment, we employed EnrichR102, enabling us to garner informa-
tion from multiple databases based on our representative genes. Cin-
gulate cortex neurons were assigned in line with Paryani et al.44. Nuclei
that did not conform to cell types were presumed to be doublets or
artifactual noise and removed. The entire process was iteratively
repeated for each lineage to remove aberrant cells and to assign sub-
clusters, or sublineages/subtypes, within each lineage/cell type,
including cortical myeloid cells, which underwent additional filtering
after subclustering.

Differential abundance analysis
Beta-binomial generalized linear regression analysis in DCATS103 in R
was used to measure the influence of condition on the composition of
dopaminergic neurons and T cells in the SN snRNAseq data. The input

Fig. 8 | Astrocytic CD44 is necessary for the activation of neuroinflammatory
pathways. a Western blots of murine astrocytes transduced with viruses carrying
control non-targeting (shNC) versus shRNA against murine CD44 (shmCD44-1, 3,
and 4). shmCD44-3 and-4 effectively knocked down CD44 expression. shmCD44-1,
3, and 4 are independent biological replicates. The lentiviruses included a GFP-tag
to label infected cells. b Representative immunofluorescence images of murine
astrocytes transduced with shRNA constructs as for panel A. CD44 (red), GFP
(green), and DAPI (blue) nuclei are labeled. Scale bar: 10 µM. Note complete loss of
murine CD44 inGFP+ cells in sh-mCD44 3 and 4. Uninfected GFP- cells retain CD44.
For a, b, the knockdown experimentwas replicated twice. cDifferentially expressed
genes (DEGs) of PD vs control substantia nigra (SN) protoplasmic astrocytes and
DEGs in murine astrocytes with CD44 knockdown (KD) vs. non-targeting shRNA

control. The genes are shown by their log2 fold change (LFC) in the SNon the x-axis
and CD44-KD on the y-axis. The color indicates if the genes are significantly dif-
ferentially expressed in PD SN, CD44 KD, both, or none. DEGs were considered
basedon two-sidedadjustedp-values.dBar plot showing activation scores of select
pathways in differentially expressed genes in CD44 KD astrocytes. The scores were
calculated using Omnipath and decoupleR – see methods. Significantly repressed
and activated pathways are shown in red. e Gene-term plot showing significantly
enriched KEGGpathways derived from PathfindR analysis of CD44DEGs, where the
pathways are shown in tan nodes, the size of which corresponds to the number of
genes driving the enrichment of that pathway and the genes contributing to the
pathway enrichment are shown as red node (decreased DEGs) or green nodes
(increased DEGs).
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to the algorithm was a matrix of all subtype compositions by donor
provided in supplementary dataset 1, as well as a similarity matrix
extracted from Seurat’s KNNmatrix. The coefficients for the cell types
of interest and FDR-adjusted p-values were extracted and shown in
Fig. S4I.

Differential gene expression analysis
To compare differences in gene expression between PD and control
for each cell type, we used limma104 within each lineage cluster. We
controlled for donor, binned age using R’s cut function, and sex in the
model formula. Thresholds formost lineages were counts greater than
4 in at least 6 cells, and, for lineages containing less than 1000 cells, the
threshold was lowered to counts greater than 2 in at least 4 cells. Our
dataset did not include any separate batches. Only genes with p-
values < 0.05 were carried through to downstream analyses. For
Fig. S3C, donor-level pseudobulk counts were compared using a two-
tailed Wilcoxon test.

Gene set enrichment analysis and gene ontology analyses
Packages fgsea105 and PathfindR106 were used to determine gene sets
enriched within our differentially expressed genes for each cell type.
All differentially expressed genes, along with their logFC and adjusted
P values, were used as input in the run_pathfindR function, using the
KEGG genesets. The parameters specified were 0.05 as the adjusted p-
value threshold (using the adjusted p-value output from limma DGE
analysis), minimum gene set size 5, and maximum gene set size 500.
The cluster_enriched_terms function was run, with default parameters,
to find representative pathways and filter out irrelevant/uninformative
pathways. This analysis was used for panels 4h, 5j and 6e.

Using the fgsea package, we compared our T cell lineage to a
CD8 + TRM gene set (Supplementary Data 6 – the table includes
references for each gene). All genes in the T cell objectwere assigned a
logFC value through Seurat’s FindMarkers function, using PD as ident.1
and Control as ident.2, with parameters logfc.threshold, min.pct, and
min.diff.pct set to -Inf to prevent filtering/removal of any genes. These
genes, ranked by logFC, were input into the fgsea functionwith default
parameters. Normalized enrichment scores and p-values were repor-
ted. This analysis was used for panels 3g, 4k, 5k,

To construct upset plots (Fig. S5G, H), we used the UpSetR107

package. All myeloid DEG data frames from limma voom were sepa-
rated into increased (logFC>0) and decreased (logFC<0), and lists of
increased and decreased DEGs were input separately into the
fromList function before running the upset function with default
parameters.

Hierarchical poisson factorization
We used the scHPF package49 in Python to determine interpretable
factors within our SN snRNAseq dataset. The scHPF command line
workflow comprised three fundamental stages: “scHPF prep,” “scHPF
train,” and “scHPF score.” In the “scHPF prep” phase, the molecular
count matrix was utilized to generate a matrix market file and a gene
list text file. The parameter “-m”was set to 10, filtering genes to include
only those present in 10 or more cells. In the “scHPF train” stage, our
SN dataset was aligned with each cell type, employing a candidate
parameter range fromK= 7 to 17with a step of 2. Subsequently, for the
extraction of disease factors within each cell type, the training was
conductedwithKvalues of 3, 5, 7, 9, and 11. Finally, in the “scHPF score”
phase, the trained models for each K value were employed to assign
gene scores to individual factors, resulting in the generation of ranked
gene lists. We then selected K to prevent significant overlap in gene
signatures among factors. This was mainly done by observing the
factors expressed by each cell type, and evaluating which K value lent
itself to the most interpretable factors (gene sets following canonical
gene expression patterns).

Gene trajectory analysis
The GeneTrajectory R package was used to deconvolve specific tra-
jectories in the snRNAseq data108. First, Seurat’s FindVariableFeatures
was used to extract highly variable genes, which were then further
subset by selecting genes expressed by 1% to 50% of cells among the
top 2000 variable genes. Next, we computed the diffusion map cell-
cell kNN graph using the RunDM, GetGraphDistance, and CoarseGrain
functions with K nearest neighbor parameter = 5 and N = 500 meta-
cells for computational efficiency. Gene-gene distances were com-
puted using the Wasserstein distance with the Python Optimal Trans-
port package by implementing reticulate in R and calling the
cal_ot_mat_from_numpy function with all default parameters. Finally,
we extracted the gene embeddings and respective trajectorieswith the
GetGeneEmbedding and ExtractGeneTrajectory functions with the
number of trajectories N = 2, K nearest neighbor = 5, and the time step
hyperparameter of the trajectory set to 7. Visualizing the extracted
gene programs required us to run adaptively-thresholded low rank
approximation (ALRA)109 to smooth expression values and generate
gene programbins. Seurat’s RunALRA functionwas runwith all default
parameters. Next, we projected the gene trajectory values onto the
UMAP with the AddGeneBinScore function where we specified the use
of “alra” assay in our projection.

Spatial transcriptomics
Following 10x Visium Spatial Protocols – Tissue Preparation Guide
(CG000240), OCT embedded tissue was scored to the size of the
capture area targeting the SN.One 10 µmsectionwasmountedon each
capture area of theVisiumslide. Tissues on the slideswerefixedusing a
methanol-containing buffer asper the 10XVisiummanual, stainedwith
H&E or antibodies NeuN, GFAP, and DAPI as per the 10X protocol for
Immunofluorescence Staining & Imaging for Visium Spatial Protocols
(CG000312), and then imaged. Imaging of whole slides was done at
20X magnification on a Leica DMI8 Thunder microscope. After ima-
ging, the slides were de-cover-slipped, and the tissue was permeabi-
lized for 11min (which was empirically determined to yield the best
results based on the Visium Spatial Tissue Optimization Slide &
Reagent Kit (PN-1000193), as detailed in the protocol provided in
document CG000238RevD available in 10X demonstrated protocols).
The remaining steps were conducted according to the manufacturer’s
protocol to prepare the libraries. Briefly, libraries were prepared using
Visium Spatial Gene Expression Slide & Reagent Kit, 16 reactions (PN-
1000184). Visium Spatial Gene Expression Reagent Kits user guide
(CG000239 Rev G) was followed. The libraries were sequenced on
NOVAseq (paired-end dual-indexed sequencing), targeting aminimum
of 50,000 reads per spot.

The spatial transcriptomics (ST) sampleswere prepared using 10X
Genomics Space Ranger (version 2.1.0) count commands, accom-
panied by Hematoxylin & Eosin (H&E) images in TIF format and
manually-aligned JSON files generated from Loupe Browser (v7.0) with
raw TIF images of the tissue. The loupe alignment JSON file was
inputted into the loupe-alignment argument in Space Ranger along
with its respective TIF image file, FASTQ reads, and slide numbers. The
referencegenomeused for alignmentwasbuilt using the SpaceRanger
function spaceranger mkgtf with GRCh38 as the assembly and
Ensemble 91 for the transcript annotations. All other parameters were
used with default settings.

ST object preprocessing and quality control
The number of counts per spot per ST sample is shown in Fig. S11A–J.
The plots of ST experiments shown in Fig. 6a, S11, and S12 were gen-
erated using Seurat’s SpatialFeaturePlot and SpatialDimPlot functions.
A total of 10 samples were analyzed (Supplementary Data 1). Finally,
any spots with zero counts were removed, and spot-level gene
expression was normalized using SCTransform in Seurat.
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Cell type deconvolution
Deconvolution using RCTD110 was used to determine the proportion of
each defined cell type in each ST spot from our data. We used the
normalized counts matrix and nUMI from our SN snRNAseq object
with annotated cell lineages and sublineages as a reference.Queries for
RCTD were generated using coordinates from the “image” and “row”
columns in the Seurat object, normalized counts, and nUMI for each
sample. The function run.RCTD was run with parameter dou-
blet_mode = “full”. Otherwise, default parameters were used.

Spatial cross-correlation
We implemented spatial cross-correlation analyses to determine how
different cell types were correlated with one another on a spatial
plane77,111. For these analyses, we first created adjacency matrices for
each sample using the getSpatialNeighbors function from the MER-
INGUE package112 to denote which spots were first-order neighbors.

To avoid false neighbor assignment of nearby cells that were not
true neighbors (e.g., separated by a break in the tissue), adjacency
matrices were first created using all spots, whether in tissue or not, as
listed in the Space Ranger “tissue_positions” csv output file. Next, all
spots assigned as “in_tissue” were kept for downstream processing,
and the rest were removed. This way, spots not directly next to each
other would not be labeled as first-order neighbors.

RCTD cell-type enrichment values per spot, along with each
sample’s corresponding adjacency matrix, were combined to create
spatial cross-correlationmetrics bymatrixmultiplication. We used the
same principles employed by MERINGUE’s112 spatial cross-correlation
function; however, due to the large sizes of our input matrices, spatial
cross-correlation was implemented by matrix multiplication in Ten-
sorflow to expedite the processing time. Specifically, the local mea-
surement of spatial cross-correlation involves multiplying two large
matrices and obtaining the diagonal elements of the resulting matrix.
The speedwas further enhancedbyutilizing the Einsum function in the
TensorFlow package, which allows for element-wise computation. The
code is available at: https://github.com/dalhoomist/T-cell_and_glial_
pathology_in_PD.

Spatial transcriptomics clustering
To assign spatial clusters, we employed the R package BayesSpace82.
We first processed our data with the spatialPreprocess function, using
7 principal components and 2000 highly variable genes for PCA, with
log.normalize set to TRUE. We used the qTune function, evaluating q
values between 2 and 10, and assessed the subsequent qPlot to
determine the optimal number of clusters, q, definedby the elbowplot
inflection point (Supplementary Data 1). We then used the spa-
tialCluster function on the SCT counts for each sample, using the top 7
principal components, error model t, and 1000 MCMC iterations with
100 MCMC iterations excluded as a burn-in period. All other para-
meters were used in their defaults.

Additionally, we sought to neuroanatomically classify each spatial
cluster using gene expression data. We first merged all ST objects
using scCustomize and normalized them using scTransform, as
described above in our snRNAseq processing methods. We extracted
all 2000 variable features from the SCT assay.We then returned to our
original objects (split by sample) and derived the spot-level gene
expression values for each of the previously defined variable features.
We then ran a correlation test using the “cor” function of the stats
package. We generated a heatmap using the pheatmap package in R
(version 1.0.12), with Manhattan distances and ward.D clustering
(Fig. 6b). This resulted in three metaclusters, from which we derived
cluster markers using Seurat’s FindAllMarkers function with default
parameters. Evaluation of the cluster markers (Supplementary Data 8)
showed one cluster with high SN neuronal genes (SNpc cluster) and
two white matter clusters (WM1 and WM2), which were merged as
“Surrounding tissue”.

T cell factor scores in spatial transcriptomics
To compare T cell factor scores and snRNAseq-derived Astrocyte
DEGs between PD and control across the two major spatial regions,
Nigra and Surrounding Tissue (Fig. 6c), while accounting for varia-
bility between individual samples, a Linear Mixed-Effects Model
(LMM) approach was utilized via the lme4 and lmerTest packages in
R. Separatemodels were fit for astrocyte DEG (increased in PD only),
T_cell_factor1, and T_cell_factor5 as response variables with condi-
tion, region, and their interaction (Condition * Region) as fixed
effects. The sample variable was included as a random intercept
effect (1 | Sample) to address the non-independence of measure-
ments from the same individual. P-values for the overall fixed
effects (main effects and interaction) were obtained using the
Kenward-Roger approximation for degrees of freedom provided by
lmerTest. To get p-values for the specific comparisons of interest
(PD vs. control within each region), post-hoc tests were conducted
on the Estimated Marginal Means (EMMs) derived from the LMMs
using the emmeans package, by calling the pairs() function on the
EMMs from condition by region (specs = ~ Condition | Region). The
p-values reported for these specific pairwise contrasts were gener-
ated using the Kenward-Roger method for degrees of freedom and
adjusted using the Bonferroni method.

Immunohistochemistry, multiplex immunofluorescence, and
histology
Paraffin-embedded formalin-fixed tissue sections of 5–7 micron
thickness of the midbrain at the level of the red nucleus or of the
anterior cingulate cortexwereused. All immunostainswere conducted
on a Leica© Bond RXm automated stainer. For a description of anti-
bodies, see Supplementary Data 1. For chromogenic DAB stains, a
generic IHC protocol was employed per manufacturer protocols.
Standard deparaffinization and rehydration steps preceded antigen
retrieval in Leica ER2 (Cat. No. AR9640) antigen retrieval buffer for
10–20min according to manufacturer protocols. Then, a peroxide
block was applied for 10minutes followed by three wash steps using
bond wash solution (Cat. No. AR9590). A one-hour incubation in a
blocking buffer in 10% donkey serum containing PBS-based buffer
preceded primary antibody (the source and dilutions are found Sup-
plementaryDataset 1) labeling for 1 h at ambient temperature. Thiswas
followed by three wash steps, after which the Post Primary was dis-
persed for 8min, followed by three wash steps prior to the Polymer
being dispersed for 8minutes, followed by another three wash steps.
The slideswere then treatedwith deionizedwater for oneminute prior
to incubating in Mixed DAB refined for 10min, followed by three
washes of deionized water. Slides were stained with Hematoxylin for
fiveminutes, followedby awashwith deionizedwater, then Bondwash
solution, and lastly, a deionized water wash. For multiplexing immu-
nostains using antibodies raised in non-overlapping hosts, we used a
generic immunofluorescence protocol. Slides were baked in a 65 °C
oven for aminimumof 2 h. The followingprotocolwas thenused: After
a dewaxing step, incubation in BONDEpitope Retrieval Solution 2 (Cat.
No. AR9640) for 20min was used for heat-induced epitope retrieval.
Next, the slides were washed in 1X PBS before washing twice in Bond
Wash Solution (Cat. No. AR9590) – 10min/wash. Next, they were
incubated in 10% blocking donkey serum for 60min, followed by the
primary antibody diluted in a blocking buffer for 60min. After three
washes, the slides were incubated in the secondary antibody contain-
ing buffer for 60min. After three washes, a DAPI containing mounting
solution (Everbright TrueBlack Hardset Mounting Medium with DAPI,
Cat. No. 23018) was used to label nuclei and quench autofluorescence
prior to cover-slipping. A volume of 150ml/slide was used for all steps.
All steps were conducted at ambient temperature.

Brightfield images were acquired with a Leica Aperio LSM™ slide
scanner under a 20X objective. All immunofluorescent images were
acquired on the Leica Thunder imager DMi8. Images were acquired
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using 20X or 40X oil immersion objectives on a Leica K5 camera. Leica
Biosystems LAS X software was used for image capture. Tiles covering
the cingulate and SN were taken and stitched. Leica Thunder instant
computational clearing was used to remove out-of-focus light.

Image analysis and quantification
All image analysis was performed in QuPath 0.42113. All observers
were blinded to experimental conditions. Annotations detailing the
cingulate, peduncle, or SN were manually drawn. To detect cells, we
used the “cell detection” function under the analysis menu, with
DAPI as the Detection Channel. We modified the background
threshold per image to eliminate non-specific detections. We then
trained an object classifier to classify the detections for the differ-
ent channels. Training data was created from each image to
delineate cells that were positive for the specific antigens in ques-
tion. One classifier per channel was trained by calling the “train
object classifier” function with the following parameters: type =
Random Trees, measurements = Cell: Channel X standard deviation,
mean, max, and min measurements for the channel in question. To
increase the accuracy of the classifier, additional training annota-
tions were created on the image in question until the classification
results matched the impression of the observer. Once a classifier
was trained for each channel, “create composite classifier” was
called to create a classifier consisting of multiple individual classi-
fiers, one for each channel on the image. Classifiers were trained for
each image separately. For the DAB stains, positive cell detection
was used by detecting optical density sum to detect nuclei for CD8+
cells. An object classifier was again trained by using the “train object
classifier” function, with the following parameters: type=Random
Trees, measurements = all measurements, and selected classes=
CD8+ and CD8-. The numbers of cells identified as CD8+ were then
normalized by dividing by the area of the annotation in which the
analysis was done. The same classifier-based approach was used to
quantify CD68+ cell density in IHC stained sections, CD44 + GFAP+
or MT3 + GFAP+ astrocytes, and CD3+ cells in multiplex immuno-
fluorescence sections. The numbers of CD103+ cells in the SN were
counted manually by two board-certified neuropathologists (OAD,
JEG). These counts were then divided by the area of the respective
region.

To calculate the distance between astrocytes and CD3 +T cells,
and CD68+ activated microglia and CD8 + T cells (Fig. 7), the x-y
coordinates of the centroids of the classified objects were extracted,
and the Euclidian distances between every T cell objects and all
astrocyte objects or all microglia object centroids was measured. For
each T cell, the minimum distance was recorded. The distances were
then min-max normalized using values from all samples. The median
minimal distances were compared between PD and control donors
using an unpaired two-tailed Mann-Whitney test.

Cloning
pLV-EF1a-EGFP-N4-IRES-puro was derived from inserting EGFP
sequence of pEGFP-C4 (Clontech) into pLV-EF1a-IRES-puro vector
(Addgene, Cat#85132). pLKO2-EGFP-T2A-puro hH1 was derived from
TRC2 pLKO-puro vector by introducing EGFP-T2A sequence between
human PGK promotor and puromycin resistance cDNA and replacing
human U6 promotor with human H1 promoter from pSUPER-puro
(Oligoengine). The shRNA sequence for the control non-targeting
shRNA (NC), sh mCD44-1, sh mCD44-2, sh mCD44-3, and sh mCD44-4
were obtained from Sigma©: SHC002, 5’- caacaagatgaagagcaccaa-3’;
TRCN0000262948, 5’- ccaaccacacaggagtatata-3’; TRCN0000065357,
5’- ccgaattagctggacactcaa-3’; TRCN0000262945, 5’-gtgtagtgcctacgc-
cattaa-3’; and TRCN0000262946, 5’- gataccttcatgtccatattt-3’, respec-
tively. These were inserted in pLKO2-EGFP-T2A-puro hH1 vector with
AgeI and EcoRI restriction sites. All constructs were confirmed by DNA
sequencing.

Lentiviral production and transduction
293T cells (ATCC, CRL-3216) were maintained with Dulbecco’s Mod-
ified Eagle’s Medium (DMEM) with 10% (v/v) fetal bovine serum
(Gemini Bio., 900-108-500) and 1% (v/v) Penicillin-Streptomycin
(ThermoFisher Scientific, Cat#15070063) at 37 °C and 5% CO2 incu-
bator. 293 T cells were transfected with lentiviral vectors and the
second-generation packaging plasmids (psPAX2, Addgene,
Cat#12260, and pMD2.G, Addgene, Cat#12259) by Ca2PO4 transfec-
tionmethod.Mediumcontaining theproduced viruswas harvested 24,
28, and 32h after transfection. The 0.45mm filtered virusmediumwas
then concentrated by using ultracentrifugation with SW28 rotor
(Beckman Coulter) at 113,000 x g for 1.5 h . The virus was added to
mouse astrocyte culture in the presence of 2mg/ml polybrene and
incubated. On the next day, the cells were replated in the presence of
1mg/ml puromycin to allow for selection. Knockdown of Cd44 was
confirmed using immunofluorescence and western blotting.

Western blotting
For western blotting, cells were lysed with a lysis buffer (25mM Tris-
HCl pH = 7.4, 150mMNaCl, 5mMEDTApH=8.0, 1% (v/v) Triton X-100,
10mM sodium pyrophosphate, 10mM b-glycerophosphate, 10mM
NaF, 1mM sodium orthovanadate, 10% (v/v) glycerol, 1mM dithio-
threitol, DTT, and 1mM phenylmethylsulfonyl fluoride, PMSF). The
lysate was incubated on ice for 30minutes and then spun at 29,800 x g
for 15min. The soluble fraction of lysatewasmixedwith 5X SDS sample
buffer (312.5mMTris-HCl, pH6.8, 10% (w/v) SDS, 50% (v/v) glycerol, 8%
(w/v) DTT, and 0.02% (w/v) bromophenol blue), and boiled. The pro-
teins in the sample were resolved by SDS-PAGE and transferred to the
nitrocellulose membrane (Cytiva, Cat#10600011). The proteins were
probed with primary anti-CD44 (E7K2Y) XP antibody (Cell Signaling,
Cat#37259) followed by fluorophore-conjugated secondary antibody
donkey anti-rabbit IgG, AF 647 (Li-COR Inc, Cat# A32795). The signal
was detected using Odyssey Imager (Li-COR Inc.).

Immunocytofluorescence and imaging
Cells were fixed with 4% (v/v) paraformaldehyde (Cat#15714, Electron
Microscopy Sciences) in phosphate-buffered saline (PBS) for 20min,
and permeabilized and blocked with PBS containing 0.1 % (v/v) Triton-
X and 1% (w/v) bovine serumalbumin (BSA) (Sigma-Aldrich, Cat#7906)
for 30min. The cells were labeled first with primary CD44monoclonal
antibody (IM7) (Invitrogen, Cat#14-0441-82) and then fluorescently
labeled secondary donkey anti-rat IgG, AF568 (Invitrogen,
Cat#A78946) and DAPI. Images were acquired with 60× Apo TIRF Oil
objective, NA 1.49, (Nikon) and Hamamatsu ORCA-Fusion BT camera
on Nikon Eclipse Ti2-E microscope with CrestOptics X-Light
V3 spinning disk confocal module controlled by Nikon’s NIS-
Elements software.

Bulk RNAseq of mouse astrocytes
Total RNA was extracted for sequencing in quantities ranging from
200ng to 1000 ng, with RNA Integrity Numbers (RIN) of 9.9 to 10, as
determined using a Bioanalyzer. Sequencing was performed on the
AVITI platform, utilizing the Standard RNA-seq pipeline (STRDPOLYA).
Poly-A pull-down was employed to enrich mRNAs from the total RNA
samples, followed by library construction using Illumina TruSeq
chemistry. The final PCR step was modified with KAPA HiFi HotStart
Ready Mix. Libraries were sequenced on the Element AVITI system at
the Columbia GenomeCenter. Samples weremultiplexed in each lane,
yielding 30 million reads of paired-end 75 bp reads per sample. Base-
s2fastq version 1.5.0.962525890 was used to convert BCL to fastq
format and to trim the adaptor. Pseudoalignment to a kallisto114 index
created from Ensembl v96 transcriptomes (Human: GRCh38.p12;
Mouse: GRCm38.p6) was performed using kallisto (version 0.44.0).
Differential gene expression analysis was carried out using DESeq2115.
Pathway activation scores (Fig. 8d) were measured using116 the
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run_mlm function in decoupleR on the list of differentially expressed
genes with default parameters. Gene term network plots were gener-
ated in PathfindR106 using the gene_term_graph function.

Statistical testing
All statistical analyses were conducted in GraphPad® Prism 10 or R
version 4.2.2. One-tailed or two-tailed unpaired t-tests were used to
compare PD vs control, as indicated in the figure legends. A one-tailed
t-test was used when we had a prior hypothesis informed by the
transcriptomic data. For comparing twogroups, two-tailed t-tests were
used, as seen in Fig. 1b, Fig. S1B, S1D, Fig. S9G, and S13B. A paired two-
tailed t-testwasused to compareT cell densities in the cingulate cortex
between the white matter and the cortex with paired measurements
from the same samples (Fig. S1E). In cases involving proportions, two-
tailed Mann-Whitney tests were utilized, as in Figs. 4j, 5j. One-tailed t-
tests were used in Fig. 3j, when a directional hypothesis was being
tested informed by the literature or our transcriptional data. Linear
models were used in Fig. 1c–f, h to account for confounding variables
like age, sex, and Alzheimer’s changes. For replicate data on the same
samples (Fig. 1e, f), one-tailed p-values were retrieved. Linear mixed
models were used in Fig. 6C to assess T cell Factor scores in ST data,
with the sample being the random effect (see above). Wilcoxon tests
were used in Fig. 3f to compare donor contributions to T cell Factors,
and two-tailed p-values were reported. Kolmogorov-Smirnov tests
were used to assess cumulative library contributions in Fig. 1g, and
Mann-Whitney testswereused to compare geneprogramdistributions
in Fig. S10C and S10F. Gene set enrichment analysis (GSEA) was done
using pre-ranked gene lists, as shown in Figs. 3g, 4k, and 5k (see
methods section onGSEA). DEG analysis (Figs. 3e, 2g, h, 4g, 5g, 6d, and
8c) was done using limma or DESeq2 as indicated above in the
respective sections on snRNAseq DEG, ST DEG, and bulk RNAseq DEG.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The files, both raw and processed, used for the analysis of human TCR
sequencing, snRNAseq, and spatial transcriptomics datasets generated
in this study have been deposited in theGEOdatabase under accession
codes: GSE253462 (snRNAseq), GSE253975 (ST), GSE253981 (TCR-seq).
Processed snRNAseq and ST R objects are available embedded in our
GitHub repository: https://github.com/dalhoomist/T-cell_and_glial_
pathology_in_PD. All other datasets are provided in the Supplemen-
tary Data. Raw data are available upon request. Source data are pro-
vided with this paper.

Code availability
Code required for spatial cross-correlation analysis is provided here:
https://github.com/dalhoomist/T-cell_and_glial_pathology_in_PD.
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