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adults at risk for dementia, higher occupational complex-
ity has been associated with better cognition (Rydström et 
al. 2022). However, how do we actually choose an occu-
pation? Both early-life education and occupational com-
plexity are predictive factors of dementia, suggesting that 
strategies for dementia prevention could be implemented 
at different points throughout life (Hyun et al. 2022). Apart 
from the environmental factors, is there any genetic factor 
might being associated with the occupational complexity?. 
Interestingly, biometric behavioral genetics analyses has 
shown genetic influences accounting for a large amount 
of variance in job satisfaction (Li et al. 2016). In a study 
among twins or brothers, genetics seemed to explain a great 
variance of occupation (Lichtenstein and Pedersen 1997). 
More specifically, about 50% of the variance in educational 
achievement and 40% of the variance in occupational status 
reflects between-family variance. The aforementioned find-
ings suggest that genes may have a significant impact on 
the relationship between cognition and occupation. Given 
the profound influence of occupation on our overall life and 

Introduction

It is well established that middle and late-life occupation 
plays a significant role to the cognitive status of older 
age, with specific occupations indicating higher cogni-
tive reserve and, thus, lower risk of cognitive deficits or 
neurodegeneration (Stern 2012; Boots et al. 2015; Darin-
Mattsson et al. 2017; Chapko et al. 2018). Further, in older 
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Abstract
Although the impact of occupation on cognitive skills has been extensively studied, there is limited research examin-
ing if genetically predicted cognitive score may influence occupation. We examined the association between Cognitive 
Polygenic Index (PGI) and occupation, including the role of brain measures. Participants were recruited for the Reference 
Ability Neural Network and the Cognitive Reserve studies. Occupational complexity ratings for Data, People, or Things 
came from the Dictionary of Occupational Titles. A previously-created Cognitive PGI and linear regression models were 
used for the analyses. Age, sex, education, and the first 20 genetic Principal Components (PCs) of the sample were 
covariates. Total cortical thickness and total gray matter volume were further covariates. We included 168 white-ethnicity 
participants, 20–80 years old. After initial adjustment, higher Cognitive PGI was associated with higher Data complexity 
(B=-0.526, SE = 0.227, Beta= -0.526 p = 0.022, R2 = 0.259) (lower score implies higher complexity). Associations for 
People or Things were not significant. After adding brain measures, association for Data remained significant (B=-0.496, 
SE: 0.245, Beta= -0.422, p = 0.045, R2 = 0.254). Similarly, for a further, fully-adjusted analysis including all the three 
occupational complexity measures (B=-0.568, SE = 0.237, Beta= -0.483, p = 0.018, R2 = 0.327). Cognitive genes were 
associated with occupational complexity over and above brain morphometry. Working with Data occupational complexity 
probably acquires higher cognitive status, which can be significantly genetically predetermined.
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well-being (Jessen-Winge et al. 2018), it becomes crucial 
to identify the potential factors that predispose cognitively 
healthy adults to their chosen professions. However, reports 
are not always consistent; when incorporating brain mea-
sures, occupational complexity does not contribute toward 
resilience against neuropathology in people at risk for 
dementia (Rydström et al. 2023).

Polygenic indices (PGI) for cognitive outcomes can help 
refine our understanding of how the cumulative effect of 
genetic variation in specific loci may contribute to various 
traits or life outcomes (Genc et al. 2021). The PGI approach 
has become a commonly used approach as the number of 
large-scale genome-wide association meta-analysis studies 
(GWAS) increase. The PGI used in the current analysis was 
based on the summary statistics results from a GWAS analy-
ses of 269,867 participants, aimed to identify new genetic 
and functional links to intelligence (Savage et al. 2018).

Most of the current literature on cognition and occupa-
tion focuses on either the association between occupation 
and education, or occupation and cognitive performance. 
Little is known about the direct relationship between occu-
pation and cognition-associated genes. In the current study, 
we examined the association between Cognitive PGI and 
occupational complexity, in a sample of cognitively healthy 
adults across age, including brain measures in the analy-
ses. We hypothesized that genetics of cognition will affect 
occupational complexity, incorporating the role of brain 
measures.

Methods

Participants were recruited for two studies: the Reference 
Ability Neural Network (RANN) and the Cognitive Reserve 
(CR) study. The RANN study was designed to identify 
networks of brain activity uniquely associated with per-
formance across adulthood for each of the four following 
reference abilities: memory, fluid reasoning, speed of pro-
cessing and vocabulary (Habeck et al. 2016). The CR study 
was designed to elucidate the neural underpinnings of CR 
and the concept of brain reserve (Stern 2012). Both stud-
ies share similar recruitment procedures and data collection. 
All participants were native English speakers, right-handed, 
with at least a fourth-grade reading level. To be included in 
the study, participants had to also be free of any major neu-
rological or psychiatric condition that could affect their cog-
nitive status. Careful screening excluded participants with 
MCI or dementia. A score equal or greater than 130 was 
required on the Mattis Dementia Rating Scale (Mattis 1988) 
for the inclusion in the study. Moreover, participants had 
to have no or minimal complaints on a questionnaire about 
their functionality (Blessed et al. 1968). Both studies have 

been approved by the Institutional Review Board (IRB) of 
Columbia University. More detailed information can be 
found in previous publications (Stern 2009, 2012; Stern 
et al. 2014; Habeck et al. 2016, 2017; Razlighi, Habeck 
et al. 2017). The total baseline sample for RANN&CR 
was N = 528. For the purposes of the current analyses, we 
included participants who had complete data on the mea-
sures used for our hypothesis, and where White-ethnicity.

Occupational data

Participants were asked to provide the occupation of the 
longest duration during their lifetime. As described in a pre-
vious publication of our group (Habeck et al. 2019), for the 
description of occupational data, we used descriptors from 
the Dictionary of Occupational Titles (DOT) https://occu-
pationalinfo.org/appendxb_1.html (United States Employ-
ment Service. Dictionary of Occupational Titles). Every job 
requires a worker to function in relation to three major cat-
egories: Data, People, and Things (Gadermann et al. 2014). 
The DOT classifies occupational complexity with Data, 
People, and Things (United States Employment Service. 
Dictionary of Occupational Titles, Smart et al. 2014). The 
complexity ratings range from 0 to 6, 0–8, and 0–7 for data, 
people, and things, respectively, with lower values indi-
cating higher complexity. As described in the DOT, there 
are specific identifications of each category, referred to as 
Worker Functions. The definitions of Worker Functions are 
as follows: “Data: Information, knowledge, and concep-
tions, related to data, people, or things, obtained by observa-
tion, investigation, interpretation, visualization, and mental 
creation. Data are intangible and include numbers, words, 
symbols, ideas, concepts, and oral verbalization.” “People: 
Human beings; also, animals dealt with on an individual 
basis as if they were human.” “Things: Inanimate objects as 
distinguished from human beings, substances, or materials; 
and machines, tools, equipment, work aids, and products. 
A thing is tangible and has shape, form, and other physi-
cal characteristics” (United States Employment Service. 
Dictionary of Occupational Titles). Occupational data were 
standardized prior to the analyses.

Genotyping

Each participant had venous blood drawn during their 
visit at Columbia University. DNA samples were obtained 
through whole blood extraction. Genotyping was performed 
using Omni 1 M chips, according to Illumina procedures. 
Genotype calling was performed using GenomeStudio 
v.1.0. Quality control was applied to both DNA samples 
and SNPs. Specifically, samples were removed from further 
analysis if they had call rates below 95%, sex discrepancies 
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and relatedness (kinship coefficient more than 0.125). To 
account for population structure, we computed the top 20 
Principal Components (PCs) of the whole sample using 
Plink software and we used the 20 PCs as covariates in our 
analysis (Purcell et al. 2007).

GWAS Imputation

GWAS data for all study participants was imputed using 
the Haplotype Reference Consortium (HRC v1.1) panel 
through the Michigan Imputation online server (Das et 
al. 2016). The HRC is a reference panel of 64,976 human 
haplotypes at 39,235,157 SNPs constructed using whole 
genome sequence data from 20 studies of predominantly 
European ancestry (McCarthy et al. 2016). Imputed dos-
ages for a total of 6,280,331 SNPs with MAF > 0.05, HWE 
p value > 1e–6 and a missing rate < 10% were used for PGI 
computation. PGI scoring was performed using PRSice 
software (Choi and O’Reilly, 2019) following the clumping 
and thresholding (C + T) approach, as originally described 
by the International Schizophrenia Consortium (Prive et al., 
2019) (Tsapanou et al. 2023).

Polygenic Index: We composed the PGI from summary 
statistics from a recent GWAS metanalysis of cognitive per-
formance including n = 269,867 participants, from 14 inde-
pendent European cohorts (Savage et al. 2018). Different 
measures of intelligence were assessed in each cohort but 
were all operationalized to index a common latent g factor, 
the general intelligence factor or Spearman’s g, representing 
multiple cognitive functioning dimensions. The majority of 
the samples were adults, 18–60 years old (n = 204,228), 
and when they stratified the participants according to age-
groups (children, young adults, older adults, adults), results 
did not show any specific age-dependent effect suggesting 
that the same SNPs are important across age-groups.

In our analyses, we included all SNPs, regardless of 
p-value. To ensure that only independent markers were 
included in the computed PGI, we conducted LD clumping 
using an R2 threshold of 0.1 and a 250 kb sliding window. 
Markers within the Major Histocompatibility Complex 
(MHC) LD region on chromosome 6 (chr6:27–33  Mb, 
hg19) were also excluded from the PGI due to the presence 
of complex patterns of long-range linkage disequilibrium 
within this region. For each remaining SNP, we computed 
the weighted count of cognition-associated alleles (0, 1, or 
2), with the weights determined by the coefficient estimated 
in the GWAS. We then computed the average weighted 
count across all SNPs to form the PGI. The PGI computa-
tion was performed using the PRSice software (Choi and 
O’Reilly 2019). For interpretation reasons, PGI values were 
normalized by z-transformed.

Structural MRI Scan and Image Processing

MRI images were acquired on a 3.0T Philips Achieva Mag-
net. Each scan used 240 mm field of view. The parameters 
for EPI acquisition were TE/TR (ms) 20/2000; Flip Angle 
72°; In-plane resolution (voxels) 112 × 112; Slice thickness/
gap (mm) 3/0; Slices 41.

We selected two neural phenotypes for analysis based 
on existing literature establishing association with between 
brain morphometry and cognitive test performance: gray 
matter volume (GM) (mm3) (Yoon et al. 2017), and corti-
cal thickness (CT) (mm) (Ehrlich et al. 2012; Tuladhar et 
al. 2015). T1 scans for each participant were reconstructed 
with FreeSurfer (v5.1.0) software for human brain imaging 
analysis (http://surfer.nmr.mgh.harvard.edu). The accuracy 
of FreeSurfer’s subcortical segmentation and cortical par-
cellation (31, 32) has been reported to be comparable to 
manual labeling. Each participant’s white and gray mat-
ter boundaries, as well as gray matter and cerebral-spinal-
fluid boundaries, were visually inspected slice by slice, 
and manual control points were added in case of any vis-
ible discrepancy. Boundary reconstruction was repeated 
until satisfactory results for every participant were reached. 
The subcortical structure borders were plotted by TkMedit 
visualization tools and compared against the actual brain 
regions. In case of discrepancy, they were corrected manu-
ally. FreeSurfer’s subcortical segmentation and cortical par-
cellation has been shown to have comparable accuracy to 
manual labeling (Fischl et al. 2002; Fischl 2012). We mea-
sured GM volume based on the total gray-matter volume 
reported by FreeSurfer. We measured regional CT from val-
ues computed by standard FreeSurfer parcellation (Desikan 
et al. 2006). We measured total CT as the average of values 
across both hemispheres.

Statistical Analysis

Linear regression models were used for the association 
between the Cognitive PGI and occupation. Prior to the 
main analysis we explored the association between global 
cognition as measured through the neuropsychological 
assessment and occupational complexity, unadjusted and 
then, adding age, sex, and education as covariates. For the 
main analysis, age, sex, years of education, and the first 20 
genetic Principal Components (PCs) were initially used as 
covariates. Subsequently, GM and CT were added in the 
statistical analyses. In secondary analysis, linear regression 
was performed for the association between Cognitive PGI 
and occupation, adding in the model all the three occupa-
tional complexity measures, along with the covariates (age, 
sex, education, PCs, GM, and CT). Age, years of education, 
PCs, and the two brain measures were used as continuous 
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Associations between global cognition and the categories of 
Things and People were not significant. There were signifi-
cant associations between the Cognitive PGI and occupa-
tional complexity in Data, using the covariates of age, sex, 
education, and PCs (B=-0.526, SE = 0.227, Beta= -0.526 
p = 0.022, R2 = 0.259), such that higher Cognitive PGI was 
associated with higher Data complexity (see Fig. 1). Asso-
ciation for People or Things was not significant (B = 0.238, 
SE = 0.230, Beta = 0.238, p = 0.564, R2 = 0.242, and 
B=-0.388, SE = 0.241, Beta=-0.388, p = 0.145, R2 = 0.168 
accordingly). Even after adding brain morphometry in the 
covariates, associations remained significant for Data (B=-
0.496, SE: 0.245, Beta=-0.422, p = 0.045, R2 = 0.254), 
while, the associations for People (B = 0.315, SE: 0.242, 
Beta = 0.267, p = 0.195, R2 = 0.273) or Things (B=-0.394, 
SE: 0.257, Beta=-0.336, p = 0.127, R2 = 0.173 remained 
non-significant). For exploratory reasons, we also performed 
further analysis examining the association between Cog 
PGI and the three occupational categories without including 
the covariate “education”, in all models. Results remained 
significant only for the association with Data, adjusted for 
age, sex, and the PCs (B=-0.573, SE: 0.232, Beta= -0.573, 
p = 0.015), and for age, sex, PCs, and the brain measures 
(B=-0.540, SE: 0.250, Beta= -0.459, p = 0.032). Results 
indicate the strong role of the cognitive genetics to occupa-
tional complexity.

variables, while sex was used as dichotomous. For interpre-
tation reasons, PGI and the three occupational categories 
values were normalized by z-transformations.

Descriptive and linear regression analyses were per-
formed using SPSS 26 (SPSS, Chicago, Illinois, USA). 
Nominally significant alpha values were defined as p < 0.05.

Results

A total of 168 White-only participants had complete data 
on both genetic and occupational information. Age ranged 
from 20 to 80 years old, with an average of 16 years of edu-
cation (see Table 1). Global cognition was associated with 
Data both in the unadjusted model (B=-0.017, SE: 0.076, 
Beta=-0.217, p = 0.005, R2 = 0.047) and the adjusted one 
(B=-0.226, SE: 0.089, Beta=-0.226, p = 0.012, R2 = 0.100). 

Table 1  Characteristics of our sample; N = 168 cognitively healthy, 
white-ethnicity adults
Characteristics
Age, years, Mean (SD) 56.9 (15.5)
Education, years, Mean (SD) 16.4 (2.27)
Sex, women, N (%) 82 (48.8)
GM, Mean (SD) 6.25 (0.59)
CT, Mean (SD) 0.63 (0.24)
Total, N 168

Fig. 1  Scatterplot for the association between Cog PGI and Data Occupational category, after adjustments for PCs, age, sex, and education (stan-
dardized predicted value). Lower Data value indicates higher complexity
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the longest time, limiting the validity of the results. Fur-
ther, available data only yielded a relatively small sample 
size, possibly affecting the statistical power of the study to 
detect small but potentially meaningful effects. Including a 
wide age-range in a genetics’ analysis study could be also 
considered a limitation, since there is a variability in genet-
ics influence over the lifespan. The environment can play a 
crucial role in modulating the effects of genetic factors on 
cognition. Lifespan development is influenced by a com-
plex interplay of genetics and environment, and the impact 
of this interaction might change with age. While measured 
genotypes through PGIs provide valuable insights into the 
genetic underpinnings of occupational complexity, they cur-
rently capture a smaller portion of the variance compared 
to twin estimates of heritability. There’s still a considerable 
amount of variance left to characterize, pointing to the com-
plex interplay of genetic, environmental, and perhaps epi-
genetic factors in shaping occupational outcomes. Advances 
in genetic research and methodologies may gradually close 
this gap, enhancing our understanding of how genetics con-
tributes to occupational complexity.

In summary, people with higher Cognitive PGI were more 
likely to engage in occupations with higher Data demands, 
accounting for their brain morphometry. This suggests that 
genetic variation associated with cognition may predispose 
individuals for occupational complexity.
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