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Abstract
Development of therapeutic approaches that target specific microglia responses in amyotrophic lateral sclerosis (ALS) is 
crucial due to the involvement of microglia in ALS progression. Our study identifies the predominant microglia subset in 
human ALS primary motor cortex and spinal cord as an undifferentiated phenotype with dysregulated respiratory electron 
transport. Moreover, we find that the interferon response microglia subset is enriched in donors with aggressive disease 
progression, while a previously described potentially protective microglia phenotype is depleted in ALS. Additionally, we 
observe an enrichment of non-microglial immune cell, mainly NK/T cells, in the ALS central nervous system, primarily in 
the spinal cord. These findings pave the way for the development of microglia subset-specific therapeutic interventions to 
slow or even stop ALS progression.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing 
neurodegenerative disease characterized by the gradual loss 
of upper and lower motor neurons, leading to a decline in 
motor function [32]. The median survival time from onset 
of symptoms is typically only 3–5 years, depending on 
specific subtype of the disease [1]. Currently, there are no 
disease-modifying treatments available for ALS, making it 
uniformly fatal.

One of the most prominent neuropathological features of 
ALS, in addition to motor neuron degeneration, is neuroin-
flammation. Human positron emission tomography (PET) 
imaging studies using TSPO radioligands have revealed 
that neuroinflammation can be detected early in the course 
of ALS and persists up until the later stage of the disease 
[8]. Neuroinflammation is associated with the activation of 
microglia, which are the resident innate immune cells of 
the central nervous system (CNS). Several histopathological 
studies using post-mortem brain and spinal cord specimens 
have demonstrated microglial proliferation and activation 
in ALS, with the severity of microglia-associated pathol-
ogy closely correlating with disease progression [5, 6]. 
While these studies have provided valuable insights, they 
mainly rely on morphological analysis or general markers for 

assessing microglial activation. As a result, our understand-
ing of the complex molecular mechanisms underlying micro-
glial involvement in ALS pathobiology remains limited. This 
knowledge gap is further emphasized by the failure of clini-
cal trials that attempted to block general neuroinflammation 
in altering disease progression [41]. Surprisingly, therapies 
targeting neuroinflammation that demonstrated significant 
benefits in pre-clinical rodent models of ALS have not trans-
lated into successful outcomes in human clinical trials [41]. 
This disparity highlights the importance of studying the 
identity and role of microglia specifically in humans to gain 
a deeper understanding of ALS pathogenesis.

In our recent work, we made significant strides in this 
area by identifying nine human microglial subsets across 
different donor ages using single-cell RNA-sequencing [36]. 
Building upon this knowledge, we expanded our investiga-
tions to ALS donor samples using the same experimental 
and analytical pipeline. By comparing the results to our pre-
vious study, we successfully identified microglial and non-
microglial immune cell subsets that are enriched in ALS. 
Furthermore, we explored the functional annotation and 
transcriptional regulatory networks of these ALS-associated 
microglia phenotypes, validating their relevance for ALS 
disease pathogenesis across independent datasets. Thus, 
our study provides a comprehensive account of the human 
microglial subsets associated with ALS, identified through 
unbiased transcriptomic approaches. Our findings will pave 
the way for developing therapeutic interventions that target 
specific microglia subsets and their unique pathways in the 
context of ALS.

Materials and methods

Experimental set up

For scRNA-seq analysis, “ALS” samples in Figs. 1, 2a, 
3, 4 and Supplementary figures S5, S6, S8, S9, S11-S13 
represent microglia and other immune cells isolated from 
donors and CNS regions shown in Table 1 and in the first 
tab of Supplementary data table S1. “Non-ALS” samples in 
in Figs. 1, 2a, 3, 4 and Supplementary figures S5, S6, S8, 
S9, S11-S13 represent microglia and other immune cells 
isolated from the temporal neocortex of donors undergoing 
temporal lobectomy for temporal lobe epilepsy and the pre-
frontal cortex of donors with mild cognitive impairment and 
Alzheimer’s disease, as described in or previous publication 
[36]. For the meta-analysis of published bulk RNA-seq data 
in Fig. 2c and Supplementary figure S8a–i “control” refers to 
non-neurological controls described in detail in the original 
publication describing the dataset [51]. For the immuno-
histochemistry analysis shown in Supplementary figure S10 

Fig. 1   The population structure of microglia in human ALS brain 
and spinal cord. We used label transfer to explore the microglia (and 
other immune cell) phenotypes present in the central nervous system 
(CNS) of ALS donors. a Sample collection and label transfer work-
flow. Multiple CNS regions were sampled from 9 ALS donors with 
similar representation of both sexes. Single cell RNA sequencing data 
of live CD45 + immune cells was generated using the 10 × Chromium 
platform. The ALS data was mapped onto our previously published 
microglia population structure by utilizing a pairwise machine learn-
ing approach with random forest classifiers and consensus voting to 
identify final labels. b UMAP projection of the merged dataset. The 
merged dataset is plotted on the first two UMAP components follow-
ing Harmony batch correction. Each dot is a single cell. Microglia 
cluster 15 (MG10) had no unique gene set, while cluster 16 (MG11) 
was present only in one donor, accordingly they were not included in 
downstream analysis. c ALS microglia subsets have unique marker 
gene sets. Heatmap representing Z-scored expression data. Each 
column is a single cluster and each row is a single gene. d Micro-
glial subsets present in ALS have distinctive functional annotations. 
Hierarchical dendogram demonstrating the functional landscape of 
microglia subsets. Similarity of subsets was calculated using Euclid-
ean distance across the average expression profiles of each cell sub-
type. R denotes the root node. Top up- and down-regulated terms 
were selected from Reactome pathway annotation to highlight unique 
aspects of each microglial subsets. Terms in red are upregulated in 
a given cluster while terms in blue are downregulated. e Microglia 
subsets in ALS reside along divergent state transition trajectories. A 
pseudotime trajectory was built with monocle3, setting the root point 
in the middle of cluster 1. The trajectory is highlighted in red, show-
ing the shifts seen across different aspects of the microglial cloud, 
including different pseudotime endpoints. BA Brodmann area, ALS 
amyotrophic lateral sclerosis, UMAP uniform manifold approxima-
tion and projection, R root node

◂
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“controls” are non-neurological controls described in detail 
in the second tab of Supplementary data table S1.    

Source of fresh central nervous system autopsy 
specimens

All fresh ALS central nervous system specimens were 
obtained through the Eleanor and Lou Gehrig ALS Center's 
autopsy program (director: Neil A. Shneider) administered 
at Columbia University Medical Center (CUMC)/New York 
Brain Bank (NYBB). All procedures and research protocols 
were approved by the Institutional Review Board (IRB) of 

Columbia University Medical Center (protocol AAAR4962). 
For a detailed description of the brain regions sampled, 
clinical diagnosis, age and sex of the donors see Table S1. 
After weighing, the resected brain and spinal cord tissue 
was placed in ice-cold transportation medium (Hibernate-
A medium (Gibco, A1247501) containing 1% B27 serum-
free supplement (Gibco, 17504044) and 1% GlutaMax 
(Gibco, 35050061)) and transported from the autopsy suite 
at CUMC/NYBB to the wet lab at CUMC on ice (4 °C) for 
immediate processing and live microglia isolation.

Microglia isolation, cell hashing and sorting

The isolation of microglia was performed according to 
our published protocol [37], with minor modifications. In 
case of the cortical autopsy samples (BA9/46, BA4), the 
cortex (grey matter and the underlying white matter (sub-
cortical white matter)) was dissected under a stereomi-
croscope. The subcortical white matter samples were not 
used in this study. The spinal cord sample (SC) was sam-
pled at the level of the lumbar section and included both 
white and grey matter. All steps of the protocol were per-
formed on ice. The dissected tissue was placed in HBSS 
(Lonza, 10-508F) and weighed. Subsequently, the tissue 
was homogenized in a 15 ml glass tissue grinder, 0.5 g at 
a time. The resulting homogenate was filtered through a 
70 µm filter and spun down at 300 rcf for 10 min. The pel-
let was resuspended in 2 ml staining buffer (RPMI (Fisher, 
72400120) containing 1% B27) per 0.5 g of initial tissue 
and incubated with anti-myelin magnetic beads (Miltenyi, 
130–096-733) for 15 min according to the manufacturer’s 
specification. The homogenate was then washed once with 
staining buffer and the myelin was depleted using Miltenyi 
large separation columns (Miltenyi, 130–042-202). The 
cell suspension was spun down and then incubated with 
anti-CD11b AlexaFluor488 (BioLegend, 301318) and anti-
CD45 AlexaFluor647 (BioLegend, 304018) antibodies as 
well as 7AAD (BD Pharmingen, 559925) for 20 min on 
ice. Samples ALS1-ALS5 (see Table S1) were received 
and processed before the commercial availability of cell 
hashing antibodies. For samples ALS6-ALS9, the indi-
vidual central nervous system regions were hashed using 
cell hashing antibodies along with anti-CD11b, anti-CD45 
and 7AAD for 20 min on ice (for catalogue numbers of cell 
hashing antibodies see Table S1). Subsequently, the cell 
suspension was washed twice with staining buffer, filtered 
through a 70 µm filter and the CD45 + /7AAD- cells were 
sorted on a BD Influx cell sorter. Cells from each brain 
region were sorted in a separate A1 well of a 96-well PCR 
plate (Eppendorf, 951020401) containing 100 µl of PBS 
buffer with 0.3% BSA. For samples ALS1-ALS5 each sam-
ple/region was loaded independently on a 10 × Chromium 
channel. For samples ALS6-ALS9 following sorting cells 

Fig. 2   ALS induces robust, region specific shifts in microglial sub-
type prevalence. a Global changes in microglia subset relative abun-
dance in ALS. Stacked bar chart showing the overall changes in 
immune cell relative abundance. Each bar shows the proportion of the 
different microglial and non-microglia immune cell subsets in each 
condition: non-ALS and ALS. Asterisks denote significant difference 
between conditions, using the Wilcoxon rank-sum test and BH cor-
rection to determine significance. *** < 0.005, ** < 0.01, * < 0.05. b 
Region-specific changes in microglia cluster relative abundance in 
ALS. Boxplots showing the distribution of individual cluster relative 
abundances across disease-region pairings. Representative clusters 
with significant, region-specific changes are shown. Boxplots denote 
the 25th percentile, median, and 75th percentile, with whiskers cap-
turing 1.5 IQR in both directions. c Orthogonal validation in an inde-
pendent bulk RNA-seq dataset confirms consistent association of 
microglia Cluster 2 signature with ALS. Using a separate bulk RNA-
seq cohort of 170 samples from ALS patients and non-ALS neurolog-
ical disease patients or control patients, signatures of the top 20 genes 
per cluster were used to delineate the enrichment of different cluster 
signatures in ALS versus non-ALS samples. Notably, cluster 2 is the 
only cluster that shows significant enrichment in ALS in multiple 
regions, while cluster 1 and 7 enrichment likely capture the increase 
in overall microglia numbers in ALS. d Orthogonal validation in an 
independent spatial transcriptomic dataset confirms the upregulation 
of ALS associated microglial subset marker genes at the anatomi-
cal sites of motor neuron death in ALS. Spatial transcriptomic data 
was repurposed from Maniatas et al. A representative image from the 
slide viewer at https://​als-​st.​nygen​ome.​org/ is shown, displaying the 
neuronal gene NEFH, which is primarily found in the dorsal and ven-
tral horns. Color bar is expression lambda calculated by the Splotch 
model. Dorsal and Ventral horns are demarcated in blue and red 
respectively. Representative images in the following panels are from 
the same section. e–f Marker genes of clusters 2 and 8 follow inverse 
patterns of upregulation in comparison to MAP2 in the dorsal and 
ventral horns of ALS patients. Representative images for each gene 
as in (d) are shown in (e). In f, dotplots compare the summed score 
of predicted counts for a given gene in all spots in the dorsal horn 
(green) to an identical score for that gene summed from all spots in 
the ventral horn (green) across a subset of donors with strong MAP2 
detection. Testing for the significance of differences between regions 
for each gene was conducted with Welch’s t-test and the Holm-Bon-
ferroni correction. STAB1 is a defining gene for cluster 2, CXCR4 is 
a marker for cluster 3, and PYCARD is a defining gene for cluster 8. 
Abbreviations: BA Brodmann area, ALS amyotrophic lateral sclero-
sis, AD Alzheimer’s disease, MCI mild cognitive impairment, TLE 
temporal lobe epilepsy, ALS amyotrophic lateral sclerosis, BA Brod-
mann area, TNC temporal neocortex, SC spinal cord, SN substantia 
nigra, FN facial nucleus, IQR interquartile range, FDR false discover 
rate, DH dorsal horn, VH ventral horn

◂
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from different brain regions were combined and imme-
diately submitted to single cell capture)10 × Chromium 
channel), reverse transcription and library construction on 
the 10 × Chromium platform. All sorting was performed 

using a 100 µm nozzle. The sorting times varied according 
to the quality of the sample, but was on average between 
10 and 20 min per sample. The sorting speed was kept 
between 8000 and 10000 events per second.

Fig. 3   ALS results in functional changes in microglia subsets. Anno-
tating between subset and within-subset shifts in ALS microglia at 
the level of transcriptome, proteome, and epigenome. a–b Annota-
tion of ALS associated transcriptional changes within each microglia 
cluster reveals functional shifts in ALS microglia. REACTOME path-
way analysis of differentially expressed genes within each microglia 
cluster between ALS and non-ALS. Results are displayed as a con-
nectivity plot, where central nodes represent REACTOME pathways, 
while terminal nodes represent genes associated with those REAC-
TOME terms. Central nodes are colored based on the enrichment of 
the term in a given cluster, while terminal nodes are colored based on 
the presence of the gene in the differentially expressed gene list for 
the ALS vs. non-ALS comparison for a cluster. Genes/terms upregu-

lated in ALS are shown in (a) and genes/terms downregulated in ALS 
are shown in (b). Please note that many of the pathways are differen-
tially expressed in more than one microglia cluster. c Identification 
of differential and shared transcriptional regulators in cross-cluster 
and within-cluster cross-disease comparisons. Both heatmaps show 
Z-scored log-normalized scores from CHEA3. On the left panel, 
genes used for regulator calculation were the top 50 genes derived 
from within-cluster across-disease differential expression for each 
cluster. On the right panel, genes used as input were selected top 20 
marker genes per cluster. Rows and columns are clustered hierarchi-
cally by absolute linkage. Each row shows the scores for a single reg-
ulator across all microglia clusters (columns)
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10× Genomics chromium single‑cell 3’ library 
construction

Cell capture, amplification and library construction on the 
10 × Genomics Chromium platform were performed accord-
ing to the manufacturer’s publicly available protocol. Briefly, 
viability was assessed by trypan blue exclusion assay, and 
cell density was adjusted to 175 cells per μl. 7000 cells were 
then loaded onto a single channel of a 10 × Chromium chip 
for each sample. The 10 × Genomics Chromium technology 
enables 3’ digital gene expression profiling of thousands of 
cells from a single sample by separately indexing each cell’s 
transcriptome. First, thousands of cells are partitioned into 

nanoliter-scale Gel Bead-In-EMulsions (GEMs). Within one 
GEM all generated cDNA share a common 10 × barcode. 
Libraries were generated and sequenced from the cDNA, 
and the 10 × barcodes were used to associate individual reads 
back to the individual partitions. To achieve single-cell reso-
lution, the cells were delivered at a limiting dilution. Upon 
dissolution of the Single Cell 3’ Gel Bead in a GEM, primers 
containing (i) an Illumina R1 sequence (read 1 sequencing 
primer), (ii) a 16 nucleotide 10 × Barcode, (iii) a 10 nucleo-
tide Unique Molecular Identifier (UMI), and (iv) a poly-dT 
primer sequence were released and mixed with cell lysate 
and Master Mix. Incubation of the GEMs then produced bar-
coded, full-length cDNA from polyadenylated mRNA. After 

Fig. 4   Independent clustering of non-microglial immune cells identi-
fies shifts in myeloid and adaptive immune cell populations in ALS. 
a Independent clustering of non-microglial immune cells. Non-micro-
glial immune cells were isolated in silico and separately processed. 
Optimized clustering resolution was chosen with ChooseR. Clus-
ters with greater than 10 cells are plotted on the UMAP. b Selected 
marker genes identify diverse immune populations. Each column 
represents one of the clusters, and each row represents the z-scored 
expression of a given gene. The plot is colored according to the level 

of expression and the size of each circle represents the percentage of 
cells in each cluster that express the gene. c–h Annotation identifies 
enrichment of T and NK cells in ALS, as well as enrichment of den-
dritic cells and depletion of macrophages. Boxplots denote the 25th 
percentile, median, and 75th percentile, with whiskers capturing 1.5 
IQR in both directions. Asterisks denote the significance of the differ-
ence between conditions, using the Wilcoxon rank-sum test and BH 
correction to determine significance. * < 0.05. ALS amyotrophic lat-
eral sclerosis, NK natural killer
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incubation, the GEMs were broken and the pooled fractions 
were recovered. Full-length, barcoded cDNA was then 
amplified by PCR to generate sufficient mass for library con-
struction. Enzymatic fragmentation and size selection were 
used to optimize the cDNA amplicon size prior to library 
construction. R1 (read 1 primer sequence) were added to the 
molecules during GEM incubation. P5, P7, a sample index, 
and R2 (read 2 primer sequence) were added during library 
construction via end repair, A-tailing, adaptor ligation, and 
PCR. The final libraries contained the P5 and P7 primers 
used in Illumina bridge amplification. The described proto-
col produced Illumina-ready sequencing libraries. A Single 
Cell 3’ Library comprises standard Illumina paired-end con-
structs which begin and end with P5 and P7. The Single Cell 
3′ 16 bp 10 × Barcode and 10 bp UMI are encoded in Read 
1, while Read 2 is used to sequence the cDNA fragment. 
Sample index sequences were incorporated as the i7 index 
read. Read 1 and Read 2 are standard Illumina sequencing 
primer sites used in paired-end sequencing. Sequencing the 
library produced a standard Illumina BCL data output folder. 
The BCL data includes the paired-end Read 1 (containing 
the 16 bp 10 × Barcode and 10 bp UMI) and Read 2 and the 
sample index in the i7 index read.

Batch structure and sequencing

Tissue specimens were processed upon receipt. The differ-
ent central nervous system regions from the same donor 
were processed parallel. Samples from donors ALS1-ALS5 
were loaded 1 region per 10 × Chromium channel. The dif-
ferent central nervous system region samples from donors 
ALS6-ALS9 were hashed, combined and loaded 1 donor 
per 10 × Chromium channel. Since each central nervous 
system region was processed from any given donor was 
processed parallel on the same day, each sample constitutes 
one batch for microglia isolation, cell capture and library 
construction. All sequencing was performed on an Illumina 

NovaSeq6000 machine. For specifics on sequencing and QC 
metrics regarding the generated reads see Table S1.

Single‑cell RNA‑seq data processing, alignment, 
and hashtag deconvolution

The majority of our downstream analysis was conducted 
using the R programming language (v4.0.5 for harmoniza-
tion and clustering, v4.1.0 for annotation and downstream 
visualization) [42] and the RStudio [43] integrated develop-
ment environment. CellRanger V3.1.0 with default param-
eters was used to demultiplex and align our barcoded reads 
with the Ensembl transcriptome annotation (downloaded 
March 2019, GRCh38.91). A recent report [38] suggested 
that filtering cells with greater than 10% mitochondrial reads 
is the preferred baseline for human tissue, and that for brain 
tissue a higher threshold may even be optimal. Thus, a mito-
chondrial percentage that was the higher of either 10% of 
reads or 2 absolute deviations above the median for mito-
chondrial reads within the sample was chosen as a thresh-
old. Cells below this threshold with between 500 and 10000 
UMIs were retained for downstream analysis. All riboso-
mal genes, mitochondrial genes, and pseudogenes were 
removed, as they interfered with the downstream differential 
gene expression. For samples where we used cell hashing 
to combine regions or subjects in a single sequencing run, 
droplets were demultiplexed using the following workflow. 
For each HTO, a mixture model with two components was 
fitted to the HTO counts using an EM algorithm. The com-
ponent with the smaller mean (negative component) repre-
sents droplets that were not tagged with the HTO, whereas 
the component with the larger mean (positive components) 
represents droplets that were tagged. We then assign each 
droplet to either the negative or positive component based 
on its posterior probability. Droplets that were assigned to 
the negative component for all HTOs, as well as multiplets 
were discarded. Singlets with high uncertainty, i.e. without 

Table 1   Basic ALS donor 
demographics of the single-cell 
RNA-sequencing study

Additional donor information can be found in Table  S1. ALS amyotrophic lateral sclerosis; SOD1mut 
SOD1 mutation: carriers = 1, non-carriers = 0; W white, PSP progressive supranuclear palsy, Intake intake 
diagnosis; Neuropath final neuropathological diagnosis; BA4 TDP-43 TDP-43 pathological inclusions in 
neurons in Brodmann area 4 (primary motor cortex): 1 = present, 0 = absent

Donor ID Age Sex Regions SOD1mut Race Intake Neuropath BA4 TDP-43

ALS1 67 M BA9, BA4, FN, SC 0 W ALS ALS 1
ALS2 89 F BA9, BA4, FN, SC 1 W ALS PSP 0
ALS3 43 M BA9, BA4, FN, SC 0 W ALS ALS 1
ALS4 33 F BA9, BA4, FN, SC 1 W ALS ALS 0
ALS5 61 F BA4, SC 0 W ALS ALS 1
ALS6 82 F BA9, BA4, SC 1 W ALS ALS 0
ALS7 61 M BA9, BA4, SC 0 W ALS ALS 1
ALS8 70 M BA9, BA4, SC 0 W ALS ALS 1
ALS9 59 M BA9, BA4, SC 0 W ALS ALS 1
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confident assignment to either the negative or positive com-
ponent, were discarded as well, leaving only high certainty 
singlets for downstream analysis. The method is imple-
mented in the R package demuxmix, which is available on 
github: https://​github.​com/​cu-​ctcn/​demux​mix. Some of our 
hashtag data had lower overall counts, and thus, the demux-
mix model was unable to effectively segregate distributions 
for some hashtags in several samples. These samples were 
identified as having high percentages of negative/uncertain 
cells with demuxmix. In these cases, to try and recover cells 
for further analysis, the problematic hashtags were reclassi-
fied using one of two different algorithms, a demixing algo-
rithm developed for MULTI-seq [34] or HTOdemux from 
Seurat v3.2.0 [50]. Hashtag classifications were merged, and 
doublet/negative/uncertain cell removal proceeded as before.

Label transfer to annotate ALS single‑cell 
RNA‑sequencing data

Cluster labels were assigned to the cells obtained from ALS 
donors, as follows:

Assigning non-microglial identities.

(1)	 Expression data for all cells from all donors were first 
normalized using the SCTransform algorithm in Seurat, 
then integrated using the Harmony R package with 30 
PCs and theta = 5 and each donor as a batch, and subse-
quently clustered using 15 Harmony dimensions using 
the standard Louvain algorithm in the Seurat package 
(version 4) with resolution = 0.5.

(2)	 T-cells, B-cells, monocytes, red blood cells, and 
GFAP + clusters were identified using a combination 
of known gene markers, as well as the composition of 
clusters 10–14 in the cells from non-ALS donors, as 
described in Olah et al., 2020 [36].

(3)	 In this process, we also identified two additional clus-
ters that were assigned cluster labels 15 and 16, since 
they did not correspond to any of the 14 clusters previ-
ously identified in Olah et al., 2020 [36].

(4)	 The remaining cells, which were putatively assigned 
microglial identity, were then assigned identities using 
a bootstrapped random forest approach, as described 
below.

Assigning microglial cluster identities.

	 (5)	 A training set of 200 cells randomly selected from 
each of the microglial clusters in Olah et al., 2020 
[36] was constructed. For clusters with fewer than 200 
cells, sampling was done with replacement.

	 (6)	 For each cluster (1–9), differential genes distin-
guishing that cluster from all other cells were iden-
tified using a Mann–Whitney test on the SCTrans-

formed cells from the training set, with nominal 
p-value < 0.01

	 (7)	 All 9 gene sets from step 6 above were then combined 
(removing duplicates) to form the master gene set for 
random forest training.

	 (8)	 A random forest classifier was then constructed on the 
training set using the combined gene set in step 7, and 
subsequently run on all of the ALS donor cells, none 
of which were included in the training set.

	 (9)	 Steps 5–8 were run 20 times, with a different random 
seed each time.

	(10)	 Cells from ALS cells were then assigned to the most 
commonly classified cluster identity (plurality voting) 
over the 20 runs.

After assignment of both the non-microglial and micro-
glial cells, the entire data set was visualized using the same 
Harmony-based integration described in step 1 above, fol-
lowed by standard UMAP implementation in Seurat (v4) 
with default parameters and 15 Harmony dimensions.

The final cluster labels thus included the 9 microglial and 
5 non-microglial clusters from Olah et al., 2020 [36], which 
now included cells both from that original data set as well 
as the new cells from ALS donors, and 2 additional clusters 
that did not emerge in the clustering from our original data 
set.

10× chemistry correction

Striking differences were observed in the distributions of 
UMI counts between 10X v2 and v3 chemistry. As this 
was driving differential clustering, count matrices from v3 
samples were down-sampled by 50% using the DropletUtils 
[29] package in R to achieve comparable UMI distributions 
across the two technologies. This was done prior to down-
stream visualization of gene expression and computation of 
differentially expressed genes between ALS and non-ALS 
microglia.

Identification of cluster‑defining gene sets

To identify cluster-defining gene sets, the FindMarkers 
function in Seurat was used to implement a pairwise test-
ing approach. We prioritized differentially expressed genes 
that could best delineate a given cluster from each other 
cluster in our dataset. To do so, MAST [11] was applied to 
normalized count data from the “RNA” assay of the Seurat 
object to find differentially expressed genes between every 
combination of pairs of clusters. Within each cluster, all the 
differentially expressed genes that were identified with this 
approach were filtered to only include those that were only 
found to be differentially expressed in one direction (either 
up or down). Any genes that were found to be upregulated 

https://github.com/cu-ctcn/demuxmix
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in comparison to some clusters but downregulated in com-
parison to other clusters or vice versa were removed from 
our downstream analysis. Furthermore, to ensure that the 
specific cluster-defining genes were prioritized, upregulated 
genes were ranked by the number of comparisons in which 
they were upregulated, and only those upregulated in 3 or 
more comparisons were used for downstream analyses. An 
identical process was applied for downregulated genes. Full 
marker gene lists are reported in Table S2.

Identification of differentially expressed genes 
between ALS and non‑ALS microglia

To identify cluster-defining gene sets, each cluster was 
separated into ALS and non-ALS microglial cells, then 
the FindMarkers function in Seurat was used, leveraging 
MAST to identify differentially expressed genes between 
the ALS and non-ALS conditions. The down-sampled (see 
Sect. “10 × chemistry correction”) normalized count data 
was used for this purpose to mitigate technical bias.

Constructing phylogenetic tree of microglial 
subtypes

To construct a phylogenetic tree evaluating the similarity of 
different microglial subtypes, the BuildClusterTree function 
in Seurat was used to build a phylogenetic tree on a distance 
matrix of “average” cells for each of the identity classes 
computed from the first 30 principal components. Results 
were visualized with the ggtree [62] package, as in Fig. 1D.

Functional annotation of microglial clusters

To perform functional annotation of microglial clusters, 
the top 50 up- or down-regulated genes in the differentially 
expressed gene lists for each cluster were taken for analysis. 
Annotation of these gene lists was performed with Reac-
tome [20] pathway analysis using clusterProfiler [63]. For all 
functional analysis, the Benjamini–Hochberg correction [2] 
was used to correct p-values for multiple testing. Corrected 
p-values below a threshold of 0.05 were chosen as signifi-
cant for Reactome results. This type of annotation was also 
performed on the ALS vs. non-ALS differentially expressed 
gene lists for each microglial cluster, as well as in the non-
microglial immune cell analysis.

Monocle3 pseudotime analysis

As an orthogonal method of evaluating the continuity of 
different microglial states in our cluster structure, the mono-
cle3 algorithm was used to build a pseudotime trajectory 
across our dataset as shown in Fig. 1E. Using the Seurat 
interface to monocle3 found in SeuratWrappers, the Seurat 

object was converted into a monocle data object, and a 
pseudotime trajectory was derived using the learn_graph 
function, retaining the final cell identity assignments from 
our original label transfer and clustering pipeline (see Sect. 
“Label transfer to annotate ALS single-cell RNA-sequencing 
data”).To establish an originating point, the pseudotime root 
was placed on the border of clusters 1 and 2, as these sub-
types were described in our prior paper [36] as being the 
two most prevalent microglial subtypes. Interestingly, this 
state was best captured by choosing cells with maximal AVP 
expression, a marker of hematopoietic stem cells [64] that 
is frequently used to mark the root cells in hematopoietic 
pseudotime tracing.

Identifying differentially represented subsets 
between ALS and non‑ALS samples

To compare the relative abundance of different subsets 
between ALS and non-ALS samples, proportions of different 
cell types or subtypes were aggregated at the level of donor-
region pairings. For example, ALS donor 1 would be repre-
sented by ALS1-Spinal Cord, ALS1-BA9, and ALS1-BA4. 
From here, each donor-region is treated as one sample for 
the purposes of comparing proportions of specific subtypes 
between ALS and non-ALS samples. A Wilcoxon rank-sum 
test was used to compute the significance of differences in 
the proportion of each subset between ALS and non-ALS 
regions, and BH correction was used to correct p-values for 
multiple testing.

Identifying differentially represented subsets 
between regions in ALS samples

Similar to above, samples were aggregated at the level of 
donor-regions and examined for differences between differ-
ent groups. In this case, the generalization of the Wilcoxon, 
the Kruskal–Wallis test, was used to assess the significance 
of differences in proportion between different regions in 
ALS, and the BH correction was used to account for mul-
tiple testing.

Annotating single‑cell microglial signatures in bulk 
RNA sequencing data from ALS donors

Bulk RNA-seq BAM files of the Target ALS Foundation 
were downloaded from the New York Genome Center 
(NYGC) in September 2020. These were 1063 BAM files of 
spinal cords and brains from 208 unique donors. BAM files 
were reverted to FASTQ files using the SamToFastq func-
tion of Picard tools (v2.17.4). RNA-seq reads were mapped 
onto the reference human genome GRCh38 using the STAR 
aligner (v2.5.3a) with 2-pass mapping mode. Gene expres-
sion levels were quantified using RSEM (v1.2.31) with 
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the Ensembl human gene model (release 91). Following 
samples were excluded at the quality control stage: one of 
samples sequenced twice, samples that have > 3% riboso-
mal RNA, > 40% duplication rate, < 4 RNA integrity num-
ber (RIN), and a sample whose library preparation method 
(manual vs. automated) was missing from metadata. Donors 
were retained if they were diagnosed as ALS or non-neuro-
logical control. Tissues that had less than 10 samples were 
also excluded. After these filtering steps, 913 samples from 
170 unique donors were included for subsequent analysis. 
The voom function of the R package limma was used to 
compute log2 counts-per-million-mapped-reads (CPM) 
adjusted for RIN and library preparation methods. For each 
gene, log2CPM expression levels were further normalized 
into z-scores. Microglial signature scores were computed by 
averaging z-scores of log2CPM over member genes.

Computing pseudobulk PCA on single‑cell 
microglial data

After down-sampling to mitigate technical bias, gene expres-
sion was aggregated at the donor-region level (i.e. summing 
all counts for cells derived from a specific donor-region 
combination). Principal components analysis was computed 
on this pseudo-bulk expression data, and the first two com-
ponents were plotted.

Analyzing ALS spinal cord spatial transcriptomic 
data

Initial analysis of the spatial transcriptomic data from 
Maniatis et al. 2019 [30] showed infrequent expression of 
microglial genes and cluster markers due to the sparsity of 
the data. As such, the posterior lambda values that result 
from the use of the Splotch model were obtained from the 
authors of the original paper and used for further analysis. 
These posterior values were converted to predicted counts 
with the formula:

where median_spot_depth was set to 1203. Samples with 
good quality MAP2 signal were manually selected from 
the slide viewer at https://​als-​st.​nygen​ome.​org/. 26 sections 
were used in downstream analysis. Individual ST spots were 
assigned to specific spinal cord regions based on expert 
annotation from the original publication. Analysis of micro-
glial signature genes was restricted to the ventral horn versus 
dorsal horn of the spinal cord, as the ventral horn (anatomi-
cal site of motor neuron cell bodies) is known to undergo 
higher levels of neuronal cell death in ALS compared to 
the dorsal horn (site of sensory neuron cell bodies) [59]. 

counts = lambda ∗ spot_depth ∕median_spot_depth

To compare levels of expression of genes between the two 
regions, predicted counts for all genes were normalized on 
a per-section basis. Next, for each gene, the summed score 
for all spots in the dorsal horn was compared to the summed 
score of all spots in the ventral horn for the same gene in 
the same section. Testing was conducted with Welch’s t-test 
with the Holm-Bonferroni correction [17, 56], setting a 
threshold of 0.05 for significance.

Identifying regulators of different microglial 
subtypes with CHEA3

To identify regulators, we leveraged the recently published 
CHEA3 [22] tool using the web interface. We performed 
two primary analyses: comparison of different clusters, 
and comparison of ALS and non-ALS microglia within 
individual clusters. Gene sets for input were identified as 
above. For the ALS vs. non-ALS analysis, we used the top 
50 genes per cluster that were upregulated in ALS. Con-
versely, for the cross-cluster analysis, we used curated gene 
lists that composed of signature genes for individual clus-
ters. All analyses were conducted using only microglial 
clusters. Results of the analysis per cluster were sorted by 
“Score”. For visualization, the top 15 predicted regulators 
per cluster were chosen. After removing duplicates, the 
Z-scored regulator scores per cluster were described in 
heatmaps. Clustering of regulators and clusters was done 
with hierarchical clustering using absolute linkage.

Annotation of non‑microglial immune subtypes 
in ALS single‑cell RNA‑sequencing data.

Non-microglial immune subtypes (clusters 10, 11, and 
12) were separated from other data and re-run through a 
clustering/dimensionality reduction pipeline. In brief, we 
used SCTransform with default parameter and harmony 
to integrate across batches using a thetaval of 2, and used 
20 principal components for downstream analysis. To 
identify the optimal number of clusters for downstream 
analysis, we used the recently described ChooseR tool to 
identify an optimal clustering resolution for our dataset. 
Next, enrichment of different immune subtypes in ALS vs. 
non-ALS samples and in different regions was computed 
as described in sect. “Identifying differentially represented 
subsets between ALS and non-ALS samples” and “Iden-
tifying differentially represented subsets between regions 
in ALS samples”. Next, cluster-defining gene subsets were 
identified using the approach described in Sect. “Identi-
fication of cluster-defining gene sets”. Cluster identities 
were assigned with the use of canonical markers.

https://als-st.nygenome.org/
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Statistical analysis and data visualization

Statistical analysis was conducted as described in the associ-
ated methods sections above. Specific p-values (both signifi-
cant and not), if not found in the figures, may be found in the 
Supplementary Information tables before and after testing 
for multiple correction. T-values and degrees of freedom are 
also provided where relevant. Unless otherwise noted, all 
measurements are taken from distinct samples. In general, 
statistical methods were not used to re-calculate or prede-
termine sample sizes. All plots were created in R v4.1.0 
using either base R visualization packages, ggplot2 [57] 
with ggrepel [47], ggfortify [52], patchwork [40], cowplot 
[58], and ggsci [60], or packages mentioned in the methods 
text. Heatmaps were made with the pheatmap [24] pack-
age. Volcano plots were made with the EnhancedVolcano 
[4] package. Figures were created using BioRender.com. 
All boxplots denote the 25th percentile, median, and 75th 
percentile, with whiskers representing 1.5 times the IQR in 
both directions. Outliers, if any, are represented as circles 
beyond the whiskers.

Immunohistochemistry and image analysis

Tissue acquisition, immunohistochemistry, imaging and 
image analysis were performed as follows. Formalin fixed 
paraffin embedded (FFPE) tissue sections of prefrontal cor-
tex (Brodmann area 9, BA9), primary motor cortex (Brod-
mann area 4, BA4), motor nucleus of the facial nerve, and 
spinal cord were obtained from The Johns Hopkins ALS 
Postmortem Tissue Core and the Target ALS Postmortem 
Core (through Dr. Ostrow) and through the brain donation 
program of Dr. Shneider. Tissue was processed according 
to standard protocol. Briefly, glass slide mounted FFPE sec-
tions were de-paraffinized in CitrisSolv (Cat. No.: 1601H) 
for 20 min, subjected to decreasing ethanol series (ethanol 
100%, ethanol 100%, ethanol 70%) for 1 min each, rehy-
drated in distilled water for 1 min, which was followed by 
1 × phosphate buffered saline wash (PBS) (Cat. No.: 21–040-
CM) for 5 min. Slides were then submerged in antigen 
retrieval low pH (10X) (Cat. No.: 00-4955-58) solution and 
heated using a water bath for 25 min. Slides were cooled in 
distilled water for 1 min and 1 × PBS for 5 min, each at room 
temperature, then dried using Kimwipes. A liquid-repellent 
slide marker pen (A-PAP Pen) was used to draw bounda-
ries around each tissue section. The tissue was rehydrated 
using PBS and was washed 3 times at 5-min intervals in a 
humidified chamber. Unspecific antibody blocker solution 
consisting of 3% bovine serum albumin (BSA)(Cat. No.: 
B4287-25G) and 0.1% Triton X (Cat. No.: T8787-50ML) in 
PBS was added to each slide and incubated in a humidified 
chamber for 1 h. Primary antibody solution was prepared in 
a 1.7 mL Eppendorf tube by adding the primary antibodies 

to the BSA-containing buffer. Added 200 μL of primary anti-
body solution and incubated slides in the humidified cham-
ber in a 4 °C cold room overnight. The next morning, the 
tissue sections were washed 3 times at 5-min intervals with 
1 × PBS. Secondary antibody solutions consisted of Alexa 
Fluor Plus fluorochrome-conjugated secondary antibodies 
in their respective dilutions in the BSA Buffer. 200 μL of 
secondary antibody solution was added to each slide, which 
were then incubated in the humidified chamber for 1 h. Then 
the tissue sections were washed 3 times at 5-min intervals 
with 1 × PBS. Next, we added 200 μL of 70% ethanol and 
Sudan Black (Cat. No.: 23007) in a 1:20 dilution to tissue 
sections, incubating in the humidified chamber for 10 min to 
quench the endogenous autofluorescence. The tissue sections 
were washed 4 times at 5-min intervals with 1 × PBS, the 
slides were dipped in distilled water and mounted using 50 
μL of ProLong Gold antifade reagent containing DAPI (Cat. 
No.: P36931). The slides were covered with microscope 
cover glass (Cat. No.: 12541042) and sealed with clear nail 
polish. The tissue sections were imaged on a Leica epifluo-
rescence microscope with a 20 × objective. For each donor 
and brain region, 5 randomly selected, independent regions 
of interest (ROIs) were imaged. Images were analyzed using 
CellProfiler. The primary antibodies used were: goat anti 
human Iba1 (Wako, Cat.No. 011–27991), mouse anti human 
NeuN (Cell Signaling, Cat.No. 94403), rabbit anti human 
activated Caspase 3 (Cell Signaling, Cat.No. 9579S), rabbit 
anti human CD68 (Cell Signaling, Cat.No. 76437), rat anti 
human pTDP43 (Ser409/410) (Biolegend, Cat.No. 829901), 
anti human SON (Sigma-Aldrich, Cat.No. HPA023535). The 
secondary antibodies used were donkey anti-mouse IgG 
(H + L) Alexa Fluor Plus 555 (Invitrogen, Cat.No. A32773), 
donkey anti-goat IgG (H + L) Alexa Fluor Plus 488 (Inv-
itrogen, Cat.No. A32814), donkey anti-rabbit IgG (H + L) 
Alexa Fluor Plus 647 (Invitrogen, Cat.No. A32795), Alexa 
Fluor 488 donkey anti-rat IgG (H + L) (Invitrogen, Cat.No. 
A21208).

Results

Establishing a microglia population structure 
in human ALS brain and spinal cord

To profile the microglial phenotypes present in the CNS of 
sporadic ALS in an unbiased fashion, we utilized our opti-
mized pipeline for the cold, non-enzymatic isolation and 
single-cell RNA-sequencing (scRNA-seq) of live microglia 
and non-microglial immune cells (all CD45+) from autopsy 
brain and spinal cord tissue[37]. This approach has been 
shown to be superior to other single-cell and single-nucleus 
RNA-sequencing approaches in terms of capturing the full 
extent of microglia phenotypes without inducing a stress 
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response signature [31, 53]. To have a good coverage of ana-
tomical sites along the neuraxis, we sampled multiple CNS 
regions from sporadic ALS donors of both sexes: prefrontal 
cortex (BA9), primary motor cortex (BA4), motor nucleus 
of the facial nerve (FN), and lumbar spinal cord (SC) 
(Fig. 1A, Table 1 and Table S1). In situ each donor showed 
classical signs of microglia activation in the affected CNS 
regions (BA4, FN, SC), such as increased CD68 expression 
in microglia and reduced ramified microglia morphology, 
as compared to brain region that was not affected by ALS 
pathology (BA9) (Figure S1a, b and Figure S2). Pathologi-
cal phosphorylation of TDP43 at Ser409/410 was confirmed 
in all donors in BA4, FN and SC regions using immuno-
histochemistry and fluorescence microscopy (Figure S3). 
While we found evidence of caspase 3 activation in neurons 
is some of the donors, neuronal apoptosis was not a general 
and widespread feature of these end-stage ALS tissue sam-
ples (Figure S4). Using our fresh autopsy tissue-derived live 
cell-based single-cell RNA-sequencing and analytical pipe-
line, which includes stringent quality control (see Table S1), 
our dataset contained > 51000 single-cell transcriptomes of 
microglia and non-microglial immune cells. To facilitate 
comparison to the microglia phenotypes that we recently 
identified in aged and young donors [36], we applied a label 
transfer to assign the ALS-associated immune cells to the 
clusters that we had defined previously (microglial clusters 
1–9 and non-microglial clusters 10–14) (Fig. 1b and Fig-
ure S5a and b). Each microglial cluster is marked by dis-
tinct genes that robustly distinguish them from one another 
(Fig. 1c, Table S2). The identified microglial subsets are 
also characterized by non-overlapping functional annota-
tions (Fig. 1d) and reside along divergent state transition 
trajectories (Fig. 1d and 1e), highlighting their unique, non-
overlapping identities.

ALS is characterized by robust, region‑specific shifts 
in microglial subtype prevalence

We first aimed to identify the global changes in microglia 
subset relative abundance in ALS, using our published data-
set of young and old non-ALS microglia [36] as a reference. 
This reference dataset contains scRNA-seq data of microglia 
isolated from the temporal neocortex and prefrontal cortex 
of young (N = 3, mean age = 37.67 years; SD = 19.86 years) 
and aged (N = 14, mean age = 92.07 years; SD = 5.31 years) 
donors, respectively (Fig. 1a). All “non-ALS” designation 
in the figures and the Sect. “Results” and Sect. “Discussion” 
sections below refer to this reference dataset published pre-
viously by our group [36]. We observed robust, statistically 
significant shifts in the population structure of microglia in 
ALS (Fig. 2a, Fig. 2b, Figure S5c, Table S3). These changes 
are dominated by an inverse relationship between the two 
homeostatic microglia subsets MG1 and MG2. While MG1 

is the most abundant microglial cluster in non-ALS sam-
ples, MG2 is the predominant microglia cluster in ALS. 
Furthermore, ALS samples also had higher representation 
of stress-related microglia cluster MG3, and lower propor-
tions of the MHC-pathway enriched microglial cluster MG7. 
The higher prevalence of MG2 in ALS was prominent in 
all CNS regions examined but was less pronounced in the 
spinal cord (Fig. 2b, Figure S6b, c—per donor brakedown 
can be seen in Figure S1c). In contrast, the enrichment of 
MG3 was more dramatic in ALS spinal cord samples and 
less so in ALS brain samples (Fig. 2b, Figure S6c), while the 
microglia subset associated with respiratory electron trans-
port (MG8) showed a trend to be enriched in ALS, especially 
in the subcortical samples. The non-microglial clusters 11 
(Fig. 2b), identified as T cells, were also found to be signifi-
cantly enriched in ALS.

We next performed orthogonal validation of our findings 
in an independent bulk RNA-seq dataset consisting of 170 
samples from ALS patients, non-ALS neurological disease 
patients, and control donors [51]. Signatures of the top 20 
genes per microglial cluster (Table S4) were used to deline-
ate the enrichment of different cluster signatures in ALS 
versus non-ALS samples. This investigation confirmed that 
MG2-enriched genes had significantly higher expression 
in ALS motor cortex and cervical spinal cord when com-
pared to controls (Fig. 2c). Interestingly, MG1- and MG7-
enriched genes also showed higher expression in the bulk 
RNA-sequencing dataset, but not in our scRNA-seq dataset. 
This may be because signature gene sets of MG1 and MG7 
are particularly enriched in pan-microglial marker genes 
expressed by all microglia (Figure S7). Consequently, the 
enrichment of the MG1 and MG7 signatures in the bulk 
RNA-seq data likely reflects the expansion of the micro-
glial population in the cervical spinal cord of ALS patients; 
a phenomenon that has been documented previously [18]. 
Interestingly, relative abundance of microglia (detected in 
the bulk RNA-seq dataset through the signatures of MG1 
and MG7) positively correlated with family history of ALS 
as well as disease duration (Figure S8b and d), but not with 
sex, C9orf72 repeat expansion status, age at death, or age at 
onset (Figure S8a, c, e and f, respectively). MG2 was signifi-
cantly positively associated with a positive family history of 
ALS, as were MG8 and MG9 and the monocytic cluster 10 
(Figure S8b). Intriguingly, MG8 was negatively associated 
with disease duration along with MG4 (Figure S8d) and was 
significantly enriched in donors who had rapidly progress-
ing disease (less then 2 years survival following diagnosis).

To further validate our scRNA-seq findings, we examined 
the spatial expression pattern of microglia subset-specific 
genes in an independent spatial transcriptomic dataset of 
ALS spinal cord[30]. Specifically, we investigated the dif-
ferences in the expression levels of microglia cluster markers 
between the dorsal horn, which harbors intact neurons, and 
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the ventral horn of the spinal cord, the site of motor neuron 
cell death. This dataset reliably showed reduced gene expres-
sion of MAP2, a neuronal marker, in the ventral horn of ALS 
spinal cord when compared to the dorsal horn (Fig. 2d, e, f, 
Table S5), consistent with extensive motor neuron demise 
in this area. Importantly, marker genes of MG2 (STAB1), 
MG3 (CXCR4) and MG8 (PYCARD) were inversely cor-
related with MAP2 expression in the dorsal and ventral 
horns of ALS spinal cord (Fig. 2e and 2f), suggesting their 
association with motor neuron death in the ventral horn of 
ALS spinal cord. Patterns of expression for other microglial 
subset-specific genes in the spatial transcriptomic dataset 
are shown in Figure S8j.

ALS results in functional changes in microglia 
subsets

A central question in the analysis of microglial single-cell 
transcriptomics signatures is the degree to which the identi-
fied subsets are functionally distinct. We first established the 
non-overlapping functional identity of our microglial subsets 
using their unique signature gene sets and the REACTOME 
pathway analysis tool (Fig. 1d, and Figures S9a and b, 
Table S6). We have previously reported that MG1 and MG2 
are both homeostatic/undifferentiated microglia subsets [36]. 
In the combined dataset, they maintained this annotation, 
with additional enrichment of ‘IRE1-a activated chaperons’ 
in MG1 and ‘RHO GTPase cycle’ in MG2. Similarly, the 
other microglia subsets also maintained their top functional 
annotation in the combined dataset: ‘Cellular response to 
stress’ for MG3, ‘Interferon Signaling’ for MG4, ‘Interleu-
kin Signaling’ for MG5 & MG6, ‘MHCII Antigen Presen-
tation’ for MG7, ‘Respiratory Electron Transport’ for MG8 
and ‘Cell Cycle’ for MG9 (Fig. 1d and Figure S9a and b).

To better understand microglial phenotypic changes in 
ALS, we used REACTOME for functional annotation [20]. 
First, we investigated the within-cluster transcriptional 
changes between ALS and non-ALS samples (Fig.  3a, 
Table S7). The REACTOME terms that were upregulated 
within each cluster included pathways such as: ‘Chaper-
one mediated autophagy’ (upregulated in MG3 and MG9), 
‘Role of phospholipids in phagocytosis’ (upregulated in 
MG1, MG4 and MG7), ‘Integration of energy metabolism’ 
(MG1, MG4, MG7 and MG8) and ‘G alpha (i) signaling 
events’ (upregulated in MG8) (Fig. 3a). Most of these terms 
were upregulated in more than one microglia subset (e.g. 
‘Interleukin-4 and Interleukin-13 signaling’ in MG1, MG3, 
MG4 and MG8), suggesting more global phenotypic changes 
in response to the ALS microenvironment. However, no 
responses were common to every cluster, suggesting that 
even in the face of a relatively similar microenvironment, 
the different microglial clusters may have different adaptive 
responses. Similarly, among the downregulated pathways, 

‘Neutrophil degranulation’ was shared between 6 independ-
ent microglia clusters (MG1, MG2, MG3, MG5, MG6 and 
MG9), while others were shared between three microglia 
subsets (e.g. ‘Interferon gamma signaling’ in MG2, MG6 
and MG9) or two subsets (e.g. ‘NGF-stimulated transcrip-
tion’ in MG1 and MG5). On the other hand, downregula-
tion of the ‘Respiratory electron transport chain’ pathway 
was only observed in MG2 while ‘Regulation of actin 
dynamics for phagocytic cup formation’ was specific to 
MG3 (Fig. 3b). These results suggest microglia subset-spe-
cific metabolic and functional shifts that occur in the ALS 
microenvironment.

Next, we aimed to identify the regulators of gene expres-
sion governing microglial subset-specific and ALS-induced 
transcriptional programs. Using ChEA3 [22], we first pre-
dicted transcriptional regulators for the individual microglia 
subsets (right panel of Fig. 3c, Table S8). As proof-of-con-
cept, MG4, which showed strong enrichment in the ‘Inter-
feron Signaling’ pathway (and is accordingly also known 
as interferon response microglia or IRM phenotype), was 
predicted to be regulated by the transcription factors STAT1, 
STAT2, IRF1 and IRF7, while the stress-associated MG3 
showed regulation by JUNB and JUND. ZNF888 seems to 
be a specific regulator of the MG1 transcriptional identity, 
BPTF, MYSM1 and MGA were specific to MG2, NR4A3 to 
MG5, GTF3A appeared to be specific to MG8, while E2F1 
and CENPA target genes were enriched in MG9. Many of 
the transcriptional regulators of MG7 are shared with other 
clusters, especially with clusters MG1 and MG4, suggesting 
shared ontology for these microglia subsets (Fig. 1d). In con-
trast, most of the ALS-associated gene expression changes 
within clusters were regulated by SON, a member of the 
nuclear speckle pre-mRNA processing machinery [28] (left 
panel of Fig. 3c, Table S9). One exception was MG8, which 
had very few transcriptional regulators that were shared with 
other clusters in this comparison (Fig. 3c, left panel).

Given that one of the enriched genes in microglia Cluster 
2, that was significantly more abundant in the ALS samples 
compared to our previous study, was SON (Figure S10a), 
we found it intriguing that SON also came up as a promi-
nent regulator of transcriptional profiles of ALS microglia 
subsets in the CHEA analysis (Fig. 3c). Accordingly, we 
have decided to utilize SON as a marker gene for Cluster 
2 microglia to confirm in situ the changes in Cluster 2 dis-
tribution in ALS samples. For this end we utilized tissue 
sections from prefrontal cortex (FCtx, BA9), primary motor 
cortex (MCtx, BA4) and spinal cord (SC) of 3 ALS and 
3 non-neurological control donors from the Target ALS 
collection (see Table S1for donor demographics), and per-
formed immunohistochemistry for Iba1 and SON on them, 
followed by fluorescence microscopy and automated image 
analysis using CellProfiler. In all investigated brain regions 
and donors, protein expression was nuclear and punctate 
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in nature (Figure S10b). Most cells expressed SON, but 
there was a clear distribution of SON expression ranging 
from no expression to high expression in all cells, including 
microglia (Figure S10b arrows). To investigate the distri-
bution of SON expression in microglia, we measured Son 
expression in each Iba1 + cell using CellProfiler. We found 
a robust change in the distribution of SON expression in 
microglia in the ALS cortical samples (Figure S10c), com-
pared to controls. This bimodal distribution of SON protein 
expression in the nucleus of ALS cortical microglia is in 
line with our findings in single-cell RNA-sequencing data-
set, where Cluster 2 microglia (most abundant in ALS) had 
more pronounced SOD mRNA expression, when compared 
to all other clusters (Figure S10a). These changes were not 
so pronounced in the spinal cord (Figure S10c), in line with 
Cluster 2 not being the dominant cluster in the spinal cord 
samples of our ALS single-cell RNA-sequencing dataset.

Independent clustering of non‑microglial immune 
cells identifies shifts in myeloid and adaptive 
immune cell populations in ALS

Since our dataset included other non-microglial immune 
cells (all CD45+ cells) isolated from CNS tissue, we per-
formed additional de novo clustering exclusively on these 
cells to better understand their identity and relevance in 
ALS. We identified 19 non-microglial immune cell clusters 
that could be broadly classified as T cells, NK cells, mac-
rophages, monocytes, B cells, and dendritic cells (Fig. 4a, 
Table S10). These peripheral immune cells profiled from the 
brain parenchyma had non-overlapping signature gene sets 
(Fig. 4b, Table S11) and showed divergent enrichment in 
ALS (Fig. 4c-h, Table S12). Interestingly, the macrophage 
cluster C2 was depleted from most ALS CNS regions, 
except for BA4, while the stressed T cells (C3), T cells 
(C4), maturing NK cells (C5), NK cells (C8) and dendritic 
cells clusters (C10) were robustly enriched in ALS samples 
(Fig. 4c-h). CD8 + (C7) and CD4 + T cells (C9) were also 
enriched in ALS when compared to Alzheimer’s’ disease 
(AD) and mild cognitive impairment (MCI) samples, but 
not when compared to samples from young donors (Fig-
ure S11). These findings were further corroborated by map-
ping the non-microglia immune cells to the Azimuth refer-
ence atlas[15] and examining the relative abundance of the 
different non-microglial immune cell subsets in our dataset 
(Figure S12a–h and Figure S13, Table S13). Similar to the 
de novo clustering, CD4 positive central memory T cells 
(TCMs) and CD8 TCMs identified through this reference map-
ping approach were also relatively enriched in ALS samples, 
although a substantial number of CD4 TCMs were observed 
in TLE samples as well (Figure S12c and e). The reference 
mapping approach also revealed the enrichment of γδT cells 

in ALS samples as well as the depletion of plasmablasts in 
ALS (Figure S12d and g, respectively).

Discussion

In this study, we present a comprehensive assessment of 
human microglia phenotypes in ALS using scRNA-seq of 
live microglia. Our study by design incorporates a variety of 
ALS donors in terms of age, sex, TDP43 and genetic status. 
We designed our experimental set up as such with the aim 
to capture a common theme in terms of microglia popula-
tion structure in ALS—one that transcends other factors that 
can affect the relative abundance of microglia subsets in this 
disease. This approach carried the risk of not finding such 
an overarching pattern of ALS-specific microglia population 
structure in the set of donors included in this study. Impor-
tantly, this was not the case, as all donors showed very simi-
lar patterns of microglia subset relative abundances (Fig-
ure S1c), that was significantly different from the microglia 
population structure we observed in young brains and in 
aged donors with MCI and AD [36]. Future, population-
level studies will be able to address in a systematic way the 
modifying effect of covariates on microglia subset relative 
abundances in ALS. Nonetheless, in our experience, these 
effects will likely be smaller in size, compared to the ALS-
specific changes reported here.

One characteristic of studies requiring fresh human 
CNS specimens is the lack of control samples as they are, 
understandably, very difficult to procure. To circumvent 
this drawback, we utilized a variety of approaches to best 
describe the microglia phenotypes in ALS. First, to maxi-
mize comparability with our previous study [36], we mapped 
the transcriptomes from the ALS samples onto previously 
established microglia subset identities. This allowed us to 
directly compare shifts in microglia subset relative abun-
dances between young, aged MCI and AD and ALS brains. 
Second, we explored the disease associations of our micro-
glia subset signatures in a large bulk transcriptomic dataset 
(from the NYGC), that contained samples from both ALS 
donors as well as non-neurological controls, and finally, our 
in situ confirmation pipeline also followed the conventional 
case–control setup. This multi-pronged approach allowed 
us to establish the microglia population structure in ALS 
and confirm the disease relevance of the observed shifts in 
the relative abundance of ALS-associated microglia subsets.

As it is common with studies utilizing postmortem CNS 
tissue samples of fast-progressing human diseases, the dis-
ease stage of all of the donors at death was terminal. Conse-
quently, the cause of death for all (but one) of the donors was 
end-stage ALS. One donor (ALS2, Table 1 and Table S1) 
was diagnosed with ALS at the clinic, however, neuropatho-
logical work-up revealed a primary taupathy, progressive 
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supranuclear palsy (PSP), to be the dominant neuropathol-
ogy. Despite the final PSP diagnosis, we have decided to 
keep this donor in the dataset, given that 1) it carried a 
SOD1 mutation, 2) while in this donor BA4 was devoid of 
pathological TDP43 inclusions in neurons, we found evi-
dence that the motor nucleus of the facial nerve (FN) and the 
lumbar spinal cord (SC) did contain neurons with pTDP43 
inclusions (Figure S3), and 3) microglia activation was pre-
sent in FN as well as SC, as assessed by classical microglia 
activation markers in situ (CD68 expression and microglia 
morphology, Figure S1a and b, respectively)—suggesting 
complex, unconventional neuropathology in this donor, that 
is worth exploring further in a separate study.

Importantly, we document significant deviation from the 
observed changes of the microglia population structure in 
mouse models of this disease. To our surprise, MG7, the 
human microglia cluster that most closely resembled the 
murine disease-associated microglia (DAM) phenotype [36] 
that was found to be enriched at every symptomatic stage in 
the mouse SOD1 model [7, 23], was significantly depleted in 
human ALS, similarly to what we observed in AD [36]. Our 
findings suggest that the depletion of the putatively protec-
tive MG7 microglia phenotype might be a common feature 
of late-stage neurological diseases in humans and highlight 
the limitations of mouse models to study microglia pheno-
types associated with age-related neurodegeneration due to 
species differences in microglia aging [13, 48, 49]. Addition-
ally, here we document a robust, region-specific reorgani-
zation of microglia population structure in this disease. In 
contrast to AD, MCI, and temporal lobe epilepsy (TLE), the 
dominant microglia phenotype in ALS brain and spinal cord 
was MG2, a homeostatic/undifferentiated microglia subset 
characterized by a profound restructuring of the oxidative 
phosphorylation machinery, through the downregulation of 
several electron transport chain subunits. Using an independ-
ent bulk tissue transcriptomic dataset [18, 51] we confirmed 
the significant enrichment of the MG2 expression signature 
in ALS motor cortex and spinal cord, when compared to 
healthy controls. Importantly, dysregulated microglia energy 
metabolism has been shown previously to be a dominant 
feature of microglia in the motor cortex of ALS donors com-
pared to healthy controls in a study that used pseudobulk 
assessment of microglia snRNA-seq data without identify-
ing microglia subsets [45]. In our dataset, a prominent fea-
ture of the ALS spinal cord was the strong enrichment of 
the stress- and early-response associated microglia cluster, 
MG3, in this CNS region. In an independent spatial tran-
scriptomic dataset [30] gene signatures of both MG2 and 
MG3 showed an inverse relationship with the expression of 
MAP2, a neuronal marker depleted from ALS spinal cord 
ventral horn, suggesting that these subsets may localize spe-
cifically to areas of motor neuron demise. While MG2 and 
MG3 signatures did not show an association with disease 

duration, two smaller microglia subsets, MG4 and MG8, 
were found to be significantly enriched in the spinal cord 
of donors with aggressive disease progression. Interferon 
response, the functional annotation of the MG4 microglia 
cluster, has been previously shown to be the dominant patho-
genic feature of C9orf72-/- myeloid cells and microglia [25, 
33]. We also found MG8 to be enriched in the ALS brain and 
spinal cord in our dataset. This small microglia cluster was 
a mirror image of MG2 in terms of functional annotation 
(upregulated genes in MG2 were downregulated in MG8, 
and vice versa). Intriguingly, signature markers of the ALS 
enriched protein co-expression module [55] were expressed 
at the highest level in MG8 in our dataset, as were many of 
the known interacting partners of TDP-43 [12], including 
SOD1 and CHCHD10; both implicated in familial forms 
of ALS [3, 21] (Figure S14). Furthermore, the novel ALS 
cerebrospinal fluid biomarker candidate CAPG [35] was 
most prominently expressed in MG8 among the different 
microglia clusters (Figure S14). Importantly, none of these 
transcriptomic microglia phenotypes could be deduced from 
bulk tissue ALS RNA sequencing data [9, 18, 51], nor were 
they identified in smaller scale ALS single-nucleus RNA 
sequencing datasets [26, 27, 45, 46], confirming the impor-
tance of ex-vivo (whole cell) microglia profiling for the 
study of transcriptional heterogeneity in this cell type [53]. 
With the exception of MG4 (also known as IRM), none of 
the ALS relevant microglia phenotypes (MG2, MG8) identi-
fied here through unsupervised clustering have been previ-
ously identified as in independent microglia subset in either 
mouse or human [39].

An examination of non-microglial immune cells in 
ALS revealed a preponderance of T cells, as well as rela-
tive enrichment of dendritic cells and NK cells in the ALS 
spinal cord. Interestingly, annotation of this subset of our 
dataset with the Azimuth PBMC reference [15] highlights 
enrichment of γδT cells in ALS, which have been reported 
to be increased in the peripheral blood of ALS patients, but 
have not been explored yet in the CNS [14]. Our findings 
open novel avenues for further investigations into the role of 
the different infiltrating peripheral immune cells in the ALS 
spinal cord to understand whether they are contributing to 
the pathobiology directly or through their interaction with 
local microglia.

Despite the challenges associated with ex-vivo studies 
of human microglia in ALS, we believe that the approach 
described here is crucial to understanding of their role 
in ALS disease pathobiology. Most of the ALS-enriched 
human microglia phenotypes presented here (e.g. MG2, 
MG8) have not been recapitulated in murine or in vitro 
model systems yet. Accordingly, mechanistic studies 
addressing their role in ALS models are challenging at 
this moment. Nonetheless, our data set will enable the 
establishment of translational studies that aim to generate 
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novel in vitro and preclinical model systems in which drug 
screens targeting specific microglia subsets and/or subset-
specific gene/pathways can be performed to halt or slow 
down ALS disease progression.

Our dataset offers multiple such potential starting points 
to pursue for the development of therapeutic strategies tar-
geting the neuroimmune component of ALS. To demonstrate 
the utility of our dataset and provide examples of potential 
genes/pathways for follow-up, we explored whether these 
microglia phenotype-specific marker gene sets (Table S4) 
contain any druggable targets using dgidb.org. For this 
investigation, we focused on two microglia subsets, that 
were either enriched in ALS (MG2) or had a significant 
association with disease duration (MG4 and MG8). This 
inquiry revealed that MG2, the metabolically dysregulated 
microglia subset that was the most enriched in ALS samples 
and potentially represents a “burned-out” phenotype, has 
several druggable targets (with approved inhibitors) among 
its marker genes—including IL17RA. Finding IL17RA as a 
marker gene of the most enriched microglia cluster in ALS 
was intriguing. The IL-17 axis is yet unexplored as a poten-
tial therapeutic target in the context of ALS, despite the doc-
umented elevated levels of IL-17A in the serum of sporadic 
ALS patients [10] and the pro-inflammatory effect of IL-17 
on microglia [19]. The availability of an approved inhibitor 
for IL17RA makes this target specifically noteworthy for 
devising therapeutic strategies to modulate MG2 in ALS. 
Interferon response transcriptomic signatures have been 
identified to contribute to early neuroinflammatory changes 
in animal models of ALS [16]. Accordingly, we also found 
that the interferon response microglia subset MG4 showed 
strong enrichment in ALS donors with an aggressive disease 
course. One of the promising druggable targets for MG4 was 
BST2. BST2 has been suggested as a biomarker for micro-
glia activation in ALS, as it was found to be upregulated in 
an ALS mouse model even in the presymptomatic stages of 
the disease [61]. Future studies will establish whether BST2 
(and other druggable markers of MG4, such as ISG15) show 
similar disease associations in the CSF and serum of human 
ALS patients. In our study, the microglia subset MG8, which 
was enriched in translation and inflammasome-related genes, 
was specifically abundant in donors with an aggressive dis-
ease course. Intriguingly, one of the druggable targets (with 
available inhibitor) for this subset was GPNMB. GPNMB 
has been recently identified as a biomarker for ALS, and 
was found to be most elevated in the CSF of short-lived 
ALS patients [65]—in line with our own findings presented 
here. While the exact biological role of GPNMB in micro-
glia is not yet known, accumulating evidence suggests that 
it is an important potential therapeutic target, not only in 
ALS but also in other neurodegenerative diseases and CNS 
malignancies [44]. Given their disease association and thera-
peutic potential, further investigations into the cell biology 

of MG2, MG4 and MG8 microglia phenotypes and their 
contribution to disease pathogenesis in ALS are warranted.
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