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N E U R O D E G E N E R AT I O N

Systematic analysis of cellular cross-talk reveals a role 
for SEMA6D-TREM2 regulating microglial function in 
Alzheimer’s disease
Ricardo D’Oliveira Albanus1,2,3†, Gina M. Finan4,5†, Logan Brase1,3, Nicholas Sweeney6,  
Tae Yeon Kim6, Shuo Chen6, Yeonsu Ryoo7,8,9, Joseph Park7,8, Qi Guo10, Abhirami Kannan1,3, 
Mariana Acquarone1,3, Shih-Feng You1,3, Brenna C. Novotny1,3, Emily M. Mace11,  
Patricia M. Ribeiro Pereira12, John C. Morris2,3,13,14, David M. Holtzman2,3,13,14, Eric McDade1,14, 
Martin Farlow14,15, Jasmeer P. Chhatwal14,16, Bruno A. Benitez17, Laura Piccio3,18,19,  
Richard J. Perrin3,2,18, Greg T. Sutherland20, Qin Ma10, Celeste M. Karch1,3,14, Doo Yeon Kim7,8, 
Rudolph E. Tanzi7,8, Hongjun Fu6,3,14, Oscar Harari1,3*‡, Tae-Wan Kim4,5*

Cellular cross-talk, mediated by membrane receptors and their ligands, is crucial for brain homeostasis and can 
contribute to neurodegenerative diseases such as Alzheimer’s disease (AD). To find cross-talk dysregulations in-
volved in AD, we reconstructed cross-talk networks from single-nucleus transcriptional profiles of 67 clinically and 
neuropathologically well-characterized controls and AD brain donors from the Knight Alzheimer Disease Re-
search Center and the Dominantly Inherited Alzheimer Network cohorts. We predicted a role for TREM2 and ad-
ditional AD risk genes mediating neuron-microglia cross-talk in AD. We identified a gene network mediating 
neuron-microglia cross-talk through TREM2 and neuronal SEMA6D, which we predicted is disrupted in late AD 
stages. Using spatial transcriptomics on the human brain, we observed that the SEMA6D-TREM2 cross-talk gene 
network is activated near Aβ plaques and SEMA6D-expressing cells. Using tissue immunostaining of human brains, 
we found that SEMA6D colocalizes with Aβ plaques and TREM2-activated microglia. In addition, we found that 
plaque-proximal SEMA6D abundance decreased with the disease stage, which correlated with a reduction in 
microglial activation near plaques. These findings suggest that the loss of SEMA6D signaling impairs microglial 
activation and Αβ clearance. To validate this hypothesis, we leveraged TREM2 knockout human induced pluripo-
tent stem cell–derived microglia and observed that SEMA6D induces microglial activation and Aβ plaque phago-
cytosis in a TREM2-dependent manner. In summary, we demonstrate that characterizing cellular cross-talk networks 
can yield insights into AD biology, provide additional context to understand AD genetic risk, and find previously 
unknown therapeutic targets and pathways.

INTRODUCTION
Cross-cellular signaling (cellular cross-talk) is integral to normal brain 
physiology. By establishing cellular networks mediated by membrane 
receptors and their corresponding ligands, cells can gather information 
from their immediate environment and respond accordingly. Cellular 
cross-talk is crucial to brain homeostasis and neurodevelopment pro-
cesses, such as synaptic pruning and axon guidance (1, 2). However, 
increasing experimental and genetic evidence implicates aberrant cel-
lular cross-talk as a contributing factor to neurodegenerative diseases, 

including Alzheimer’s disease (AD) (3–6). From a translational per-
spective, cellular cross-talk is an attractive molecular target for drug 
development, because membrane receptors are relatively amenable to 
therapeutic targeting (7–9). Therefore, systematic characterization of 
brain cellular cross-talk interactions can help identify molecular mecha-
nisms involved in neurodegeneration and inform therapeutic strategies.

Genome-wide association studies (GWASs) have successfully iden-
tified genetic risk loci for AD and nominated genes likely mediating 
these genetic signals (10–13). Further, by leveraging human tissue 
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(14–17) and experimental data from human induced pluripotent 
stem cell (iPSC)–derived cells (18), functional genomics studies have 
revealed that many AD risk genes are expressed by microglial cells. 
However, how most of these microglial AD risk genes are regulat-
ed in the contexts of normal physiology and AD pathophysiology 
is still unknown. As the resident immune cells of the brain, microg-
lia are highly attuned to their surrounding environment, including 
signals from neighboring cells (19). Although previous studies have 
shown causal effects of disrupted cross-talk in neurodegeneration, 
it remains unclear how cellular cross-talk between microglia and 
other cell types is involved in mediating AD genetic risk. Understand-
ing these processes requires characterizing the cross-talk networks in 
the brain, reconstructing the likely signaling pathways downstream of 
these interactions, and integrating these data with genetic findings.

In this study, we reanalyzed brain single-nucleus RNA sequencing 
(snRNA-seq) profiles from Knight Alzheimer Disease Research Cen-
ter (Knight ADRC) and Dominantly Inherited Alzheimer Network 
(DIAN) cohorts to systematically reconstruct the cellular cross-talk 
networks across seven major brain cell types. We found that the direct 
involvement of known AD risk genes was more frequent in neuron-
microglia cross-talk interactions and identified a subnetwork of mi-
croglial genes centered around TREM2 that we predicted mediates 
neuron-microglia cross-talk. We predicted that this subnetwork 
is modulated by the cross-talk interaction between semaphorin 6D 
(SEMA6D) and microglial triggering receptor expressed on myeloid 
cells 2 (TREM2). Using spatial transcriptomics and multiplex im-
munofluorescence on human brains, we found evidence that this 
subnetwork is disrupted in late-stage AD and activated near amyloid-β 
(Aβ) plaques and SEMA6D-expressing cells. We further validated our 
predictions in vitro using wild-type (WT) and TREM2 knockout (KO) 
human iPSC-derived microglia (iMGL). Our findings suggest a com-
plex interplay of SEMA6D signaling from multiple cell types, of which 
we hypothesize neurons as the predominant source, converging on 
the microglial TREM2 pathway to modulate AD pathophysiology.

RESULTS
A complex landscape of cross-talk dysregulation in AD
To systematically characterize cellular cross-talk interactions in con-
trols and AD, we analyzed snRNA-seq profiles of superior parietal 
cortex tissue samples from 67 brain donors of the Knight ADRC and 
the DIAN, previously published by our group (14). This dataset en-
compasses different AD subtypes, including sporadic AD and auto-
somal dominant AD (ADAD), with donors distributed in a broad 
spectrum of neuropathological states and genetic backgrounds, in-
cluding carriers of TREM2 risk variants (table S1). In total, we ana-
lyzed approximately 300,000 nuclei representing seven major brain 
cell types [microglia, astrocytes, oligodendrocytes, oligodendrocyte 
precursors (OPCs), excitatory and inhibitory neurons, and endothe-
lial cells] from 67 donors (Fig. 1A). We identified patterns of ligand-
receptor gene expression across cell type pairs using CellPhoneDB 
(20), which has been successfully used to predict patterns of brain 
cellular cross-talk (5).

We predicted cross-talk interactions separately for disease status 
and genetic group in our CellPhoneDB analyses. In total, we identi-
fied between 961 and 1600 (median = 1521) significant (Bonferroni-
corrected P < 0.05) cross-talk interactions between cell type pairs 
across all donor categories (Fig. 1B, fig. S1A, and table S2). We com-
pared the cross-talk patterns across cases and controls to identify 

global changes associated with disease status. Globally, we predict-
ed significantly more cross-talk interactions involving microglia in 
AD donors than controls (odds ratio = 1.12, P = 0.019, Fisher’s ex-
act test; Fig. 1B and fig. S1B). Because there is limited evidence on 
whether microglial numbers change during AD (21) and we did 
not observe alterations in the count of microglial nuclei associated 
with the disease state, we hypothesize that the increased number 
of predicted cross-talk interactions involving microglia in AD donors 
indicates transcriptional changes consistent with microglial acti-
vation. This suggests that changes in microglial function and state, 
rather than changes in cell abundance, result in changes in cross-
talk patterns.

Next, we performed a functional enrichment of the genes involved 
in the predicted cross-talk interactions specific to each subset of do-
nors to determine which biological pathways are disrupted in AD. 
Consistent with widespread perturbations of normal brain physiol-
ogy in AD, we observed changes in the cellular cross-talk patterns 
when comparing AD donors with controls. The genes involved in 
cross-talk interactions predicted only in AD donors were signifi-
cantly enriched (P range = 4.55 × 10−6 to 2.61 × 10−14) for pathways 
associated with immune activation and migration (for example, re-
sponse to transforming growth factor–β and amoeboid cell/leuko-
cyte migration) and neuronal stress [for example, neuronal death 
and extracellular signal–regulated kinase 1/2 (ERK1/2) cascade; 
fig. S1C]. We also observed enrichment pattern differences across 
AD subtypes, such as a significant increase in ephrin signaling in 
ADAD donors (P range = 4.55 × 10−6 to 2.61 × 10−14), previously 
linked to neuroinflammation (5), and more pronounced immune sig-
naling dysregulation in TREM2 risk variant carriers (fig. S1D). These 
findings suggest that global and AD subtype–specific dysregulation 
contributes to disease onset.

Aiming to understand how each cell type likely contributes to the 
dysregulated pathways in AD more generally, we performed a func-
tional enrichment analysis separately for the cross-talk interactions 
detected in each cell type in cases versus controls. We observed that 
cross-talk interactions involving other cell types besides microglia 
and neurons were enriched for the very same immune activation and 
impaired neuronal homeostasis pathways identified in cases versus 
controls, further supporting that cellular cross-talk contributes to 
these core features of neurodegeneration (Fig. 1C). Together, these 
results indicate that AD leads to widespread dysregulation of homeo-
static cellular cross-talk signaling pathways between microglia and 
neurons with other cells.

Neuron-microglia cross-talk interactions are enriched to 
involve known AD risk genes as ligands or receptors
Our initial analysis yielded a vast array of data, predicting thousands 
of cross-talk interactions across all cell types (Fig. 1B). The enormity 
of these data presented a challenge in discerning the precise role of 
cellular cross-talk in AD. To render this task more tractable and align 
it closely with understanding AD biology, we subsequently concen-
trated our analysis on interactions involving genes empirically linked 
to AD through genetic and functional studies. We identified 90 pos-
sible cross-talk interactions directly involving an AD gene as the 
ligand or receptor (table S3). Of these, 34 were detected by Cell-
PhoneDB analyses in at least one cell type pair (Fig. 1D). We calcu-
lated, for each cell type, the association with cross-talk interactions 
involving AD genes using a logistic regression approach (see Materi-
als and Methods). Microglia had the highest association for cross-talk 
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interactions involving AD genes across all cell types regardless of 
which donor subset we analyzed (association range = 0.25 to 0.68, 
P range = 0.015 to 3.53 × 10−3; Fig. 1E and fig. S2A). Most AD gene 
interactions (64.9%) were predicted to involve receptors in microg-
lia (table S2). This observation implies that disease-associated alter-
ations in other cells modulate a subset of AD genes in microglia.

To further understand these patterns, we explored the cell types 
most likely to interact with microglia through cross-talk interactions 
involving AD genes. We calculated the association of cross-talk inter-
actions involving AD genes for microglial interactions with each cell 
type. We found that excitatory neurons displayed the highest associa-
tion with microglia for these interactions (association range = 0.60 to 
1.12, P range = 0.042 to 1.11 × 10−3; fig. S2B). To further validate 
our findings, we leveraged data from three additional case-control 

snRNA-seq studies to perform a joint analysis (mega-analysis). These 
datasets were drawn from the prefrontal cortex region and sourced 
from the South West Dementia Brain Bank (SWDBB), the Rush ADRC, 
and the University of California Irvine Institute for Memory Im-
pairments and Neurological Disorders (UCI MIND) ADRC (table S4) 
(16, 17, 22). We observed the same consistent, strong association of 
microglia with AD-related cross-talk interactions in each study in-
dividually and in combination (association range = 0.24 to 0.68, 
median = 0.53, P range = 0.022 to 3.49 × 10−4, median = 6.17 × 
10−3; Fig. 1F and fig. S2A). We also observed the strongest associa-
tion of cross-talk interactions involving AD genes for microglia with 
inhibitory and excitatory neurons (association range = 0.34 to 0.44, 
P range = 4.07 × 10−4 to 3.38 × 10−3; Fig. 1G), as well as weaker 
associations with oligodendrocytes and endothelial cells. Among the 

Fig. 1. Overview of predicted cellular cross-talk interactions in human brains. (A) Uniform Manifold Approximation and Projection (UMAP) representation of the 
snRNA-seq dataset identifying the seven major brain cell types from AD and control parietal cortex investigated in this study. (B) Chord diagram summarizing Cell-
PhoneDB interactions derived from snRNA-seq data as in (A). The total number of unique significant CellPhoneDB interactions (Bonferroni-corrected P < 0.05) detected 
involving each cell type as either the ligand or receptor across donor categories (AD and controls) is indicated by the width of each link. Heatmap: Matrix representation 
of the of the same interaction data. M, microglia; Exc. neurons or Ex, excitatory neurons; Inh. neur. or In, inhibitory neurons; ODC or Od, oligodendrocytes; Op, OPCs; A, 
astrocytes; E, endothelial cells. Asterisks indicate cell types with significant (Fisher’s exact test, P < 0.05) changes in the number of predicted cross-talk interactions com-
paring cases and controls (from fig. S1B). adj., adjusted. (C) Gene ontology enrichments of genes mediating cross-talk interactions only detected in cases (red colors) and 
controls (blue colors). N.S., not significant; TGF-β, transforming growth factor–β; GO, Gene Ontology. (D) Cellular cross-talk interactions involving one AD gene as either 
ligand or receptor across all cell type pairs. Asterisks and pound signs indicate cell types and cell type pairs, respectively, with significantly higher AD-related interactions 
than expected on the basis of their total number of interactions (Fisher’s exact test, P < 0.05). (E) Association of AD cross-talk interactions for each cell type using combined 
data from multiple snRNA-seq datasets. OR, Fisher’s Exact test odds ratio. (F) Association of AD cross-talk interactions between microglia and other cell types. (G) Cross-talk 
associations for each cell type (control donors from this study) in genes nominated by GWASs from multiple neuropsychiatric traits. MDD, major depressive disorder; 
LOAD, late-onset AD. (H) Similar to (G) but using only AD genes supported by snATAC-seq coaccessibility (see Materials and Methods).
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individual studies, we observed some variability concerning which 
type of broad neuronal cell (excitatory or inhibitory) had the highest 
association for interactions with microglia involving AD genes 
(fig. S2B), which may reflect power differences due to cell type 
representation. Together, our findings highlight similar overarching 
patterns across cohorts and brain regions. This convergence of re-
sults suggests that a subset of genes previously linked with AD may 
facilitate cell signaling pathways between neurons and microglia.

Cellular cross-talk pattern predictions are robust to cell 
representation and other potential confounding factors
To determine that our previous results were not driven by the cell 
type composition of the datasets, the higher representation of AD 
genes in microglia compared with other cell types, or other possible 
confounding factors, we statistically controlled for different poten-
tial sources of bias in our analyses. First, we observed that the global 
cross-talk patterns remained similar with dataset downsampling, 
including removing a subset of donors, using a single donor, using 
at most 100 nuclei per snRNA-seq cluster, and controlling for am-
bient RNA contamination (fraction of replication = 0.81 to 0.86, 
median = 0.84; fig. S3, A to E). We compared males versus females 
separately and observed an overall high degree of agreement (frac-
tion of replication = 0.74; fig. S3F), despite a subset of interactions 
with likely sex-specific patterns (n = 396), such as Erb-B2 receptor 
tyrosine kinase 4 (ERBB4) and neuroregulin 1 (NRG1), which was 
previously linked to sexual dimorphism in the brain (23). These re-
sults indicate that the cross-talk interaction patterns identified using 
CellPhoneDB are robust to the number of donors, skews in donor 
representation, cell type representation, number of nuclei, sample prep-
aration, and sequencing depth.

Next, we tested whether microglia expressed more genes present 
in the CellPhoneDB database and whether this could confound our 
findings. We observed that microglia and endothelial cells expressed 
more genes listed as putative ligands or receptors in CellPhoneDB 
(fig. S3G). However, despite more genes associated with cross-talk 
interactions being expressed in microglia, we did not observe an over-
representation of AD genes participating in microglial cross-talk in-
teractions compared to other cell types (fig. S3H). To address this 
potential confounding factor directly, we repeated the CellPhoneDB 
analyses, omitting microglia from the dataset. We observed a high 
concordance between the interactions detected in the complete data-
set (median Spearman’s ρ across donor groups = 0.988; fig. S3I).

In parallel, we calculated the enrichment of cross-talk interac-
tions in genes nominated by GWASs for other neurological or neu-
ropsychiatric traits (table S5). We only used cross-talk interactions 
predicted using the control donors from this study to make results 
comparable across traits. This approach is an orthogonal strategy 
to determine whether the abundance of microglial genes in the 
CellPhoneDB database skewed our previous enrichment results. We 
reasoned that if the cross-talk interactions observed in this study 
were biased toward microglia or other cell types because of database 
overrepresentation, then we would observe skewed enrichment pat-
terns across traits. On the contrary, we observed distinct cross-talk 
enrichment patterns across neuropsychiatric traits (Fig. 1G). For 
example, cross-talk interactions involving OPCs were significantly 
associated with genes from one schizophrenia GWAS (log2 odds ra-
tio = 1.00, adjusted P = 0.007). We also observed a nominally sig-
nificant association for inhibitory neurons in genes identified in one 
major depressive disorder GWAS (log2 odds ratio = 0.57, P = 0.02). 

We furthermore replicated the enrichment for microglial cross-talk 
interactions in genes from two AD GWASs [Jansen et al. (24) and 
Marioni et  al. (25), log2 odds ratios  =  1.16 and 1.05, adjusted 
P = 0.016 and 0.006, respectively]. We also did not observe a skew 
toward microglia or endothelial cells in any of the other traits, de-
spite these two cell types expressing more genes participating in 
CellPhoneDB interactions.

We further tested whether the cohort selection could confound 
the cross-talk analyses by repeating these analyses in a publicly avail-
able Parkinson’s disease (PD) snRNA-seq dataset (see Materials and 
Methods). We observed distinct enrichment patterns for PD-related 
genes compared with AD-related genes, including a higher enrich-
ment of PD-related cross-talk interactions in astrocytes (fig. S3J), 
which are in line with the baseline PD enrichment patterns we ob-
served in our dataset (Fig. 1G). We compared the cross-talk patterns 
across all four AD and the PD snRNA-seq datasets and observed a 
high correlation of the trait-related enrichment patterns across all 
datasets and cell types (median Pearson’s ρ = 0.69, P ≤ 7.43 × 10−5; 
fig. S3K). These results confirm that the cross-talk enrichment pat-
terns across cell types are highly specific to each neuropsychiatric 
trait and robust to cohort differences.

Last, we addressed the potential for bias resulting from the selec-
tion of candidate AD genes for our cross-talk analyses. The complex 
task of identifying causal genes in AD GWASs can hinder the accu-
rate determination of cell types mediating AD genetic risk at indi-
vidual loci. In addition, the possibility of nominating multiple genes 
within the same locus, likely participating in similar pathways (for 
example, the MS4A locus) (26), could lead to overrepresentation 
(“double counting”) of the same GWAS signal. To mitigate these bi-
ases, we adopted a data-driven approach for nominating AD genes, 
relying strictly on cell type–specific chromatin coaccessibility be-
tween gene promoter regions and a fine-mapped AD GWAS variant 
(12) or the direct overlap of fine-mapped variants at the gene pro-
moter region (see Materials and Methods). This stringent approach 
nominates candidate AD genes and their corresponding cell types 
solely on the basis of direct evidence from a brain single-nucleus 
assay for transposase-accessible chromatin (snATAC-seq) dataset 
(17). Despite microglia being among the least abundant cell types 
in the snATAC-seq dataset analyzed, we observed a twofold higher 
enrichment for microglial cross-talk interactions in AD compared 
with using our original AD genes list (log2 odds ratio  =  1.51, 
P = 1.89 × 10−4; Fig. 1H). This result shows that the enrichment of 
AD-related cross-talk interactions is robust to varying degrees of 
stringency in the strategy for selecting candidate AD genes and in-
dependently recapitulates the well-established role of microglia in 
mediating AD genetic risk.

Combined, these results indicate that the observed cross-talk en-
richment patterns are robust to potential technical confounding fac-
tors and database biases. Furthermore, these analyses highlight that 
our cross-talk framework is highly flexible and can be extended to 
understand biological processes associated with other neurological 
and neuropsychiatric diseases.

Microglia-neuron cross-talk interactions regulate additional 
known AD genes in microglia
Given our previous results prioritizing neuron-microglia cross-talk 
interactions in AD, we sought to investigate how the cross-talk signals 
between neurons and microglia could regulate gene regulatory net-
works downstream in microglia. Using a system biology approach 
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based on extending the functionality of the CytoTalk software (27) 
(see Materials and Methods), we reconstructed the gene coexpres-
sion networks upstream of the cross-talk ligands and downstream of 
the receptors. CytoTalk is complementary to CellPhoneDB, because 
the latter does not inform the biological processes likely downstream 
of cross-talk interactions. In addition, CytoTalk prioritizes cross-
talk interactions on the basis of their predicted regulatory impact 
on the coexpression network topology (prioritizing interaction ligands 
and receptors coexpressed with central genes in the network). We 
did not restrict the cross-talk interactions in CytoTalk to those in-
volving AD genes to allow an unbiased cross-talk prioritization. This 
way, any AD-related cross-talk interactions prioritized by CytoTalk 
directly reflect their predicted importance in modulating central 
genes in their respective coexpression networks.

We reconstructed the gene regulatory network associated with 
cross-talk interactions between excitatory neurons and microglia 
for each donor category, which was then combined into a single net-
work to help understand the broader biological processes likely regu-
lated by neuron-microglia cross-talk (Fig. 2, A and B). We observed 
similar cross-talk network topologies across excitatory and inhibi-
tory neurons, which suggests shared signaling pathways mediating 
their interactions with microglia (Fig. 2A and fig. S4A). We focused 
on excitatory neurons because they had the highest association 
of AD-related cross-talk interactions with microglia and were the 
most represented neuronal type in our data (Fig. 1, A and F), thus 
increasing our confidence in the inferred coexpression networks. 
The microglial coexpression network downstream of the prioritized 
neuron-microglia cross-talk interactions was enriched for genes pre-
viously associated with AD, even after statistically accounting for the 
overrepresentation of AD-related genes expressed in microglia (see 
Materials and Methods; case odds ratio = 3.50, adjusted P = 3.92 × 
10−5; Fig. 2C). The microglial component of the cross-talk network 
identified by CytoTalk was enriched for immune processes, including 
phagocytosis and cytokine production (Fig. 2D), consistent with 
neuron-microglia cross-talk interactions modulating microglial acti-
vation states (28). These results suggest that neuron-microglia cross-
talk interactions propagate signals that modulate genes previously 
implicated in AD and involved in regulating microglial activation.

Among the seven cross-talk interactions prioritized by CytoTalk 
based on the coexpression network topology, we identified the in-
teraction between the neuronal ligand SEMA6D and TREM2/trans-
membrane immune signaling adaptor (TYROBP; DNAX–activation 
protein 12; DAP12) (Fig. 2B). This cross-talk interaction was initially 
described in the context of peripheral myeloid cells activation (29), 
but its role in microglia and AD remains unknown. Given the central 
role of TREM2 in AD genetic risk, this notable knowledge gap moti-
vated us to pursue this interaction further.

The TREM2-SEMA6D cross-talk is mediated by plexin A1 
(PLXNA1) (29). Because of the low detection rate and limited dynamic 
range of PLXNA1 in the snRNA-seq data (only about 10% of microg-
lia had detectable PLXNA1 transcript levels; maximum PLXNA1 
expression  =  3 reads; fig.  S5), PLXNA1 was not included in the 
CytoTalk-reconstructed network. This is a reported limitation of 
snRNA-seq for lowly expressed genes (30, 31) and precluded the re-
construction of the PLXNA1 coexpression network by CytoTalk, 
resulting in a direct link between SEMA6D and TREM2/TYROBP 
in the excitatory neuron-microglia network. Nonetheless, microglial 
PLXNA1 and neuronal SEMA6D expression patterns were sufficiently 
specific for both CellPhoneDB and CytoTalk to independently detect 

and prioritize the SEMA6D-PLXNA1/TREM2 cross-talk interaction 
between microglia and neurons in our analyses.

The SEMA6D-TREM2 cross-talk axis is predicted to modulate 
microglial activation
We next sought to understand how the TREM2-SEMA6D cross-talk 
interaction could regulate microglial biology. We identified a subnet-
work composed of genes highly connected to TREM2 and TYROBP 
by partitioning the microglial cross-talk network into subnetworks 
(see Materials and Methods). Our cross-talk network reconstruc-
tion analysis predicted that this TREM2 subnetwork is the target of 
neuronal SEMA6D (Fig. 2E). Furthermore, the TREM2 subnetwork 
was enriched for microglial activation pathways, indicating that 
this unsupervised approach recapitulated the well-established link 
between TREM2 and microglial activation (Fig. 2D) (32). In addi-
tion to genes linked to microglial activation, the TREM2 cross-talk 
subnetwork included APOE and HLA genes, previously reported as 
AD risk genes. The coexpression of TREM2 and APOE is consistent 
with studies showing that apolipoprotein E (apoE) is a TREM2 ligand 
(33, 34). These results suggest that the TREM2-SEMA6D cross-talk 
interaction modulates AD risk genes in microglia and is a core fea-
ture of neuron-microglia communication.

To validate these findings, we repeated the CytoTalk analyses in the 
snRNA-seq studies from the SWDBB, Rush ADRC, and UCI MIND 
ADRC cohorts (16, 17, 22). Consistent with our results, CytoTalk 
prioritized the SEMA6D-TREM2 signaling axis mediating the cross-
talk interactions between excitatory neurons and microglia in all 
three cohorts, as well as identifying a similar TREM2 subnetwork 
in all but one of the datasets (fig. S4B). Last, we determined that 
the TREM2 subnetwork and its predicted modulation by SEMA6D 
were robust to the choice of donors and the number of nuclei used 
to reconstruct the cross-talk network (fig. S4C). Together, these 
results reinforce that the unsupervised methodological approach 
in this study identified core elements of microglial gene regulation, 
which are predicted to be modulated by neuron-microglia cellular 
cross-talk interactions.

The microglial TREM2 subnetwork expression is impaired at 
late AD stages
We next determined how the TREM2 subnetwork related to AD pro-
gression. We leveraged the wide range of neuropathological states in 
our dataset to develop a statistical framework to test the association 
of this subnetwork gene expression with disease severity while con-
trolling for genetic and other confounding factors (see Materials and 
Methods). By analyzing gene expression at the level of gene subnet-
works, this approach also helped mitigate data sparsity in snRNA-
seq differential expression analysis. Given the comprehensiveness of 
Braak staging among the neuropathological annotations within our 
cohort, we used a high Braak stage (Braak ≥ IV) as a surrogate of AD 
severity. The expression of the TREM2 subnetwork was negatively as-
sociated with high Braak stage (β = −0.31, adjusted P = 4.32 × 10−57), 
indicating that this subnetwork is down-regulated in later AD stages. 
To understand this result within the broader context of all neuron-
microglia cross-talk interactions, we calculated the association of all 
neuron-microglia cross-talk subnetworks with high Braak stage. Most 
(11 of 14) of the microglial cross-talk subnetworks were negatively 
associated with high Braak stage, and the TREM2 subnetwork was 
among the most negatively associated with high Braak stage (Fig. 2F). 
These results suggest that neuron-microglia cross-talk interactions 
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and their downstream targets in microglia are impaired in the later 
stages of AD.

Next, we determined whether SEMA6D is a potential modulator 
of the TREM2 microglial cross-talk subnetwork. We reasoned that if 
this were the case, then the neuronal SEMA6D cross-talk subnet-
work association with high Braak stages would agree in direction 
with the TREM2 subnetwork. The neuronal SEMA6D subnetwork 
was also negatively associated with high Braak stage (β = −0.09, 
adjusted P = 1.63 × 10−4; Fig. 2G). Therefore, our findings indicate 
that the biological processes involved in the SEMA6D-TREM2 
neuron-microglia cross-talk interactions are disrupted in AD and 
likely play a protective role by regulating TREM2-dependent mi-
croglial activation.

Multiple microglial coexpression subnetworks are disrupted 
during AD progression
To gain further insights into the role of microglia in AD, we next 
adapted the network analysis framework of CytoTalk to analyze 

the transcriptome-wide microglial coexpression network (using 
all expressed genes in microglia instead of the subset prioritized by 
CytoTalk; see Materials and Methods). This approach allowed us 
to test the association of all microglial subnetworks with high 
Braak stage, regardless of the presence of reported ligands/receptors 
in the subnetworks. We partitioned the full microglial coexpres-
sion network into 360 subnetworks and independently recapitu-
lated several subnetworks from the previous cross-talk–prioritized 
network reconstruction, including the TREM2 subnetwork (fig. S6, 
A to C). These microglial subnetworks were divided between posi-
tive and negative associations with high Braak stage (Fig. 2H and 
table S6). Consistent with the well-established roles of presenilin 1 
(PSEN1) and amyloid beta precursor protein (APP) in AD onset 
(35), the PSEN1 and APP coexpression subnetworks were among 
the most positively correlated with high Braak stage (β = 0.32 and 
0.16, adjusted P = 8.25 × 10−57 and 2.17 × 10−13, respectively). In 
contrast, the subnetwork of SORL1, a gene associated with protec-
tive roles in AD (36, 37), was negatively associated with Braak 

Fig. 2. Cross-talk interactions between neurons and microglia are predicted to modulate AD risk genes. (A) Microglia–excitatory neuron cross-talk network inferred by 
CytoTalk. (B) Independently prioritized cross-talk interactions using CytoTalk. (C) Enrichment of AD genes in the microglial cross-talk network across donor categories. (D) Gene 
ontology enrichments for the genes participating in cross-talk networks of microglia and excitatory neurons. (E) Predicted TREM2 cross-talk subnetwork. (F) Association of 
microglial cross-talk subnetworks (individual points) with high Braak stage. GLM, generalized linear model. (G) Association of excitatory neuronal cross-talk subnetworks with 
high Braak stage. (H) Association of all microglial subnetworks with Braak stage. (I) Spatial transcriptomics validation cohort overview. (J) Changes in gene expression in the 
TREM2 cross-talk subnetwork associated with disease status, Aβ plaque proximity, and presence of SEMA6D-expressing cells. (K) Individual gene view for comparisons in (J).
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stage (β = −0.15, adjusted P = 3.52 × 10−11). Our unsupervised 
approach identified two separate subnetworks with opposing di-
rections of effect for the genes in the MS4A locus, which geneti-
cally controls soluble TREM2 expression (26) (MS4A4A and 
MS4A6A, β = −0.11 and 0.19, adjusted P = 2.87 × 10−6 and 2.93 × 
10−20, respectively). This result suggests that the MS4A genetic 
signal regulates at least two independent biological processes, 
consistent with what we reported in a previous study (26). With-
in the context of all microglial genes, the TREM2 subnetwork 
was among the most negatively associated with Braak stage 
(Fig. 2H), consistent with our analysis of the cross-talk–prioritized 
network. These results indicate that multiple biological pathways 
downstream of microglia-neuron cross-talk are disrupted in AD. 
Furthermore, our unsupervised computational framework iden-
tified impaired TREM2-dependent microglial activation associ-
ated with AD progression.

The TREM2 subnetwork expression correlates with proximity 
to Aβ plaques and is up-regulated in the 
presence of SEMA6D
Our findings that the TREM2 subnetwork was among the most neg-
atively associated with advanced AD stages motivated us to better 
understand how its expression changed as a function of neuropatho-
logical burden. To do so, we reanalyzed three control and three AD 
(Braak III and IV) human brains (38) using spatial transcriptomics 
(10x Genomics Visium). We quantified the effects of local neuro-
pathology, particularly proximity to Aβ plaques, on gene expression 
patterns (Fig. 2I).

We first analyzed the global changes in gene expression between 
AD cases and controls and identified only 7 of 31 genes in the TREM2 
subnetwork with a nominally significant association (median log2 
fold change = 0.67, adjusted P < 0.05; Fig. 2, J and K). However, 
when we compared Aβ plaque–proximal to Aβ plaque–distal re-
gions, we observed an up-regulation of most genes in the TREM2 
subnetwork (17 of 31 genes at least nominally significant; median 
log2 fold change = 0.18, adjusted P < 0.05). The spatially resolved 
data also showed a progressive up-regulation of genes in the TREM2 
subnetwork as a function of Aβ plaque proximity (fig. S7, A and 
B), indicating that this pathway is likely involved in the immune 
response to amyloid pathology. Supporting this hypothesis, we ob-
served that other gene signatures linked to plaque-associated mi-
croglia in single-cell transcriptomics studies of AD mouse models 
(15, 39) were also up-regulated with Aβ proximity (fig. S7C).

Last, we leveraged the resolved spatial relationship of this dataset 
to test whether the TREM2 subnetwork expression changed in prox-
imity to SEMA6D-expressing cells. In line with our single-cell analy-
ses, we observed a significant up-regulation of the TREM2 subnetwork 
when comparing SEMA6D-positive versus SEMA6D-negative spots 
(19 of 31 genes at least nominally significant; median log2 fold 
change = 0.081, adjusted P < 0.05; Fig. 2, J and K). TREM2 subnet-
work activation in proximity to SEMA6D was comparable between 
cases and controls (fig. S7D). These results, combined with the lower 
expression of the TREM2 subnetwork in the high Braak stage donors 
from the snRNA-seq data (Fig. 2H), suggest that the TREM2 cross-
talk subnetwork is active during earlier Braak stages and responds to 
local neuropathology (Aβ plaques) and SEMA6D signaling but loses 
function as the disease progresses. Our findings suggest that the 
TREM2 subnetwork is involved in the response to Aβ plaques and is 
activated by SEMA6D.

SEMA6D colocalizes with Aβ plaques in human AD brains 
and associates with TREM2-activated microglia in early but 
not late AD stages
Our snRNA-seq and spatial transcriptomics analyses independently 
suggested that SEMA6D activates the TREM2 subnetwork in mi-
croglia near Aβ plaques and that this subnetwork loses function 
during advanced disease stages. To validate this hypothesis, we per-
formed quantitative cyclic multiplex immunofluorescent imaging of 
TREM2, SEMA6D, PLXNA1, and Aβ in human brains across differ-
ent stages of AD progression (control, Braak stage IV, and Braak 
stage V/VI; Fig. 3, A to D, and fig. S8, A to H).

We observed that SEMA6D was almost exclusively detected in 
the vicinity of Aβ plaques (Fig. 3, A to C, and fig. S8), which we 
confirmed by comparing Aβ plaque–proximal versus Aβ plaque–
distal regions (P = 3.18 × 10−14; Fig. 3, E and F, and fig. S8G). In 
addition, the SEMA6D signal associated with multiple cell types in 
the vicinity of Aβ plaques, including neurons, astrocytes, and mi-
croglia (Fig. 3 and fig. S8, I and J), suggesting a complex cellular 
landscape of this signaling pathway in the AD brain microenviron-
ment. In parallel, we observed a significant increase in TREM2 mi-
croglia near plaques (P = 2.12 × 10−9; Fig. 3G and fig. S8C). We 
furthermore observed a significant shift in microglia from a TREM2-
activated to a homeostatic-like phenotype, marked by higher trans-
membrane protein 119 (TMEM119) expression, when comparing the 
intermediary versus late Braak stages (P = 1.73 × 10−9; Fig. 3, G to I, 
and fig. S8, C and D). We also observed a significant, albeit less pro-
nounced, decrease in Aβ-proximal SEMA6D expression when com-
paring intermediary versus late Braak stages (P = 0.032; Fig. 3F and 
fig. S8G), suggesting that this signaling is impaired with disease pro-
gression. We observed poor colocalization of PLXNA1 with SEMA6D, 
which could indicate other co-receptors mediate the TREM2-SEMA6D 
interaction. Together, these observations align with our transcrip-
tomics findings and further support our hypothesis that SEMA6D 
induces microglial activation near Aβ plaques and our computa-
tional prediction that the TREM2 transcriptional subnetwork is im-
paired at late AD stages.

SEMA6D induces immune activation in iMGL in a 
TREM2-dependent manner
To elucidate the role of SEMA6D-TREM2 cross-talk in microglial 
function, we used a human iMGL model (40) (fig. S9A and Materials 
and Methods) that expresses established microglial markers by im-
munofluorescence, including TREM2, ionized calcium-binding adap-
tor molecule 1 (IBA-1), and TMEM119 (fig. S9B). In addition, we 
generated TREM2 KO human iPSCs using CRISPR-Cas9 to exam-
ine the role of the SEMA6D-TREM2 signaling axis on microglial 
function (fig. S9C). We verified the loss of TREM2 expression at the 
protein level in the KO cell line by Western blot analysis (fig. S9D). 
By flow cytometry, we verified that the iMGL express key microglial 
markers such as CD11b, CD45, and TREM2 (fig. S9, E to H).

Because microglia regulate brain homeostasis through phagocytic 
activity and modulate neuroinflammation by releasing immune cyto-
kines (41–43), we performed kinetic phagocytosis and cytokine re-
lease assays to verify iMGL function. We demonstrated that iMGL 
phagocytose both pHrodo-labeled human synaptosomes and Aβ 
oligomers, as quantified by fluorescent total integrated intensity 
(fig. S10, A to D). Cytochalasin D was used as a negative control for 
phagocytosis activity (fig. S10D). To determine whether SEMA6D 
can regulate iMGL phagocytic activity and whether this process is 
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TREM2 dependent, we treated WT and TREM2 KO iMGL with re-
combinant SEMA6D protein. We measured the degree of phago-
cytic activity using pHrodo-labeled human synaptosomes as the 
phagocytic cargo. We used human brain-derived synaptosomes as 
the substrate because they are a physiologically relevant microglial 
phagocytic cargo and would not confound our results with any po-
tential innate activating effects from Aβ. In three independent ex-
periments (fig. S11A), we observed increased phagocytosis in WT 
iMGL treated with SEMA6D starting at 6 hours of treatment with 
SEMA6D (1.3-fold change increase at 24 hours relative to untreated, 
P = 0.0035, linear mixed-effects model). In contrast, TREM2 KO 
iMGL treated with SEMA6D had an insignificant increase in phago-
cytosis compared to untreated TREM2 KO cells (1.1-fold change at 
24 hours relative to untreated, P = 0.29; Fig. 4, A and B, and fig. S11A) 

and showed abrogated phagocytosis compared with WT-treated cells. 
In parallel, we analyzed conditioned medium of WT and TREM2 
KO iMGL using a multiplex immunoassay to determine whether 
SEMA6D can regulate iMGL cytokine release. SEMA6D increased 
the secretion of tumor necrosis factor–α (TNF-α) and interleukin-6 
(IL-6) in WT but not TREM2 KO iMGL (WT TNF-α and IL-6, fold 
changes = 1.37 and 3.59, P = 4.58 × 10−5 and 3.11 × 10−5, respec-
tively; Fig. 4C). We replicated the effects of SEMA6D treatment in 
iMGL generated from an independent WT isogenic iPSC line, indi-
cating that the observed effects of SEMA6D treatment in iMGL ac-
tivation were not due to cell line–specific effects (fig. S11, B and C). 
Together, these results indicate that SEMA6D increases iMGL phago-
cytosis and secretion of TNF-α and IL-6 cytokines in a primarily 
TREM2-dependent manner.

Fig. 3. SEMA6D cooccurs with Aβ plaques and TREM2-activated microglia during early AD stages and with Aβ plaques and “homeostatic-like” microglia in late 
AD stages. (A to C), Representative images of cyclic multiplex immunofluorescence imaging of (A) control (B) AD Braak stage IV (ADIV) proximal, and (C) AD Braak stage 
V/VI (ADV/VI) proximal. The cyclic multiplex staining was performed as follows: round 1 (R1): TREM2 (pseudo-yellow), TMEM119 (pseudo-lavender), and PLXNA1 (pseudo-
white); R2: IBA-1 (pseudo-green) and glial fibrillary acidic protein (GFAP; pseudo-blue); R3: Aβ (pseudo-red) and SEMA6D (pseudo-teal); R4: microtubule associated protein 
2 (MAP2; pseudo-pink). Nuclei for all rounds were visualized using Hoechst33342 (gray in the merged image). Scale bars, 50 μm. (D) Cyclic multiplex immunofluorescence 
(IF) experiment workflow. SFG, superior frontal gyrus. (E and F) Quantification of the mean intensity of SEMA6D within individual neurons (MAP2+) comparing controls to 
combined AD proximal and distal (E) and individual ADIV and ADV/VI proximal (F). (G and H) Quantification of the mean intensity of TREM2 within individual microglia/
macrophages (IBA-1+/TMEM119+) comparing controls to combined AD proximal and distal (G) and individual ADIV and ADV/VI proximal (H). (I) Quantification of the mean 
intensity of TMEM119 within individual microglia/macrophages (IBA-1+/TMEM119+) compared to ADIV proximal and ADV/VI proximal. All comparisons were made with 
a Wilcoxon rank sum test using Bonferroni multiple testing correction.
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Fig. 4. SEMA6D treatment induces microglial activation in a TREM2-dependent manner. (A) Phagocytosis of synaptosomes by WT or TREM2 KO iMGL treated with 
SEMA6D (10 µM). y axis shows total well red fluorescent integrated intensity (I.I.). Data were averaged from three independent experiments (shown in fig. S11A); means ± SD. 
(B) Quantification of phagocytosis of synaptosomes by WT or TREM2 KO iMGL treated with SEMA6D at 24 hours. Data represent the three independent experiments 
performed in triplicate; median ± interquartile values at 24 hours. P values were obtained from using a linear mixed-effects model (shown in fig. S11A). (C) Quantification 
of TNF-α and IL-6 in medium from WT or TREM2 KO iMGL treated with SEMA6D (10 μM), using the Mesoscale V-plex neuroinflammation panel. Box plots indicate median 
and interquartile ranges. P values are calculated using linear regression. A.U., arbitrary units. (D) Representative Western blots of p-SYK and total SYK in WT and TREM2 KO 
iMGL treated with SEMA6D (10 μM). β-Actin was the loading control (E) Quantification of p-SYK/total SYK chemiluminescent Western blot analysis, n = 3 (individual repli-
cates shown in fig. S12). (F) Bulk RNA-seq effect size distribution indicating the transcriptional changes induced by SEMA6D treatment in WT and TREM2 KO iMGL. FC, fold 
change; DEGs, differentially expressed genes. (G) Transcriptional changes in the TREM2 cross-talk subnetwork associated with SEMA6D treatment (WT or TREM2 KO versus 
untreated control) or TREM2 KO (TREM2 KO versus WT, no treatment). Only TREM2 subnetwork genes differentially expressed in at least one comparison are included. 
(H) Transcriptional effects of the same conditions across clinically and biologically relevant gene signatures. Background corresponds to 500 randomly selected genes. 
Solid dots correspond to a 1% FDR significance threshold for comparing the effect size distribution to the corresponding background (Mann-Whitney test). (I) Transcrip-
tional effects of the experimental conditions across a representative subset of highly differentially expressed genes from the signatures in (H). (J) Representative confocal 
immunofluorescence of 3D triculture model consisting of differentiated ADAD hNPCs (neuron/glia-GFP, green) and iMGL (IBA-1, red), stained for Aβ (blue). (K) Analysis of 
Aβ40 and Aβ42 expression in conditioned medium of triculture model after 24 hours of pretreatments, followed by 3 hours of co-retreatments. Control IgG (n = 5) and 
SEMA6D (n = 5). Vertical bars, median. Unpaired two-tailed t test.
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TREM2 mediates signaling through the adaptor protein TYROBP 
(DAP12), and the activation of TREM2 results in tyrosine phosphor-
ylation within the immunoreceptor tyrosine-based activation motif 
and subsequent spleen tyrosine kinase (SYK) phosphorylation (44). 
To determine whether SEMA6D activates TREM2 downstream sig-
naling, we analyzed WT and TREM2 KO iMGL protein lysates for 
phosphorylated SYK expression normalized to total SYK expres-
sion. Treatment of WT iMGL with SEMA6D induced a 1.84-fold 
increase in SYK phosphorylation (P = 0.0023), but these effects were 
not observed in TREM2 KO iMGL (P = 0.13; Fig. 4, D and E, and 
fig. S12). These results demonstrate that SEMA6D can directly 
activate TREM2 signaling and suggest that SEMA6D preferential-
ly signals through the TREM2/TYROBP (DAP12) complex in mi-
croglia, although we cannot exclude that SEMA6D simultaneously 
activates other signaling pathways.

To systematically characterize the transcriptional changes induced 
by SEMA6D treatment in iMGL, we generated bulk RNA-seq data 
for the SEMA6D-treated WT and TREM2 KO iMGL and the corre-
sponding untreated controls (fig. S13). We observed significant tran-
scriptional changes associated with TREM2 KO [n = 1408 differentially 
expressed genes at 10% false discovery rate (FDR); fig. S13, A and B]. As 
expected, TREM2 was among the most down-regulated genes in the 
TREM2 KO iMGL (adjusted P = 4.30 × 10−22, rank = 26; fig. S13A). We 
observed robust transcriptional changes in SEMA6D-treated WT 
iMGL but not in SEMA6D-treated TREM2 KO iMGL (n = 2960 and 
153 differentially expressed genes at 10% FDR, respectively; Fig. 4F 
and fig. S13, A and B), consistent with a pivotal role for TREM2 in 
mediating SEMA6D signaling in microglia. To further understand 
how TREM2 mediates this signaling pathway, we focused on the 
TREM2 coexpression cross-talk subnetwork predicted from the 
snRNA-seq data (Fig. 2E). The TREM2 subnetwork had signifi-
cantly lower expression in the untreated TREM2 KO iMGL than 
WT (median log2 fold change = −0.22, adjusted P = 4.76 × 10−4), 
consistent with TREM2 being a key regulator of this subnetwork. 
In line with this interpretation, the TREM2 subnetwork was acti-
vated by SEMA6D treatment in the WT iMGL (median log2 fold 
change = 0.40, adjusted P = 7.50 × 10−3) but significantly less so in 
the TREM2 KO iMGL (median log2 fold change = 0.06, adjusted 
P = 0.040; Fig. 4G). These results are consistent with the TREM2 
signaling pathway being the primary mediator of SEMA6D in mi-
croglia and also suggest that SEMA6D can activate other pathways 
to a lesser extent.

We next analyzed biologically relevant transcriptional signatures 
previously described in microglia to gain further insights into how 
SEMA6D treatment regulates microglial transcriptional programs. 
These included genes up-regulated in Aβ-phagocytosing microglia 
(42) and up-regulated in response to lipopolysaccharide (LPS) treat-
ment (18). As control signatures, we included genes down-regulated 
in another TREM2 KO iMGL dataset (45) and a set of randomly se-
lected genes for which we would not expect concerted transcriptional 
changes (fig. S13, C and D). We observed the most substantial effects 
of SEMA6D treatment in the phagocytosing microglial gene signa-
ture (median log2 fold change = 0.47; Fig. 4H), indicating that 
SEMA6D activates genes involved in phagocytosis in the WT but not 
TREM2 KO iMGL. TREM2, APOE, and RPS19 are among the most 
up-regulated genes by SEMA6D treatment in WT iMGL. These genes 
are either present in the phagocytosing microglial gene signature 
or correspond to genes previously linked to microglial activation 
in AD mouse models (15, 39) (Fig. 4I). Our results indicate that 

SEMA6D-TREM2 cross-talk signaling induces a TREM2-mediated 
cascade of transcriptional events leading to microglial activation.

SEMA6D increases Aβ clearance in a microglia-glia-neuron 
coculture model harboring pathogenic ADAD mutations
To investigate the role of SEMA6D on microglial Aβ clearance, we 
used a three-dimensional (3D) neuron-astrocyte-microglia tricul-
ture model that recapitulates AD pathology in vitro (46–48). We 
differentiated ReNcell VM human neural progenitor cells (hNPCs), 
which stably express green fluorescent protein (GFP) and the ADAD 
mutations APP K670N/M671L, APP V717I, and PSEN1 ΔE9 (ADAD 
hNPCs) in a 3D hydrogel (Matrigel) culture. Then, we added fully 
differentiated iMGL to the 3D-differentiated ADAD hNPCs after 
4 to 6 weeks. The ADAD hNPCs differentiated into neural and 
glial cell 3D cultures, showing robust accumulation of Aβ species 
in 3D gels and microglia, detected by immunofluorescence (Fig. 4J 
and fig. S14A) and increased Aβ expression levels in conditioned 
medium (Fig. 4K).

After ADAD hNPC differentiation, we introduced iMGL to the 
3D culture to determine the effects of SEMA6D on iMGL clearance 
of Aβ from the medium. We pretreated iMGL for 3 hours with ei-
ther immunoglobulin G (IgG) Fc (control; 10 µM) or SEMA6D Fc 
(SEMA6D; 10 µM) and continued treatment for 3 hours after the intro-
duction of iMGL to the 3D triculture. We did not observe changes in 
cell viability in this model (fig. S14, B and C). Confocal microscopy 
suggested Aβ uptake by iMGL as Aβ expression (anti-Aβ) colocal-
ized with iMGL (anti–IBA1) (Fig. 4J). We quantified Aβ40 and Aβ42 
in the conditioned medium by electrochemiluminescent immunoas-
say (Meso Scale Diagnostics). In line with our other observations, we 
found that SEMA6D decreased both Aβ40 and Aβ42 in the medium 
(Aβ40 and Aβ42, fold changes = 0.72 and 0.70, P = 0.03 and 0.04, 
respectively), suggesting that SEMA6D increases Aβ clearance by 
iMGL, likely by phagocytosis of soluble Aβ (Fig. 4K).

Together, our results demonstrate that SEMA6D induces a clini-
cally relevant phenotype in this 3D human cellular model that reca-
pitulates AD pathogenesis. These results are consistent with our spatial 
transcriptomics and cyclic multiplex immunofluorescent imaging 
findings in human AD brains.

SEMA6D is associated with AD progression in 
independent cohorts
To further validate our findings in independent datasets, we ana-
lyzed SEMA6D expression patterns in two large-scale single-nucleus 
transcriptomic studies from the Religious Orders Study/Memory 
and Aging Project (ROSMAP) and the Seattle Alzheimer's Disease 
Brain Cell Atlas (SEA-AD) (49, 50) (fig. S15). Consistent with our 
observations, SEMA6D showed the highest expression in neuronal 
populations and was also detected at lower expression levels across 
multiple cell types (fig. S15, A and B). This heterogeneous expres-
sion pattern underscores the complex cellular origin of SEMA6D in 
the brain. When analyzing SEMA6D expression across disease pro-
gression, we observed significant positive associations with AD pa-
thology in inhibitory (P = 4.4 × 10−3 in SEA-AD, P = 4.87 × 10−10 
in ROSMAP) and excitatory (P = 1.76 × 10−3 in ROSMAP) neuro-
nal populations (fig. S15, C to E).

These results from independent cohorts are consistent with our 
findings that SEMA6D signaling is implicated in AD pathophysiol-
ogy. Further, they support that SEMA6D-TREM2 signaling represents 
a crucial microglial activation pathway in AD pathology.
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DISCUSSION
In this study, we leveraged single-nucleus gene expression profiles 
from a diverse cohort of brain donors to systematically dissect the 
contribution of cross-cellular signaling (cellular cross-talk) networks 
to AD. Our data-driven approach to identifying cross-talk interac-
tions and reconstructing their corresponding downstream pathways 
provides additional evidence that disrupted cellular cross-talk net-
works contribute to neurodegeneration. A main finding from our 
study is that a major portion of AD risk genes is either directly in-
volved in cross-talk interactions or immediately downstream of 
cross-talk interactions involving microglia. These results highlight 
the difficulty of characterizing the prominent role of microglia in 
AD, given that the integration of complex signals originating in 
other brain cell types is core to their function. Specifically, our re-
sults support that dysregulation of the intricate signaling between 
neurons and microglia is linked to AD progression. Therefore, fo-
cusing on cellular cross-talk networks provides further functional 
context to understand the biology of genes associated with AD risk 
in a cell-autonomous and nonautonomous manner.

Among the interactions we detected between neurons and mi-
croglia, we identified a functional link between neuronal SEMA6D 
and microglial TREM2. Semaphorins and their receptors regulate 
immune cell function and are genetically and functionally impli-
cated in AD (51, 52). In the brain, semaphorin signaling was ini-
tially described as a mediator of axon guidance by the plexin family 
of receptors (53). However, a growing body of evidence indicates 
that these molecules are involved in immune responses (5, 29, 54–
57). The role of SEMA6D in immune activation was described in 
a study showing that SEMA6D induces activation of bone mar-
row–derived macrophages in a TREM2- and PLXNA1-dependent 
manner through the activation of DAP12, consistent with the for-
mation of a complex (29, 58, 59). Additional studies also linked 
semaphorin signaling to immune activation and neurodegeneration 
(5, 55, 57, 60, 61). Despite the role of SEMA6D in TREM2-dependent 
immune activation of peripheral myeloid cells being described almost 
2 decades ago (which allowed us to computationally test this interac-
tion in the first place) and the well-established role of TREM2 in AD 
genetic risk, there is a notable gap of understanding regarding this 
signaling pathway in the context of microglia and AD.

By leveraging iMGL, we demonstrated that SEMA6D signaling 
induces a TREM2-dependent microglial activation phenotype marked 
by increased cytokine release and Aβ phagocytosis, as evidenced 
by our 3D triculture brain model. Furthermore, SEMA6D-treated 
iMGL are transcriptionally similar to Aβ-phagocytosing microglia 
(42). In human brains, our observation that the TREM2 coexpres-
sion subnetwork is activated in the proximity of Aβ plaques and 
SEMA6D-expressing cells, combined with our observation that the 
transcriptional networks upstream and downstream of the SEMA6D-
TREM2 interaction are down-regulated in late AD stages, suggest 
that loss of this interaction exacerbates the deleterious processes oc-
curring in the later stages of this disease. This hypothesis is sup-
ported by our multiplex immunofluorescence on human AD brains, 
which showed that SEMA6D is almost exclusively detected near Aβ 
plaques and TREM2-activated microglia, and plaque-proximal mi-
croglia switch to a homeostatic-like state at later disease stages, con-
sistent with a recently described “exhausted” microglial subtype (62).

A previous study showed that SEMA6D promotes peripheral 
dendritic cell activation and osteoclast differentiation through the 
receptor complex harboring PLXNA1 and TREM2 (29). Thus, it is 

conceivable that SEMA6D functions as a natural ligand for the PLXNA1/
TREM2 co-receptor and enhances TREM2 signaling in human mi-
croglia. Therefore, SEMA6D could influence functional properties 
by stimulating TREM2-dependent intracellular signaling and in-
ducing the TREM2 gene expression network. However, other 
studies described how SEMA6D also regulates lipid metabolism and 
polarization of macrophages through the interaction with another 
plexin, PLXNA4 (54, 55). PLXNA4 coding variants have been linked 
to AD risk (55, 63) and found to modulate amyloid and tau pathol-
ogy (60). Thus, semaphorin-plexin signaling may play a fundamen-
tal role in regulating the functional interactions with microglia and 
other cell types and may be perturbed in AD. Given that we observed 
a small subset of transcriptional changes in iMGL associated with 
SEMA6D treatment in the absence of TREM2, it is possible that other 
proteins, such as PLXNA4, act as secondary SEMA6D receptors in mi-
croglia. This alternative receptor hypothesis is further supported by 
the poor colocalization between PLXNA1 and TREM2 in the multi-
plex immunofluorescence on human brains, which suggests that 
TREM2-dependent microglial activation by SEMA6D can be achieved 
independently of PLXNA1. Therefore, future studies must determine 
the complete network of proteins mediating SEMA6D cross-talk in 
microglia.

Although this study focused on a restricted subset of cross-talk 
interactions involving microglia and neurons, our systematic charac-
terization of cellular cross-talk signaling patterns identified thousands 
of candidate interactions involving all brain cell types represented in 
our snRNA-seq data. Several of these interactions warrant further 
investigation. For example, the interleukin receptor IL-1RAP has 
been previously implicated in genetic studies of AD endophenotypes 
(3, 64–66), and the contribution of IL-1 signaling to neurodegenera-
tive diseases is well established (67–69). In line with these studies, we 
identified the IL1RAP subnetwork in microglia as the most negatively 
associated with high Braak stages (table S6). These results suggest that 
the IL-1 signaling pathway disruption is likely involved in AD pro-
gression. More broadly, the IL-1RAP case highlights that the contin-
ued exploration of brain cross-talk networks identified in this study 
will yield valuable biological insights into AD biology.

Our study has limitations: Our single-cell transcriptomics analyses 
implicated neurons as the primary partners for microglia regarding 
the SEMA6D-TREM2 cross-talk interaction. However, we also ob-
served SEMA6D expression to a lesser extent in non-neuronal cell 
types. Our multiplex immunofluorescence imaging studies could 
not rule out that other cell types are also associated with Aβ-proximal 
SEMA6D in human brains. Whereas we primarily quantified SEMA6D 
in neurons, we acknowledge that SEMA6D may also be expressed in 
other cell types near Aβ plaques, including astrocytes and poten-
tially microglia. We note that our in vitro experiments used exoge-
nous SEMA6D. Thus, additional experiments will be required to 
directly demonstrate neuron-microglia cross-talk, possibly through 
conditional expression of SEMA6D in neurons. To mitigate this 
limitation, we relied on the convergence of multiple independent 
methods, including snRNA-seq, spatial transcriptomics, and func-
tional validation in TREM2 KO cell lines to support our conclusions. 
Further experimental studies, including high-resolution immu-
nostaining of neuronal projections and cell-sorting approaches, are 
necessary to unambiguously determine the primary cell types con-
tributing to SEMA6D-TREM2 signaling in microglia and fully char-
acterize the cellular sources of plaque-associated SEMA6D in human 
AD brain tissue. Nevertheless, the consistent spatial association of 
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SEMA6D with Aβ plaques across multiple brain samples and our 
in vitro experiments demonstrating that exogenous SEMA6D can 
induce TREM2-dependent microglial activation provide compel-
ling evidence for the involvement of this signaling pathway in 
AD pathophysiology.

Another limitation of our study is its reliance on existing data-
bases of curated cross-talk interactions, which exclude interactions 
not yet reported in the literature. Moreover, our transcriptomics-
based approach may overlook cellular communication mediated by 
molecules synthesized through complex biochemical pathways lack-
ing canonical ligand genes (lipids and some neurotransmitters) or 
not relying on a specific receptor in the conventional sense (nitric 
oxide signaling). Lastly, our understanding of the genetic risk of AD 
and other neuropsychiatric traits is incomplete. This knowledge gap 
hinders the discovery of yet-unknown risk genes and their corre-
sponding cross-talk networks, precluding a complete characteriza-
tion of the role of cellular cross-talk in neurodegeneration. Despite 
these constraints, our results indicate that a systematic characteriza-
tion of cellular cross-talk networks can provide valuable insights 
into the biology of neurodegenerative diseases, potentially aiding in 
identifying new therapeutic targets. Given our findings, we advocate 
for developing new high-throughput assays to systematically iden-
tify cell-to-cell communication pathways.

Last, we identified unique cross-talk enrichment patterns for genes 
found in genetic studies of other neurological or neuropsychiatric 
traits. This result underscores the integral role of cellular cross-talk 
in normal brain physiology and suggests that acknowledging this 
regulatory layer will aid in understanding how candidate disease 
risk genes fit into broader biological pathways. Together, our find-
ings strongly support that the systematic characterization of cellular 
cross-talk networks is a viable strategy for gaining insight into the 
biology of neurodegenerative diseases and nominating targets for 
future therapies.

MATERIALS AND METHODS
Study design
This study aimed to identify dysregulated signaling pathways in AD 
and potential therapeutic targets by analyzing snRNA-seq data from 
human brains using computational approaches, followed by valida-
tion using spatial transcriptomics, immunofluorescence imaging, 
and functional experiments in iMGL. Key treatments included treat-
ing WT and TREM2 KO microglia with SEMA6D, with measure-
ments of phagocytic activity, cytokine release, gene expression, and 
protein phosphorylation to assess microglial activation and Aβ clear-
ance, using sample sizes from established protocols in the literature 
without randomization or blinding. Human postmortem samples 
were previously obtained with informed consent for research use 
approved by the review board of Washington University in St. Louis, 
and neuropathological changes were assessed according to the National 
Institute on Aging-Alzheimer’s Association criteria, with demographic, 
clinical severity, and neuropathological information available in our 
original study (14).

Statistical analyses
Statistical analyses were performed using R and GraphPad Prism. 
All tests were two sided, with P < 0.05 considered significant unless 
noted otherwise. Detailed statistical approaches for each analysis are 
provided in the Supplementary Materials.

Supplementary Materials
The PDF file includes:
Materials and Methods
Figs. S1 to S15
References (70–103)

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S7
Data file S1
MDAR Reproducibility Checklist
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