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Recent attention has been given to topological data analysis (TDA), and more specifically persistent homology 

(PH), to identify the underlying shape of brain network connectivity beyond simple edge pairings by computing 

connective components across different connectivity thresholds (see Sizemore et al., 2019 ). In the present study, 

we applied PH to task-based functional connectivity, computing 0-dimension Betti (B 0 ) curves and calculating 

the area under these curves (AUC); AUC indicates how quickly a single connected component is formed across 

correlation filtration thresholds, with lower values interpreted as potentially analogous to lower whole-brain 

system segregation (e.g., Gracia-Tabuenca et al., 2020 ). One hundred sixty-three participants from the Reference 

Ability Neural Network (RANN) longitudinal lifespan cohort (age 20–80 years) were tested in-scanner at baseline 

and five-year follow-up on a battery of tests comprising four domains of cognition (i.e., Stern et al., 2014 ). 

We tested for 1.) age-related change in the AUC of the B 0 curve over time, 2.) the predictive utility of AUC 

in accounting for longitudinal change in behavioral performance and 3.) compared system segregation to the 

PH approach. Results demonstrated longitudinal age-related decreases in AUC for Fluid Reasoning, with these 

decreases predicting longitudinal declines in cognition, even after controlling for demographic and brain integrity 

factors; moreover, change in AUC partially mediated the effect of age on change in cognitive performance. System 

segregation also significantly decreased with age in three of the four cognitive domains but did not predict change 

in cognition. These results argue for greater application of TDA to the study of aging. 
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. Introduction 

Neuroimaging techniques have permitted the investigation of net-

ork dynamics in the brain, revealing synchronous patterns of neural

ctivity between structurally-distinct but functionally-related regions

 Sporns, 2013 ; Van Den Heuvel and Pol, 2010 ). To date, one of the

ain theoretical frameworks applied to the study of brain networks is

raph theory ( Rubinov and Sporns, 2010 ; Fornito et al., 2013 ). In this

ramework, a vertex (i.e., node) represents a specific brain region and

n edge represents the link between pairs of vertices; this link is typi-

ally operationalized by Pearson’s correlation to capture the linear sta-

istical dependency between temporal signals that are measured from

natomically distinct brain regions. Functional connectivity (FC) mea-

ured at rest has revealed that when these correlations are computed

cross multiple areas, the brain forms a complex large-scale network or-

anization with modular architecture, where high segregation between
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E-mail addresses: gla2116@cumc.columbia.edu , ch629@columbia.edu (C. Habeck

ttps://doi.org/10.1016/j.neuroimage.2023.120237 . 

eceived 12 May 2023; Accepted 18 June 2023 

vailable online 19 June 2023. 

053-8119/© 2023 The Authors. Published by Elsevier Inc. This is an open access ar
odules (i.e., systems) supports healthy brain function (see Sporns and

etzel, 2016 ). However, the graph theoretic approach to network analy-

is comes with certain caveats. One potential limitation is that some met-

ic calculations rely on network definitions contingent upon the parcel-

ation scheme utilized; these schemes have spanned multiple approaches

ithout formal consensus of connectome. Furthermore, analysis is often

imes limited to pairwise comparisons between edges, potentially over-

ooking broader dynamics across brain regions. Although other analytic

echniques exist to circumvent this issue, such as network-based statis-

ics or graph neural networks, the choice of analysis still largely com-

rises pairwise comparisons. Finally, graph-theoretical analyses have of-

en adopted threshold selection to identify connections that are strong

nough to constitute an edge in a binary graph (see Fornito et al.,

013 ) while more recent approaches have been adapted to allow for

eighted and directional graphs. Considering network dynamics at dif-

erent resolutions, network measures that rely on thresholding at a single
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orrelation value to sparsify the network make strong a priori assump-

ions about the edge strength above which relevant information is car-

ied and potentially restricts the rich network dynamics when attempt-

ng to capture individual- or group-level differences. To address these

nd other concerns, recent work has attempted to apply principles from

lgebraic topology to gain a better understanding of network dynamics

ithout being constrained by arbitrary parameter selection and where

he higher-order structure can be addressed beyond mere pairwise con-

ections ( Carlsson, 2020 ; Batteston et al., 2020). 

Topological data analysis (TDA) is a tool for studying the underly-

ng shape of high-dimensional data, beyond simple pairings of its con-

tituent parts, in order to identify low-dimensional structures (Carlsson,

009). Given the complex structure and graph-like behavior of brain

onnectivity, TDA applied to brain network analysis has gained trac-

ion in recent years (for a review of the method, see Caputi et al., 2021 ;

ullmore and Sporns, 2009 ). One prominent tool adopted in TDA to-

ards the study of brain networks is persistent homology (PH; Lee et al.,

011 ). The PH approach allows for the computation of topological fea-

ures of data that persist across different resolutions ( Ghrist, 2008 ).

hese low-dimension topological features can be in different forms;

or example, 0-dimension would represent connected components, 1-

imension would represent loops, and 2-dimension would represent

oids. Data is considered to be a “point cloud ” of n points (e.g., nodes

cattered in space) where, in the case of 0-dimension, the number of

onnected components across these different resolutions, or filtration

hresholds (e.g., edge density, correlation values, etc.) is calculated. As

reviously mentioned, PH is effective at circumventing threshold selec-

ion as features of the network are considered across multiple filtration

hresholds ( Caputi et al., 2021 ; Guerra et al., 2021 ; Lord et al., 2016 ;

etri et al., 2014 ) and has been utilized to quantify and visualize the evo-

ution of brain networks ( Stolz et al., 2021 ; Gracia-Tabuenca et al., 2020 ;

izemore et al., 2018 ; Lee et al., 2017 ). The consideration of multiple

ltration thresholds is different from sparsifying a matrix based on a sin-

le edge-weight threshold in that it captures how network configuration

hanges over all possible thresholds in a principled way. In the current

aper, we consider 0-dimension connected components of task-based

C data, which translates to 0-dimensional simplicial complexes, and

hus only considers the number of components formed between nodes.

he number of connected components is tracked across each filtration

hreshold and refers to the Betti-0 number (B 0 ), which is the number of

ets of nodes connected by a sequence of edges (for an extensive review

nd TDA application to neuroscience, see Sizemore et al., 2019 ). To reit-

rate, in the simplest sense, the Betti-0 number at any given threshold is

 measure of the number of connected components of the graph and thus

aptures the same information as the number of connected components.

owever, one major focus of PH is to capture the relevant topological

eatures of a network over multiple scales or thresholding values. Prior

ork has utilized B 0 curves, which are constructed from the B 0 num-

ers that result from stepwise increases in filtration threshold, to study

unctional alterations between healthy controls and patient populations

 Gracia-Tabuenca et al., 2020 ; Stolz et al., 2021 ). Plotting B 0 against

ltration values, Gracia-Tabuenca et al. (2020) calculated the area un-

er the B 0 curve (AUC) of resting-state FC, revealing attentional deficit

yperactivity disorder (ADHD)-related reductions in AUC. In principle,

ower AUC should reflect overall fewer connected components as forma-

ion of the network into a single connected component requires fewer

terations across thresholds. One interpretation of lower values of AUC is

hat the brain may be engaged in less specialized information processing

s interconnectivity is increased, and may thus reflect lower segregation,

s the brain topology more quickly transitions to a single component. 

In the present paper, we were interested in investigating age-related

ifferences in the AUC of B 0 when we apply PH to task-based FC. Re-

earch has shown that aging is typically linked to a decrease in segre-

ation of functional brain systems ( Varangis et al., 2019 ; Betzel et al.,

014 ), with this reduction linked to declines in cognition ( Chan et al.,

021 ; Zonneveld et al., 2019 ; King et al., 2018 ; Chan et al., 2014 ).
2 
dditionally, a recent literature review of network measures that un-

ergo changes across the lifespan utilized a certainty of evidence method

o score reliability of findings across studies and found that age-related

eclines in functional segregation presents consistently and with high

ertainty. Therefore, we were also interested in comparing potential age-

elated differences in the AUC of B 0 to functional network segregation in

 longitudinal lifespan cohort. Longitudinal functional connectivity and

ehavioral data was collected from 163 participants tested in-scanner

n four domains of cognition (i.e., reference abilities; RA) thought to

omprise the breadth of age-related cognitive changes ( Salthouse, 2009 ;

althouse and Ferrer-Caja, 2003 ). A critical component to network neu-

oscience is understanding the complex link between network structure

nd behavior, with several methodologies having emerged to couple

etwork analyses at the brain and behavioral levels ( Blanken et al.,

021 ). Therefore, our primary goal was to investigate how age-related

ifferences in AUC might relate to behavioral task performance. As

educed AUC of B 0 has been observed in ADHD patients, potentially

uggesting reduced segregation ( Gracia-Tabuenca et al., 2020 ), we hy-

othesize that age should be linked with lower AUC and should re-

ate to decreases in behavioral performance in some domains. TDA

pplications to network neuroscience is a recently burgeoning field,

ith emerging links between brain topology and behavioral features.

nderson et al. (2018) used PH to reveal a significant relationship be-

ween the temporal duration of topological features of dimension-0 and

ognition in brain regions that are known substrates for these cognitive

rocesses. However, we also wish to underscore the novelty of our study

n that, while most studies have applied PH methods to resting-state FC,

o the best of our knowledge, few have applied PH methods to task-

ased FC as is done here; moreover, we investigate longitudinal changes

n network topology with the additional gain of relating this change to

ognitive outcomes. Therefore, while our hypotheses are grounded in

nd guided by the existing literature, we refrain from forming strong a

riori assumptions. 

We also sought to compare longitudinal change in whole-brain sys-

em segregation to the PH approach, with particular focus on their utility

n predicting cognitive change. In both analyses, we also considered a

ongitudinal measure of brain integrity (i.e., cortical thickness), which

as been shown to decline throughout the lifespan ( Fjell et al., 2015 ) and

redict cognitive performance ( Dominguez et al., 2021 ); cross-sectional

ork from our lab has also shown negative age associations with corti-

al thickness (CT) as well as revealing a complex relationship between

T and other demographic factors ( Habeck et al., 2020 ). In addition, we

onsidered total volume of white matter hyperintensities (WMH), which

re lesions of presumed vascular origin that is a surrogate biomarker

f cognitive decline (for a systematic review, see Debette et al., 2010 ;

eary et al., 2003 ; Cees De Groot et al., 2000 ). Prior cross-sectional

ork in our lab has shown significant correlations between WMH total

olume and behavioral performance in two reference abilities, namely

rocessing speed and memory ( Moura et al., 2019 ). Here we consider

ongitudinal change in WMH total volume from baseline to follow-up. 

. Methods 

.1. Participants 

One hundred sixty-three native English speaking, right-handed (Old-

eld Edinburgh Handedness Inventory; Oldfield, 1971) adults (age =
0.98 ± 16.53; range = 20 - 80 years), tested at two time points —

aseline and 5-year follow-up — were included in the analysis. Partic-

pants were part of the Reference Ability Neural Network (RANN) co-

ort, which is a community-based cohort from the greater New York

rea. As we wished to maximize participant inclusion, we did not re-

trict our sample to participants who completed all 12 tasks of our

esign; each domain was treated separately and participants were re-

uired to have completed at least one task for each domain in a given

esting session. The amount of data that is available may thus differ
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Table 1a 

Participant demographics divided by decade of life. 

Age Bracket N Sex Age NART Education 

Male Female Mean SD Mean SD Mean SD 

20–29 years 22 8 14 25.68 2.7 113.43 7.99 15.27 1.96 

30–39 years 27 11 16 34.8 2.94 111.99 7.61 16.78 2.78 

40–49 years 24 14 10 44.58 2.7 117.11 8.71 16 2.57 

50–59 years 25 10 15 54.2 3.24 120.24 6.23 16.2 1.96 

60–69 years 42 24 18 64.76 2.58 118.74 7.83 16 2.43 

70–80 years 23 11 12 73.74 2.49 121.62 6.23 17.7 2.48 

Table 1b 

Available data for each domain in addition to root mean square (RMS) estimates of motion artifact. 

Mem Fluid Speed Vocab 

BL FU D BL FU D BL FU D BL FU D 

fMRI 159 157 154 159 153 150 162 158 157 160 152 150 

Behavior 157 156 150 159 159 155 155 149 141 153 153 143 

fMRI RMS .375 .428 .08 .553 .67 .12 .381 .518 .136 .511 .544 .042 

Total number of data points (fMRI scans or behavioral performance scores) available per domain. In 

addition, we report the mean RMS values denoting motion artifact. 
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epending on domain and data type. For a list of participant demograph-

cs divided by decade of life, see Table 1a ; for a list of the number of

ata points available for each domain, see Table 1b . Participants were

ecruited via random-market-mailing. All participants were screened for

erious psychiatric or medical conditions, poor hearing and vision, and

ny other impediments that could hinder MRI acquisition; in addition,

lder participants were screened for dementia and mild cognitive im-

airment using the Dementia Rating Scale (DRS; Mattis, 1988) at both

ime points. All participants had less than 30% of their data "scrubbed,"

s explained in Section 2.2.3 . fMRI Data Preprocessing . 

.2. Procedure 

FMRI data was acquired from participants as they performed 12 com-

uterized cognitive tasks in scanner, each relating to one of four refer-

nce abilities (RA; Stern et al., 2014 ), at two time points (baseline and

-year follow-up). At each testing time point, participants completed the

attery of tasks over two sessions, each lasting for approximately 2 h and

ontaining six of the 12 tasks belonging to two of the four RAs. The order

f the two sessions was counterbalanced across participants, with tasks

ithin each reference domain being presented in a fixed order. Prior to

ach scanning session, participants were familiarized with the six tasks

elevant to the current session during an out-of-scanner training session,

hich was performed on a laptop computer. The mode of response for

ll but one task was keyboard button press; the picture-naming task used

n oral response. Training sessions were self-paced, with breaks taken

s needed, and participants were given the option of repeating the train-

ng session if desired. Assessment of task comprehension was made by

 trained research assistant, with judgment based on participant’s sub-

ective comfort with task completion. In a separate session, participants

lso completed a neuropsychological battery; however, results from this

attery will not be addressed in the current paper. 

.2.1. Stimulus presentation 

Stimuli were back-projected onto an LCD monitor positioned at the

nd of the scanner bore. Participants viewed the screen via a tilted mir-

or system that was mounted on the head coil. When needed, vision

as corrected-to-normal using MR compatible glasses (manufactured

y SafeVision, LLC. Webster Groves, MO). Responses were made on a

UMItouch response system (Photon Control Company). E-Prime v2.08,

perating on PC platform, was used for stimulus delivery and data col-

ection. Task onset was electronically synchronized with the MRI acqui-

ition device. 
3 
.2.2. Reference ability (RA) in-scanner tasks 

Twelve cognitive tasks, each belonging to one of four reference do-

ains, were presented in-scanner (for a complete description of task de-

ails, see Stern et al., 2014 ). For all tasks, with the exception of picture

aming, responses were made via button press; picture naming, instead,

equired a vocal response. For episodic memory, fluid reasoning, and

ocabulary domains, accuracy- measured as the proportion of correct

rials to total trials included- was analyzed for each task. For the pro-

essing speed domain, RT data was analyzed for each task on accurate

rials only. For the remainder of the document, an abbreviated version

or each reference ability will be used: episodic memory − MEM, fluid

easoning − FLUID, processing speed − SPEED, and vocabulary − VOCAB.

e also will interchangeably use the terms “domain ” and “reference

bility ” to refer to our RAs. For the MEM domain, both study and test

hases were scanned together and were not separated in the analysis.

he tasks included were Logical Memory, Word Order Recognition, and

aired Associates. For the FLUID domain, the tasks included were Ma-

rix Reasoning (adapted from Raven (1962)), Letter Sets ( Ekstrom et al.,

976 ), and Paper Folding ( Ekstrom et al., 1976 ). For the SPEED domain,

he tasks included were Digit Symbol (adapted from Salthouse, 1998 ),

etter Comparison ( Salthouse and Babcock, 1991 ), and Pattern Compar-

son ( Salthouse and Babcock, 1991 ). For the VOCAB domain, the tasks

ncluded were Antonyms ( Salthouse and Kersten, 1993 ), Picture Nam-

ng, and Synonyms ( Salthouse and Kersten, 1993 ). 

.2.3. fMRI data acquisition 

Image acquisition was performed using a 3T Philips Achieva Mag-

et. Participants performed 12 fMRI tasks over the course of two, 2-hour

R imaging sessions; the same procedure was followed at both baseline

nd again at 5-year follow-up. At the onset of each session, a scout T1-

eighted image was acquired to determine participant position. A T1-

eighted MPRAGE scan was performed to capture participants’ brain

tructure, with the following parameters: TE/TR of 3/6.5 ms, flip an-

le of 8°, in-plane resolution of 256 × 256 voxels, field of view (FOV)

f 25.4 × 25.4 cm, and 165–180 slices in the axial direction with a

lice-thickness/gap of 1/0 mm. All scans used a 240 mm field of view.

or the EPI acquisition, the following parameters were used: TE/TR

f 20/2000 ms, flip angle of 72°, in-plane resolution of 112 × 112

oxels, and a slice thickness/gap of 3/0 mm. For FLAIR scan acquisi-

ion, the following parameters were used: 11,000 ms TR, 2800 ms TE,

56 ×189 voxels in-plane resolution, 23 ×17.96 FOV, and 30 slices with

lice-thickness/gap of 4/0.5 mm. This sequence was utilized to quantify
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he white matter hyperintensities volumes. A neuroradiologist examined

ach participant’s scan for abnormality and any significant findings were

eported to the participant’s primary care physician. 

.2.4. fMRI data processing 

Images were preprocessed using an in-house developed native space

ethod ( Razlighi et al., 2014 ). Briefly, the preprocessing pipeline first

nvolved participant-level histogram computation for each volume for

oise detection ( Woolrich et al., 2001 ). Motion correction (MCFLIRT)

as performed using the FSL package ( Jenkinson et al., 2002 ), fol-

owed by slice-timing correction. All volumes were registered (6 df, 256

ins mutual information, and sinc interpolation) to the middle volume.

rame-wise displacement (FWD), as described in Power et al. (2012) ,

as calculated from the six motion parameters and root mean square

ifference (RMSD) of the BOLD percentage signal in the consecutive

olumes. To be conservative, the RMSD threshold was lowered to 0.3%

rom the suggested 0.5%. Contaminated volumes were then detected

y the criteria FWD > 0.5 mm or RMSD > 0.3% and replaced with

ew volumes generated by linear interpolation of adjacent volumes. The

ample means of the root mean square values of the detrended realign-

ent estimates for characterizing motion artifact ( Power et al., 2014 )

re reported in Table 1b . The percentage of new volumes generated (i.e.,

crubbing ) was tracked and considered as an inclusion criterion before re-

ression analyses. Volume replacement was performed before temporal

ltering ( Carp, 2013 ). Flsmaths–bptf ( Jenkinson et al., 2002 ) was used

o pass motion-corrected signals through a bandpass filter with cut-off

requencies of 0.01 and 0.09 Hz. Finally, the processed data was residu-

lized by regressing out the FWD, RMSD, left and right hemisphere white

atter, and lateral ventricular signals ( Birn et al., 2006 ). Task-unique

ffects were decidedly not regressed out of the functional connectivity

ime series because we wanted to ensure that removal of task-induced

ffects did not remove potential task-relevant information. While some

tudies have encouraged regressing out activations associated with task

e.g., Cole et al., 2019 ), other studies have suggested that task-induced

hanges may provide relevant information about task performance (see

reene et al., 2020 ). It has been suggested that removing task-related

ffects and computing correlations based on the ensuing residuals may

e capturing more random fluctuations attributable to neither exper-

mental design nor noise. Additionally, our analytic design relies on

mnibus whole-brain analyses where no claims are being made as to

pecific task-related regions of activation, where region-to-region coac-

ivations could arguably be meaningfully sensitive to stimulus effects,

or instance. However, in light of the controversy surrounding potential

ask-induced effects that could meaningfully impact findings, we also

reated a second dataset where we regressed out the design matrix from

he time series and performed subsequent analyses on the regressed time

eries. In anticipation of our findings, the main results were not signifi-

antly altered between differential treatment of the time series and the

esults from the task-regressed time series analysis, specifically for the

luid Reasoning domain, is reported in the supplementary material sec-

ion (see Supplementary Material Table ST3 ). 

.2.5. Functional connectivity 

T1 image segmentation was performed using FreeSurfer ( Dale et al.,

999 ). The coordinates of 264 putative functional nodes, comprising

4 networks derived from a network partition scheme developed by

ower et al. (2011) , were transferred to each participant’s T1 space via

on-linear registration of the participant’s structural scan to the MNI

emplate using the ANTS software package. Next, a 10 mm diameter

pherical mask, centered at each transferred coordinate, was generated,

nd intersected with the FreeSurfer gray matter mask in order to ob-

ain the ROI mask for the 264 functional nodes. An intermodal, intra-

ubject, rigid-body registration of fMRI reference image and T1 scan

as performed with FLIRT with 6 degrees of freedom, normalized mu-

ual information as the cost function ( Jenkinson and Smith, 2001 ), and
4 
sed to transfer all ROI masks from T1 space to fMRI space. These trans-

erred ROI masks were then used to average all the voxels within each

ask to obtain a single fMRI time-series for each node. Pearson correla-

ions were then performed for all pairwise combinations. This resulted

n 264 ×263/2 = 34,716 fMRI connectivity pairs. 

Given the differing nature of the task, the length of the time-

eries varied for each. The following represents the number of TRs

1 TR = 2000 ms) per task: MEM: Log_Mem- 210, Word_Order- 208,

air_Assoc- 99; FLUID: Mat_Reason- 430, Letter_Sets- 430, Paper_Fold-

30; SPEED: Digit_Sym- 210, Letter_Comp- 195, Pattern_Comp- 190; VO-

AB: Antonyms- 194, Pic_Name- 190, Synonyms- 194. 

.2.6. White matter hyperintensities 

FLAIR images were processed and white matter hyperintensities

WMH) segmented through a fully automatic supervised machine learn-

ng technique ( Ithapu et al., 2014 ). In brief, this method utilizes random

orest-based regression models to obtain a voxel-level class-specific la-

eling of the image. The final segmentation is a probability map between

0, 1), which denotes the likelihood that a given voxel is hyperintense,

llowing for the calculation per subject of a normalized effective WMH

olume. Additionally, periventricular and deep hyperintensity accumu-

ations were separated using a ventricular template derived from the

erebral spinal fluid partial volume estimates to improve classification.

hite matter hyperintensity volume was defined as the sum of the la-

eled voxels multiplied by voxel dimensions. Each FLAIR sequence with

 total WMH volume above 1000 mm 

3 was manually inspected to ensure

hat there were no visible discrepancies. 

.2.7. Cortical thickness 

Utilizing each participant’s T1-weighted MPRAGE image, cortical

hickness measures were derived using the FreeSurfer (v5.1.0) soft-

are package ( http://surfer.nmr.mgh.harvard.edu/ ). Although the es-

imation was automatically-generated, gray and white matter segmen-

ation and spatial registration was manually checked based on the guide-

ines outlined in Fjell et al. (2009) . 

As we were dealing with longitudinal data from two time points, im-

ges were processed using the longitudinal stream ( Reuter et al., 2012 ).

pecifically, an unbiased within-subject template space and image is cre-

ted using inverse consistent registration (Reuter et al., 2010). All pro-

essing steps are then initialized utilizing common information from the

ithin-subject template, which has been shown to increase reliability

nd statistical power ( Reuter et al., 2012 ). To obtain cortical thickness

stimates, the gray/white matter boundary and cortical surface were

rst reconstructed ( Dale et al., 1999 ). Next, at each point across the

ortical mantle, measurements were calculated as the closest distance

rom the gray/white matter boundary to the gray matter. Mean cortical

hickness was then derived across the entire cortical surface, yielding a

ingle value. 

.3. Analytic approach 

Topological data analytic measures were calculated using custom-

ritten Python code (i.e., version 3) in conjunction with a TDA tutorial

reated by Centeno et al. (2022) . Brain segregation and regression mod-

ls were analyzed using custom-written MATLAB® codes (Mathworks,

atick, Massachussets, USA). For post-hoc analysis, a measure of modu-

arity Q (explained in 2.3.2. Network measures) was obtained using the

rain Connectivity Toolbox ( Rubinov and Sporns, 2010 ). 

.3.1. Regression analysis 

.3.1.1. Linear regression analyses. Demographic variables including

ge, NART IQ (NART), Education (Edu), and Sex were included in every

egression model. Cortical thickness and WMH total volume were also

ncluded as variables of interest. Variance attributed to mean scrubbing

or each domain were removed from each brain measure prior to regres-

ion analysis. Model results are reported at the p < 0.05, uncorrected

http://surfer.nmr.mgh.harvard.edu/
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hreshold, but significant findings are discussed for an FDR-corrected

hreshold of q = 0.05. FDR-correction was performed at the level of

ognitive domain, or reference ability, where all models tested within a

iven domain were considered part of a “family of hypotheses ”. For each

omain, all model outcomes for both brain and behavioral measures as

ependent variables were concatenated ( = 78 predictor p-values in to-

al). FDR-correction was applied to this concatenated vector for each

omain. 

In order to standardize comparisons between tasks, behavioral scores

t each time point were z-transformed using the mean and standard

eviation calculated across all participants for each task separately at

aseline. Given that speed tasks were measured as reaction time, z-score

alues were sign-inverted to correspond with accuracy scores, whereby

igher scores always indicate better performance. 

When treating regressions of longitudinal change, factors with mea-

urements considered at both time points were residualized with respect

o baseline values. That is, for WMH volumes, behavioral performance,

ortical thickness, and Betti-0 number area under the curve (AUC) val-

es (i.e., discussed in Section 2.3.2 ), the change values − calculated as

ollow-up (FU) minus baseline (BL) − were residualized with respect

o baseline measurements. This was performed to account for baseline

hile preserving degrees of freedom in our models. 

.3.1.2. Mediation analysis. As a posthoc test, we also conducted me-

iation analysis for the Fluid Reasoning domain to examine a potential

ongitudinal mediating role of our TDA metric (i.e., change ( Δ) in AUC

f B 0 between time points; described in section 2.3.2.1) for the relation-

hip between age and change in cognition. We implemented a three-

tep bootstrapping process following the percentile method described

y Preacher and Hayes (2004) - first, regressing ΔAUC on age to ensure

 significant effect, after controlling for all demographic and brain fac-

ors; second, regressing Δcognition on age, while additionally control-

ing for the effect of ΔAUC; third, repeatedly simulating a comparison

etween these two regression models using a nonparametric bootstrap-

ing of random samples (with replacement) approach to test the signif-

cance of the indirect effect of ΔAUC on the relationship between age

nd Δcognition. The results yielded point estimates for indirect, direct,

nd total effects in addition to the proportion of mediation, along with

onfidence intervals to ascertain significance. Bootstrapping was per-

ormed with 10,000 iterations. All regression models were adjusted for

ART IQ, Education, Sex, ΔCT, and ΔWMH. 

.3.2. Network measures 

Participant-level adjacency (i.e., connectivity) matrices were con-

tructed based on pairwise Pearson’s correlations between all 264

ower’s nodes; the direction of connectivity was not considered, thus

atrices expressed undirected networks. FC correlation values ( r ) be-

ween nodes were converted to Z -coefficients using Fisher’s transforma-

ion (i.e., inverse hyperbolic tangent of r ). In the case of TDA, matrices

ontaining both negative and positive correlation values were utilized;

owever, a single network component was always formed before con-

idering negative correlation as cutoff values. In the case of whole-brain

ystem segregation, we utilized only the sparse matrix of positive edges,

etting all negative edge weights to 0, as previously implemented

 Chan et al., 2021 ). Thus, negative values for each brain measure were

ssentially treated commensurately. Both TDA and brain segregation

easures were calculated at the participant-level, ultimately resulting

n a single value per participant, per measure. As an additional measure

o confirm the robustness of our eventual findings, we also calculated

odularity Q, which is a method for community detection that measures

he strength of partition of a network into modules, or non-overlapping

ommunities of nodes (see Sporns and Betzel, 2016 ). For this calcula-

ion, again we utilized only the sparse matrix of positive edges. 

.3.2.1. TDA. We used persistent homology to construct our graph fil-

rations and represent the network in topological space. As previously
5 
tated, we only considered 0-dimension homological features, which re-

ects the number of isolated nodes and connected components at dif-

erent filtration thresholds (for a schematic example, see Fig. 1 ). Given

he previously described instantiations of PH in the brain topology lit-

rature and desire to utilize the least derivative evaluation of connec-

ivity for comparison to functional segregation, we decided to restrict

ur analyses to the 0-th homology as a first attempt at elucidating dif-

erences in network structure. We used a correlation threshold as the

istance metric between nodes, similar to Rips filtration. The graph can

e represented as a Rips complex, denoted by Rips(F, 𝜀 ), where F rep-

esents a set of n points (i.e., nodes = 264) and 𝜀 the filtration value,

hich is a positive number that states if two nodes in F are connected;

wo nodes are considered linked if their distance is lower — i.e., correla-

ion value greater — than 𝜀 . While different types of filtration thresholds

an be utilized, such as 1-correlation ( r ) (e.g., Gracia-Tabuenca et al.,

020 ), here we use edge density to incrementally eliminate edges falling

elow a specific value as determined by percentage thresholding (e.g.,

enteno et al., 2022 ). That is, rather than setting 𝜀 to 1-correlation ( r ),

ith fixed stepwise decreases in r in increments of 0.01, thresholding

ere was based on edge density, or an incremental increase of one per-

entile in the edge weight distribution to establish the cutoff weight

 W ). Each cutoff weight was essentially the participant-wise correlation

alue corresponding to each percentile in the distribution. That is, edges

n the network were sorted from the highest weighted edge to the lowest

eighted edge (i.e., shortest distance to the longest distance), a cutoff

ltration distance of W is established based on the filtration threshold

 (e.g., 𝜀 = 1%, 𝜀 = 2%, 𝜀 = 3%, etc.), and edges between nodes remained

or which the distance was shorter than the cutoff filtration distance, or

. We chose to use edge density in our sample to obviate potential age-

elated differences in the distribution of the connectivity edge weights. 

The advantage to using edge density over a fixed correlation interval

s a threshold is that potential participant-level differences in connec-

ivity ranges are implicitly normalized. 

As age-related differences in the variance of the correlation dis-

ributions may exist (e.g., Chen et al., 2017 ), we deemed edge den-

ity to be a more sensible approach for our sample. While our choice

o obviate potential age confounders as practice was a priori moti-

ated by conceivable shifts in the distribution based on the literature,

ur particular case here indeed showed age-related differences in vari-

nce for the Fluid Reasoning domain at both baseline and follow-up

BL: r = − 0.25, p = 0.003; FU: r = − 0.33, p = < 0.001). However,

n the effort of completeness, and again in anticipation of our find-

ngs, we also reran our analyses under Pearson correlation threshold-

ng to ascertain the similarity of our findings between these two pa-

ameterizations specifically for the Fluid Reasoning domain; the table

rom the regression models are reported in the supplementary mate-

ial section (see Supplementary Material Table ST4 ). The algebraic prop-

rty extracted at each filtration threshold is the Betti-0 number (B 0 ),

hich tracks the number of isolated nodes and those connected by a

equence of edges, which form components. At 𝜀 = 0, all nodes are

onnected components in and of themselves, in which case B 0 is 264,

r the sum of all nodes. At each iteration of filtration, B 0 decreases

ntil reaching a value of 1, where network connectivity has transi-

ion from all nodes being isolated to all being connected into a single

omponent. 

Similar to Gracia-Tabuenca et al., 2020 , we computed the area under

he curve (AUC) of B 0 to capture this overall transition from isolated

odes to a single component, with smaller values of AUC suggesting

hat B 0 decreases with smaller filtration values, reflects overall fewer

onnected components, and is arguably analogous to lower functional

egregation. AUC was calculated using the trapezoidal integral method,

hich approximates the area of the region between two units, or as in

his case, between two filtration thresholds. The integral over the entire

 0 curve is achieved by summation across all areas between each filtra-

ion interval, from B 0 = 264 ( 𝜀 = 0) to the point at which B 0 becomes

. 
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Fig. 1. Schematics of functional connectivity measures . Left panel : Schematic of Betti-0 (B 0 ) curve. Hypothetical Betti-0 curve for toy example of 18 nodes (n) in a 

brain network. Each of the five points indicated along the curve represents the Betti-0 number for a given filtration threshold ( 𝜀 ). As demonstrated, when 𝜀 = 0, B 0 
is equal to the number of nodes in the network ( = 18), which each isolated node representing a component in itself. When 𝜀 = 0.02, for example, where the edge 

weight cutoff value corresponds to 2% of the edge weight distribution, B 0 is equal to 15, indicating 15 total connected components (13 isolated nodes and 2 n > 1 

connected components). When 𝜀 = 0.2, all nodes are linked via at least one connection, forming a single component and thus yielding a B 0 of 1. The B 0 curve is 

characterized in terms of the area under the curve (AUC), shaded in purple, and is calculated as the trapezoidal integral across all filtration thresholds until a B 0 
of 1 is reached. Analysis is performed at the participant-level. Right panel: Example of functional segregation. Toy example of functional connectivity network with 

four networks and four nodes per network as defined by Power’s (2011) parcellation scheme. Turquoise lines represented edges that connect nodes belonging to 

the same (within) network and purple lines represent edges that connect nodes belonging to different (between) networks. Segregation is defined as the mean of 

all within-network connections minus the mean of all between-network connections, with this difference divided by the mean of all within-network connections. 

Segregation is computed for positive edge values only. 
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.3.2.2. Whole-brain system segregation measure. System segregation

easures the extent to which a functional network is divided into dis-

inct functional systems or subnetworks that are relatively independent

f one another in terms of connectivity patterns ( Wig, 2017 ; Chan et al.,

014 ). A prominent feature of functional brain network organization

s the presence of subsets of areas that are highly interactive with one

nother while more sparsely interactive with other subsets of areas; this

rganization reflects distinct modules, or communities, of connectivity.

hus, in the context of specialized networks, modular brain network

rganization will be characterized by relatively high within-network

elationships (e.g., high correlation) among brain regions and low

etween-network relationships among brain regions, reflecting func-

ional specialization of information processing at the brain systems

evel ( Chan et al., 2014 ). We used Power’s taxonomy (2011) to calculate

ystem segregation as the difference between the mean within-network

onnectivity and the mean between-network connectivity, divided (i.e.,

ormalized) by the mean within-network connectivity, defined by the

ollowing equation: 

rain system segregation = 

∑𝑊 
𝑤 𝑍 𝑤 

𝑊 

− 

∑𝐵 
𝑏 
𝑍 𝑏 

𝐵 
∑𝑊 

𝑤 𝑍 𝑤 

𝑊 

here Z is a Fisher’s z-transformed correlation value that represents an

dge between a pair of nodes. Z w represents the edges (correlations)

etween pairwise nodes that belong to within-network systems, Z b 
epresents the edges between pairwise nodes that belong to between-

etwork systems, W is the total number of within-network edges across

ll subnetworks, and B is the total number of between-network edges

cross all subnetworks. This formula of brain system segregation is an

pdated version that more accurately specifies the precise computation

 Chan et al., 2021 ). Higher brain system segregation values indicate

reater distinction between functional systems. All 14 networks pertain-

ng to Power’s (2011) parcellation scheme were utilized in calculating

hole-brain system segregation. 

.3.2.3. Modularity Q. To foreshadow our findings, we also calculated

 measure of modularity to which we compared the output from the TDA

easure of AUC to confirm the robustness of our findings to another al-

ernative metric. Modularity Q is a quality index that assesses the extent

o which the correlation matrix can be partitioned into non-overlapping
6 
ommunities of nodes that maximize within-group connections and min-

mize between-group connections ( Newman, 2006 ). A community struc-

ure of high quality, indexed by higher values of Q, is one where the par-

itioned communities are more internally dense than would be expected

y chance ( Sporns and Betzel, 2016 ). The calculation uses a determin-

stic modularity maximization algorithm to provide a single value of Q

hat quantifies the degree to which the network can be subdivided into

lear, non-overlapping groups. 

. Results 

For a list of all significant predictors ( p < 0.05, uncorrected and cor-

esponding FDR-adjusted p-values for q = 0.05) for each model, see

able 2 . Full results for all model outcomes, irrespective of significance,

re provided in Supplementary Data Table 1 (ST1). Results are reported

or main findings at the FDR-corrected threshold. For a visualization of

he B 0 curves for each domain at both baseline and follow-up, see Fig. 2 .

.1. Functional connectivity models 

.1.1. AUC models 

Cross-sectional analyses of the AUC measure revealed a significant

ffect of Sex on AUC for the Memory domain at baseline ( 𝛽 = − 0.223,

5% CI [70.8 − 11.25], p = 0.035, 𝜂2 
𝜌
= 0.048), with lower AUC for fe-

ales . At follow-up, there was a non-significant positive trend, with a

-value of 0.088 after multiple comparisons correction, of Education on

UC, again for the Memory domain ( 𝛽 = 0.215, 95% CI [1.003 13.127],

 = 0.088, 𝜂2 
𝜌
= 0.036). Longitudinal analyses of AUC revealed a signifi-

ant negative effect of Age on the change in AUC over time ( 𝛽 = − 0.262,

5% CI [ − 3.245 − 0.591], p = 0.016, 𝜂2 
𝜌
= 0.06), such that AUC dispro-

ortionately decreased over time with higher baseline age. 

.1.2. System segregation models 

Cross-sectional analyses of system segregation revealed significant

egative effects of Age on all domains, at both baseline and follow-up

 p < = 0.038 for all models; see Table 2 for model parameters). Longitudi-

al analyses of system segregation revealed a significant negative effect

f Age on Memory ( 𝛽 = − 0.235, 95% CI [ − 0.002 − 0.0003], p = 0.046,
2 
𝜌
= 0.046), Fluid Reasoning ( 𝛽 = − 0.272, 95% CI [ − 0.003 − 0.0006],

 = 0.009, 𝜂2 
𝜌
= 0.063), and Processing Speed domains ( 𝛽 = − 0.293, 95%
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Table 2 

List of significant predictors ( p < 0.05, uncorrected) and accompanying FDR-corrected p-values for all linear regression models. 

Predictor Time Domain Predictor 𝛽 p FDR-p CI 𝜼
2 
𝝆

AUC BL Mem Sex − 0.223 .007 .035 ∗ [ − 70.8 − 11.25] .048 

FU Mem Edu .215 .023 .088 † [1.003 13.127] .036 

Fluid Sex − 0.178 .032 .104 [ − 76.91 − 3.501] .033 

Fluid Edu .189 .044 .122 [.24 17.141] .029 

FU-BL Fluid Age − 0.262 .004 .016 ∗ [ − 3.245 − 0.591] .06 

Fluid Edu .21 .037 .112 [.589 18.76] .03 

SEG BL Mem Age − 727. < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.003 − 0.002] .19 

Mem WMH .232 .032 .112 [.0009 0.019] .03 

Mem Sex .149 .045 .146 [.0004 0.032] .027 

Fluid Age − 0.623 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.004 − 0.002] .14 

Fluid WMH .225 .041 .119 [.0005 0.023] .028 

Speed Age − 0.662 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.004 − 0.002] .18 

Vocab Age − 0.575 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.003 − 0.001] .127 

FU Mem Age − 0.37 .004 .021 ∗ [ − 0.002 − 0.0004] .057 

Fluid Age − 0.39 .002 .01 ∗ ∗ [ − 0.003 − 0.0006] .067 

Speed Age − 0.532 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.0004 − 0.001] .115 

Vocab Age − 0.4 .004 .038 ∗ [ − 0.003 − 0.0006] .061 

FU-BL Mem Age − 0.235 .011 .046 ∗ [ − 0.001 − 0.0001] .046 

Fluid Age − 0.272 .004 .013 ∗ [ − 0.002 − 0.0003] .063 

Speed Age − 0.293 .001 .007 ∗ ∗ [ − 0.002 − 0.0005] .075 

Vocab Age − 0.211 .02 .17 [ − 0.002 − 0.0001] .039 

BEHAVIOR 

(WITH AUC) 

BL Mem Age − 0.564 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.038 − 0.016] .144 

Mem NART .401 < 0.001 < 0.001 ∗ ∗ ∗ [.022 0.055] .135 

Mem Edu .252 .002 .010 ∗ [.03 0.125] .068 

Fluid Age − 0.536 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.04 − 0.02] .138 

Fluid NART .485 < 0.001 < 0.001 ∗ ∗ ∗ [.034 0.068] .2 

Fluid CT − 0.25 .003 .013 ∗ [ − 3.33 − 0.69] .061 

Fluid Edu .224 .003 .013 ∗ [.026 0.127] .059 

Speed Age − 0.811 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.055 − 0.031] .262 

Speed NART .434 < 0.001 < 0.001 ∗ ∗ ∗ [.027 0.062] .157 

Vocab AUC .119 .038 .27 [.0001 0.002] .031 

Vocab NART .686 < 0.001 < 0.001 ∗ ∗ ∗ [.006 0.09] .413 

FU Mem Age − 0.394 .002 .010 ∗ [ − 0.032 − 0.008] .07 

Mem NART .556 < 0.001 < 0.001 ∗ ∗ ∗ [.035 0.07] .208 

Fluid AUC .237 < 0.001 .002 ∗ ∗ [.001 0.003] .093 

Fluid Age − 0.704 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.05 − 0.028] .268 

Fluid NART .554 < 0.001 < 0.001 ∗ ∗ ∗ [.042 0.073] .286 

Speed Age − 0.844 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.06 − 0.035] .3 

Speed NART .321 .001 .001 ∗ ∗ [.017 0.052] .102 

Vocab AUC .133 .02 .17 [.0002 0.002] .042 

Vocab NART .805 < 0.001 < 0.001 ∗ ∗ ∗ [.075 0.106] .512 

FU-BL Mem Age − 0.24 .008 .037 ∗ [ − 0.016 − 0.002] .05 

Mem NART .535 < 0.001 < 0.001 ∗ ∗ ∗ [.024 0.055] .165 

Mem ΔCT .19 .025 .094 † [.302 4.74] .039 

Fluid ΔAUC .277 < 0.001 .003 ∗ ∗ [.0006 0.002] .094 

Fluid Age − 0.415 < 0.001 < 0.001 ∗ ∗ ∗ [ − 0.022 − 0.009] .163 

Fluid NART .428 < 0.001 < 0.001 ∗ ∗ ∗ [.017 0.044] .142 

Fluid ΔWMH − 0.175 .024 .081 † [ − 0.384 − 0.03] .041 

Speed Age − 0.356 < 0.001 .0014 ∗ ∗ [ − 0.019 − 0.006] .108 

Vocab NART .456 < 0.001 < 0.001 ∗ ∗ ∗ [.017 0.047] .139 

Vocab Edu − 0.2 .047 .28 [ − 0.097 − 0.0006] .035 

“AUC ” represents the regression models where the AUC of B 0 curves is the outcome measure. “SEG ” represents regression models where functional segregation is 

outcome. “Behavior ” represents regression models where behavioral performance is outcome. “Domain ” represents the domain, or reference ability, of the outcome 

measure. FDR-correction using the Benjamini-Hochberg method was implemented, where all regressions belonging to a given domain were considered as part 

of a “family of hypotheses ”; thus, separate corrections were performed per domain. Shaded gray rows indicate predictors that were significant after controlling 

for multiple comparisons. Asterisks indicate statistical significance at threshold levels p < 0.05 ( ∗ ), p < 0.01 ( ∗ ∗ ), and p < 0.001( ∗ ∗ ∗ ). All predictors, as highlighted in 

Section 2.3.1 ., were included in each model. 

𝛽= Standardized coefficient beta; p = p - value (uncorrected); FDR- p = FDR-corrected p-value; CI = 95% confidence interval; 𝜂2 
𝜌
= partial eta-squared effect size. 
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I [ − 0.002 − 0.0005], p = 0.012, 𝜂2 
𝜌
= 0.075). For a plot of the relation-

hip between Age and change in system segregation after adjusting for

ther demographic and brain integrity factors, see Fig. 4 . 

.1.3. Modularity Q 

As a posthoc analysis, we focused on longitudinal changes in modu-

arity Q. Longitudinal analyses revealed a non-significant effect with p-

alue of 0.05 < p < 0.1 after multiple comparisons correction for the Fluid

easoning domain, with a negative trend between Age and change in

odularity Q (see Supplementary Material SF1 for a scatterplot). 
7 
.2. Behavior models 

We report the results from the behavioral performance regression

nalyses when the AUC of B 0 measure is included as predictor. More

pecifically, we focus on findings from the longitudinal analyses with

UC as predictor. As a fundamental aim of our paper was to compare

onnectivity measures and their utility in predicting behavior, we also

reated models with functional segregation as predictor, which, apart

rom the connectivity measure itself, yielded similar results for the ef-

ects of demographics and other measures of brain integrity on behavior.
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Fig. 2. Line plots of B 0 curves per participant at both baseline and follow-up. B 0 values (y-axis) are plotted for edge density thresholds up to 0.3 (x-axis). Lines are 

colored based on participant’s age. Pink lines represent participants whose age is less than or equal to 50 years (i.e., younger) and green lines represent participants 

whose age is greater than 50 years (i.e., older). The bolded colored lines represent group means and the shaded bands represent one standard deviation around the 

mean. 
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or this reason, results for behavioral models are only reported once in

oth Table 2 and supplementary Table 1. 

.2.1. Behavioral performance regressions 

Longitudinal analyses with behavioral performance as outcome re-

ealed a significant negative effect of baseline Age on change in be-

avioral performance over the 5-year span for the domains of Mem-

ry ( 𝛽 = - 0.24, 95% CI [ − 0.016 − 0.002] p = 0.037, 𝜂2 
𝜌
= 0.05), Fluid

easoning ( 𝛽 = - 0.415, 95% CI [ − 0.022 − 0.009], p < 0.001, 𝜂2 
𝜌
=

.163), and Processing Speed ( 𝛽 = - 0.356, 95% CI [ − 0.019 − 0.006],

 = 0.0014, 𝜂2 
𝜌
= 0.108). There was also a significant positive effect of

aseline NART on change in behavioral performance for the domains

f Memory ( 𝛽 = 0.535, 95% CI [0.024 0.055], p < 0.001, 𝜂2 
𝜌
= 0.165),

luid Reasoning ( 𝛽 = 0.428, 95% CI [0.017 0.044], p < 0.001, 𝜂2 
𝜌
=

.142), and Vocabulary ( 𝛽 = 0.456, 95% CI [0.017 0.047], p < 0.001,
2 
𝜌
= 0.139). There were also two non-significant effects with p-values

f 0.05 < p < 0.1 after multiple comparisons correction: a positive trend

f change in CT on change in behavioral performance for the Memory

omain, with lower cortical thickness over time associated with reduced

UC and a negative trend of change in WMH on change in behavioral

erformance for the Fluid domain, such that increases in white matter

yperintensities over time were linked to declines in performance. No-

ably, there was also a significant positive effect of the change in AUC

n change in behavioral performance for the Fluid domain ( 𝛽 = 0.277,

5% CI [0.0006 0.002], p = 0.003, 𝜂2 
𝜌
= 0.094), with higher AUC linked

o better performance over time. When functional segregation was used

s a predictor in the behavior models, there was no significant effect in

ny domain, neither with FDR-correction of q = 0.05 nor uncorrected p

 0.05. 

.2.2. Posthoc analyses of the fluid reasoning domain 

To confirm the validity of our finding demonstrating a positive re-

ationship between ΔAUC and ΔCognition, we also performed several

osthoc analyses. First, permutation testing was utilized in order to

stablish a null distribution to which we could compare our statistic

alculated from the regression analysis. We achieved this by randomly

huffling predictor variables across subjects, maintaining within-subject
8 
redictor assignment across the independent variables but disrupting

heir corresponding assignment to the behavioral performance depen-

ent outcome. This process was repeated 10,000 times. Significance was

ssessed as the ratio between the number of times the value of the null

istribution generated a difference greater than the one observed in the

ata divided by the number of permutations ( = 10,000). The effect of

AUC on ΔCognition for Fluid Reasoning was confirmed to be signifi-

ant at p < 0.001. Next, we conducted split sample analysis where the

unctional time series was divided into two parts and the regression

nalyses were repeated in order to ensure that the findings are relevant

t shorter time scales. Longitudinal behavioral regression analyses for

ach of the two truncated times series still revealed a significant pos-

tive effect of ΔAUC on ΔCognition ( First : 𝛽 = 0.238, 95% CI [0.0005

.002], p = 0.004, 𝜂2 
𝜌
= 0.064; Second : 𝛽 = 0.227, 95% CI [0.0004 0.002],

 = 0.004, 𝜂2 
𝜌
= 0.065). We then looked at the relationship between mod-

larity Q, a potentially analogous measure to system segregation that is

dditionally agnostic to network parcellation and change in cognition.

hen modularity Q was used as a predictor in the behavior models,

here was no significant effect in the Fluid or any other domain, neither

ith FDR-correction of q = 0.05 nor uncorrected p < 0.05. 

As a final posthoc test, we also compared models with all combi-

ations of predictors ( = 127 model combinations in total) for the Fluid

easoning domain and compared BIC values to select the most parsimo-

ious model that best predicted longitudinal change in cognition. The

inning model contained Age, NART IQ, ΔAUC, and ΔWMH burden as

redictors ( F (4, 127) = 16.56, p < 0.001, f 2 = 0.475, with an adjusted

 

2 of 0.322. 

.2.3. Mediation model 

Given the effect of Age on ΔAUC and the effect of both Age and

AUC on ΔCognition for the Fluid Reasoning domain, we also per-

ormed a posthoc mediation analysis to test whether ΔAUC mediated the

ffect of Age and ΔCognition. NART, Sex, Education, ΔCT, and ΔWMH

ere included as covariates in the models. We observed a significant

ediation (indirect) effect of ΔAUC (Average Causal Mediation Effects

ACME) = − 0.074, 95% CI = [ − 0.0057 − 0.0006], p = 0.007) with a sig-

ificant direct effect of Age on ΔCognition, indicating a negative partial
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Fig. 3. Scatterplot depicting the relationship between baseline Age and longi- 

tudinal change in system segregation. Colored dots represent each participant’s 

segregation value per domain. 
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ediation of ΔAUC on the effect of Age on Δcognition. This finding indi-

ates that advancing age disproportionately leads to a reduction in AUC

cross time, which, in turn, leads to a greater reduction in behavioral

erformance in Fluid Reasoning. The proportion of mediation relative

o the total effect was 0.152 (C1 = [0.037, 0.32], p = 0.007). Fig. 3 pro-

ides a scatterplot depicting the relationship between Age, ΔAUC, and

Cognition in addition to the mediation model parameters. 

Colored error ribbons represent the 95% confidence band. Change

n segregation (i.e., ΔSeg) values have been adjusted for baseline segre-

ation, NART, Education, Sex, ΔCT, and ΔWMH and thus represent the

aw residuals after this adjustment. Asterisks indicate statistical signifi-

ance at threshold levels p < 0.05 ( ∗ ), p < 0.01 ( ∗ ∗ ), and p < 0.001( ∗ ∗ ∗ ). 

. Discussion 

In the present study, we applied PH, a tool from topological data

nalysis (TDA), to the study of longitudinal change in task-based func-

ional connectivity (FC) network dynamics across the lifespan. We

ought to compare results from TDA analyses to those of a whole-brain

raph theoretical measure (i.e., brain system segregation), which has

een shown in prior studies to decline with age ( Chan et al., 2021 ;

arangis et al., 2019 ; Betzel et al., 2014 ). Importantly, we were inter-

sted in comparing the utility of each measure in predicting longitudinal

hange in cognitive performance. We found that, while system segrega-

ion showed consistent declines with age in nearly all domains, it did not

redict behavior at any time point, neither cross-sectionally nor longitu-

inally. An additional measure, modularity Q, was considered in posthoc

nalysis and also did not predict behavior, neither cross-sectionally nor

ongitudinally. Conversely, the TDA method, which resulted in calculat-

ng the AUC of Betti-0 curves across multiple filtration thresholds, pre-

icted longitudinal change in behavior in the Fluid Reasoning domain.

his finding withstood permutation testing and split-sample analysis of

he time series data, providing a compelling case for its robustness. 

Relatively few studies to date have applied TDA methods to network

nalyses of brain connectivity, though it has gained momentum as a

romising new tool for the study of brain dynamics. Given the intrin-

ic structure of its constituent parts and potentially disordered dynam-

cs, brain connectivity can suitably be considered a complex system to

hich the study of complex patterns can be and has been increasingly

pplied ( Caputi et al., 2021 ; Bullmore and Sporns, 2009 ). In a semi-

al work by Lee and colleagues, PH was applied to brain connectivity

sing Pearson’s correlation thresholding to generate Betti-0 barcodes
9 
i.e., the “lifespan ” or “persistence ” of topological features, or compo-

ents, across filtration thresholds) at the group level to distinguish be-

ween patient groups (i.e., autism spectrum disorder (ASD) or ADHD)

nd cognitive healthy controls. Other more recent work has extended

hese methods to include other low-dimension topological features (e.g.,

etti-1 numbers) in addition to support vector machine classification

o distinguish between patient and control groups ( Stolz et al., 2021 ).

ndividual-level applications of PH methods though have been limited.

racia-Tabuenca et al. (2020) used Pearson’s correlation as a filtration

hreshold to generate individual-level Betti-0 curves, which were sub-

equently utilized to calculate the area under these curves (i.e., AUC).

heir results revealed significant differences between ADHD and cogni-

ively healthy individuals, with ADHD individuals forming a single con-

ected component more quickly than healthy controls, as indexed by

ower AUC values. This finding has been interpreted as being analogous

o lower system segregation, given that a lower AUC should, in principle,

eflect fewer filtration thresholds to arrive at a single connected compo-

ent. Lower system segregation has typically been associated with neg-

tive functional and cognitive outcomes, particularly with respect to ag-

ng as well as pathological conditions ( Xu et al., 2021 ; Ewers et al., 2021 ;

han et al., 2021 ; Varangis et al., 2019 ; Chong et al., 2019 ; Chan et al.,

014 ). 

In the present analysis, we also grounded our hypothesis in this as-

umption of segregation, and indeed, did show that both system segre-

ation and AUC of the Betti-0 curve displayed longitudinal declines with

ge for the Fluid Reasoning domain. A posthoc consideration of modu-

arity Q as an analogous measure of segregation of the system indicated

 similar negative trend with Age, although it did not survive multi-

le comparisons correction. However, we do not wish to make strong

nterpretative claims as to the definitive meaning of what AUC repre-

ents, as empirical evidence for bivariate assumptions is lacking. First,

e wish to highlight that the calculation of system segregation depends

n a specific network configuration, whereas the calculation of AUC

s agnostic to the neural network to which a node belongs. Modular-

ty Q, whose calculation was also agnostic to parcellation, showed a

imilar trend of results, albeit non-significant after correction. Second,

ee et al. (2011) showed shorter barcodes of B 0 charting the persistence

f isolated components at different correlation filtration thresholds for

he control group compared to either the ASD or ADHD group, indicat-

ng that brain connectivity merged faster into a single component for

he control group. They attributed these findings to both general under-

onnectivity and increased local overconnectivity in the ASD and ADHD

roups. It is important to reiterate that we calculated AUC for individ-

al B 0 curves, similar to Gracia-Tabuenca et al. (2020) , and additionally

sed edge density as a filtration threshold, leaving open the possibil-

ty for alternative interpretations. One such alternative is that AUC is a

easure of network integration and not segregation , where the assimila-

ion of information is aided by network “hubs ” that ensure efficient and

apid communication between segregated, spatially distributed network

ommunities (for a review, see Deco et al., 2015 ). However, filtration

hresholds here consider “distance ” only in terms of correlation and is

gnostic to both coordinate space as well as network affiliation; thus,

trict translation from the PH method adopted here to existing measures

f brain connectivity is limited. However, recent work in our lab has

xplored the mathematical properties of the Betti-0 curve and showed

hat the AUC may reflect backbone structure of information flow that

ersists across filtration thresholds; this structure may actually describe

rain-integrating processing, as opposed to brain segregation ( Ryu et al.,

023 ). 

Finally, it is worthy to note that neither high segregation nor high in-

egration are necessarily beneficial in an absolute sense, but that success-

ul information processing relies on the balance between independent

rocessing in specialized subsystems in addition to global cooperation

etween those subsystems ( Wang et al., 2021 ). 

Nonetheless, we also found a significant relationship between lon-

itudinal reductions in AUC and longitudinal decline in cognitive
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Fig. 4. Depiction of relationship between baseline Age, longitudinal change in AUC ( 𝚫AUC), and longitudinal change in cognition ( 𝚫Cognition) for Fluid Reason- 

ing. Left panel: Scatterplot where each dot represents participant’s ΔAUC and ΔCognition value. The color of the dot depicts the age band to which the participant 

belongs. As a reminder, behavioral performance was standardized using baseline mean and standard deviation across all participants. ΔCognition values have been 

adjusted for baseline behavior, NART, Education, Sex, ΔCT, and ΔWMH and thus represent the raw residuals after this adjustment. ΔAUC values have been adjusted 

for baseline AUC. The gray line represents the least-squares fit ( 𝛽 = 0.245). Right panel: Schematic of mediation model illustrating model parameters. Values along 

the arrows represent standardized beta coefficients for the effect of Age on ΔAUC, the effect of ΔAUC on ΔCognition (i.e., ΔCog) after adjusting for Age, and the 

direct effect of Age on ΔCog. The total effect of Age on ΔCog is represented in parentheses. The beta coefficient for the indirect mediating effect of ΔAUC (i.e., 𝛽ind ) 

in addition to the proportion of the effect that is mediated is reported in the green box. 
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erformance again for the domain of Fluid Reasoning, indicating that

igher AUC, as measured by edge density filtration thresholds, is linked

o better performance over time. The robustness of this finding was evi-

enced by it having withstood both permutation testing and split sample

nalysis of the time series. To our knowledge, very few studies have an-

lyzed the effect of PH measures on behavioral performance. One study

y Anderson et al. (2018) applied PH barcode analysis to resting state FC

n both the time and space domains to investigate its relationship to sev-

ral types of cognition and personality. Notably, they found that Fluid

ntelligence was negatively correlated with persistence barcode values

n both the time and space domains. Moreover, of all 17 types of cog-

ition or personality considered, Fluid Intelligence displayed the most

onsistent relationship to persistence barcode values. It is worth noting

hough that the interpretation of longer persistence barcodes depends on

he specific topological features that the barcodes represent. In the case

f connected components and the length of a node’s participation in a

pecific topological feature, longer barcodes could indicate a greater de-

ree of integration in the graph. However, if the node is an isolated com-

onent that persists as such as the filtration parameter is varied, it could

e interpreted as indicating higher segregation in the graph. While is dif-

cult to draw definitive comparisons between Anderson et al. (2018) re-

ults and the present findings, the fact that the relationship between

arcode values and both Age and Fluid Reasoning performance were

onsistently in the opposite direction to our findings might suggest that

UC and persistence barcode values might be capturing different as-

ects of the topological organization. In the spatial domain, the brain

egions displaying significant correlation between barcode values and

luid Intelligence were located in the association cortex, particularly

cross frontoparietal attentional regions. These findings are similar to

hat would be expected from a parieto-frontal integration theory of in-

elligence, which asserts that the parietal and frontal cortices comprise

he core regions involved in intelligence ( Jung et al., 2007 ). However, it

s important to underline the distributed nature of the networks underly-

ng intelligence (Colom et al., 2010), given its definition as the capacity

o think logically and solve problems in novel situations, independent

f acquired knowledge ( Cattell, 1987 ). As a general mental ability, it

as been associated with a plethora of structural and functional brain
10 
roperties, including cortical thickness in prefrontal, temporal and as-

ociation cortical areas, white matter integrity of long association fibers

see Deary et al., 2010 for a comprehensive review of biological fac-

ors), and strength of resting-state FC between brain regions distributed

n frontal, parietal, occipital, and limbic lobes ( Song et al., 2008 ). Ar-

as displaying significant correlation between intelligence and FC in the

tudy by Song et al. (2008) supported an exploratory network whose

ctivation “efficiency ” was modulated based on intelligence level. Even

hen considering network dynamics alone, it is perhaps unsurprising

hat Fluid Reasoning should be a domain sensitive and suitable to being

xplored using TDA measures, particularly when utilizing whole brain

onnectomics. 

It is important though to note that prior studies mentioned here

ave investigated the relationship between resting-state FC, not task-

ased FC, and intelligence. While it has been shown that intelligence

s related to less reconfiguration and thus greater similarity between

esting-state and task-based networks ( Schultz and Cole, 2016 ), there is

ot necessarily a one-to-one mapping of the neural substrates involved.

eyond providing a potentially more accurate neural representation of

he mental states engaged during task performance, it has been sug-

ested that task-based FC is a better predictor of independent fMRI ac-

ivations across several task conditions, with task-related changes to FC

laying an important role in dynamically reshaping brain network or-

anization ( Cole et al., 2021 ). Thus, investigating the neural substrates

f functional engagement during task performance can offer critical in-

ight into the link between brain and cognitive processes. In the current

tudy, we showed that our PH measure of AUC significantly predicted

ognitive performance in Fluid Reasoning during task-based FC; more-

ver, we demonstrated this relationship longitudinally. To the best of

ur knowledge, our study is the first to provide longitudinal evidence

or the utility of PH in predicting cognitive performance. Notably, we

lso considered demographic and brain integrity factors in our models,

ith AUC predicting cognition above and beyond variables such as cor-

ical thickness and WMH total volume. 

In addition to demonstrating a significant relationship between lon-

itudinal change in AUC and cognitive performance in Fluid Reasoning,

e also showed that longitudinal change in AUC mediated the effect
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f age on longitudinal change in cognitive performance. Previous work

n our lab has shown significant longitudinal decline in Fluid Reason-

ng, with older age associated with steeper decline ( Gazes et al., 2021 ).

ere, we provide one mechanism through which advancing age might

ead to increased cognitive decline. When we compared linear regression

odels that would optimally predict longitudinal change in cognition

or the Fluid Reasoning domain, we found that longitudinal change in

ognition was best predicted by age, change in AUC, NART, and white

atter hyperintensity burden. NART IQ, which has been utilized as a

roxy for cognitive reserve, or individual differences in the cognitive or

eural processes that act as coping mechanisms against compromised

rain function (Stern, 2009), was significantly positively related to lon-

itudinal change in cognitive performance. Conversely, an increase in

MH total volume was negatively related to cognitive performance.

revious work in our lab has demonstrated cross-sectional relationships

etween WMH total volume and performance on the Memory and Pro-

essing Speed domains; only regional measures of WMH showed inverse

orrelations between WMH and cognitive performances across all four

ognitive domains. A recent longitudinal study by Wang et al. (2020) an-

lyzed ADNI data from eight cognitive domains and showed that bigger

MH volumes were correlated with worse performance on several abil-

ties such as memory and executive function, in addition to contributing

o AD conversion. 

A curious finding from our study is that system segregation did not

redict cognition in any of the four domains. While this highlights the

dvantage of the PH method for the Fluid Reasoning domain, it also

tands at odds with other studies that have found links between sys-

em segregation and age-related differences in cognitive performance

 Zonneveld et al., 2019 ; King et al., 2018 ; Chan et al., 2014 ). One rea-

on for the absence of such an effect could be that past studies investi-

ated FC at rest and not during task engagement. Cross-sectional work

rom our own lab though has shown that the relationship between in-

canner behavioral performance and task-based network connectivity

eavily depends on the cognitive domain ( Varangis et al., 2021 ). Fur-

hermore, the most robust age effects on network connectivity appeared

or the Fluid Reasoning domain. Findings from the present study showed

ignificant age-related longitudinal decline in system segregation in the

emory, Fluid Reasoning, and Speed domains. These results corrobo-

ate and extend previous findings that have displayed cross-sectional

vidence for age-related reductions in system segregation. 

The present study, however, is not without limitations. First, given

he more recent application of TDA to the study of functional brain net-

orks, it is difficult to provide strong definitive claims as to what as-

ect of connectivity the measure B 0 - AUC is precisely capturing. The-

retically, two vastly different B 0 curves can yield the same value of

UC. While we did not systematically address this potential outcome,

e plotted participant-level B 0 curves to detect anomaly, instead observ-

ng an arguable homogeneity of shape. However, one way to address this

aveat would be to consider other aspects of the B 0 curve (e.g., inflection

oints, higher-order moments of the curve distribution) in addition to

ther filtration methods. In the current study, we utilized edge density

s our filtration threshold, which is one way of dealing with differences

n correlational variation across individuals. This approach naturally al-

ows for the absolute correlation value at each filtration threshold to

iffer across individuals. Instead, decreasing the correlation cutoff by

he same increment across individuals (e.g., 1-r) could yield different

esults. How to treat and interpret the use of different filtration thresh-

lds is one launching point for future work. Next, as previously men-

ioned, our method is agnostic to both coordinate space as well as nodal

etwork affiliation. One future direction would be to try to incorporate

ther types of network information into PH-based measures to gain a

ore precise understanding of regional contributions to the underlying

hape of the network. It could be that specific networks may contribute

ore or less to formation of a single component; this could also be the

ase for system segregation, where some studies have divided between

ssociation and sensorimotor systems, for instance (e.g., Varangis et al.,
11 
021 ). Another analysis currently underway in our lab is investigating

H measures in resting-state, which would shed light on the general-

zability of the current findings to other functional connectivity states.

urthermore, calculation of Betti-0 numbers, by definition, occurs until

 single component is formed (i.e., all nodes are connected to at least

ne other node without recursion). However, network configuration be-

ond the establishment of a single component is not considered. As we

nly considered 0-dimensional features of topological space, it might

ehoove to consider other low-dimension topological features, such as

ther simplices (i.e., loops and voids) which might confer a more de-

ailed understanding of the shape of the network. 
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