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Abstract

We conducted a meta analysis of Parkinson’s disease genome-wide association studies using a

common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were

identified as genome-wide significant; these and six additional previously reported loci were then

tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24

replicated, including 6 novel loci. Conditional analyses within loci show four loci including GBA,

GAK/DGKQ, SNCA, and HLA contain a secondary independent risk variant. In total we identified

and replicated 28 independent risk variants for Parkinson disease across 24 loci. While the effect

of each individual locus is small, a risk profile analysis revealed a substantial cummulative risk in

a comparison highest versus lowest quintiles of genetic risk (OR=3.31, 95% CI: 2.55, 4.30; p-

value = 2×10−16). We also show 6 risk loci associated with proximal gene expression or DNA

methylation.

Increasing evidence supports the extensive and complex genetic contribution to Parkinson’s

disease (PD). Genome-wide association (GWA) studies have shed light on the genetic basis

of this disease, with the identification and replication of risk loci that fit the common disease

common variant hypothesis.1–17 The loci identified have both affirmed the central role of

genes previously linked to PD and implicated new proteins in the pathogenic cascade.18

These data have also shown that thus far only a small portion of the heritable component of

PD has been identified.19 Experience in other complex diseases and traits demonstrates that

ever greater resolution of genetic risk can be achieved through larger sample sizes and that

common genetic variability may play a more substantial role in complex traits than

previously anticipated.20–22 With each of these factors in mind, we performed a meta-
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analysis of all existing European ancestry PD GWA study data and a replication study in an

independent data set.

We performed a meta-analysis of genome-wide SNP data from 13,708 PD patients and

95,282 controls. This approach required imputation using the August 2010 release of the

1000 Genomes Project European ancestry haplotype reference set to standardize data to over

11 million variants.23 Only markers that were successfully imputed in at least three datasets

and that had a meta-analysis wide sample size weighted minor allele frequency of 0.1% or

more were included (n=7,893,274). The genomic inflation factor for each of the datasets

ranged from 0.889 to 1.056 (based on lambda values standardized to a scale of 1000 cases

and 1000 controls, see Supplementary Table 1 for study specific details). Fixed-effect meta-

analysis of the summary statistics from each set revealed 26 loci associated with risk for

disease in the discovery phase, based on a widely-accepted genome-wide p-value threshold

of 5×10−8 (Table 1 and Figure 1 with additional details in Supplementary Table 2 and

Supplementary Figure 1).24

To identify which of the putatively associated loci were truly disease-related, we attempted

to replicate each locus in an independent sample series using a semi-custom genotyping

array called NeuroX. This array typed >240,000 exonic variants available on Illumina’s

Infinium HumanExome BeadChip and an additional ~24,000 variants proven or

hypothesized to be relevant in neurodegenerative disease [Nalls et al., in review]. Within the

custom content we included the 26 genome-wide significant candidate loci implicated in PD

from the primary meta-analysis. For each independent locus the most significantly

associated SNP and a series of proxy variants were included in the array design. Following

stringent quality control, high quality genotype data were available for a sample set of 5,353

cases and 5,551 controls (see Online Methods for complete details). Association analysis

revealed replication of 22 of 26 loci tested based on a nominal 1-sided p-value of <0.05 and

consistent direction of association which incorporates the premise of prior knowledge for

most loci based on previous meta-GWAS (Table 1); of these loci, six were novel (SIPA1L2,

INPP5F, MIR4697, GCH1, VPS13C, DDRGK1). In addition we examined association at six

loci previously reported to be associated with risk for PD but that did not show association

at p<5×10−8 in the discovery phase.1,2,4,25 While these loci have been reported in samples

derived from some of the cohorts included in the discovery phase of this meta-analysis,

individuals in the replication samples were distinct from those used to nominate these loci.

We found evidence for association based on a nominal 1-sided p-value of <0.05 in the

replication data at two of these loci in our replication phase analyses (FGF20 and SREBF/

RAI1; Table 1). We do note that some loci did not replicate, these loci included regions of

high effect heterogeneity and low effect sizes (~1.1 odds ratio), for which our replication

series may have been slightly underpowered. For example, at an odds ratio of 1.1 and an

allele frequency of 5%, our replication series were only at a power of ~35% to reach our

designated alpha; while under the assumption of no effect heterogeneity across the

replication samples and no winner’s curse phenomenon, we were at ~80% power to reach

our target alpha for replication if the allele frequency is increased to 40% and the odds ratio

remains 1.1. We recognize that study heterogeneity contributed to some of this non-

replication (as evidenced by the I2 metric in Supplementary Table 2), particularly in the
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discovery phase of analyses. In the discovery phase, the associations at rs115185635 and

rs1555399 were driven almost completely by the IPDGC-UK cohort and highly

heterogenous across cohorts (I2 estimates at 91.0 and 97.2 respectively). In addition,

rs115185635 was a very difficult variant to impute likely due to its frequency, as it passed

quality control in only 8 of our participating studies. We do not believe there is any major

issue with the UK data based on both previously published studies, as well as consistent

effects at more established loci evidenced by I2 metrics in Supplementary Tables 2 and 3, as

well as in Supplementary Table 1 and Supplementary Figures 2 – 4 describing study specific

effect estimates in addition to genomic inflation factors. Our strategy of a distinct replication

phase was instituted primarily to confirm suspect novel loci and to exclude any types of

systematic issues that may lead to false positives at individual loci.

We tested whether multiple independent risk alleles existed at any of the 26 genome-wide

significant loci identified in the discovery phase. For each locus we tested all variants within

1 million base pairs of the index SNP with the most extreme p-value. To identify risk alleles

independent of the primary effect, the index SNP was included as a covariate in the model

(0, 1 or 2 copies of the minor allele). Additional independent risk variants were identified at

8 of the loci (9.31×10−6 to 7.09×10−19) and were also included on the replication array. Four

of these variants revealed significant association upon conditional analysis of the replication

phase data (Table 2 and Supplementary Table 3 for additional details).

Risk profiles were generated for each subset of replication samples separately using all

SNPs with replication phase p-values less than the marginal one-sided p-value of 0.05

(discovery, candidate and conditional phases, Tables 1 and 2). These 28 SNPs were used to

compute genetic risk profile scores (for additional risk profiling methods, please see Online

Methods). Similar to previous studies we showed marginal predictive power for genetic risk

profile scores, with areas under the receiver operator curves of 0.616 without age and sex

included as covariates and 0.633 with age and sex (Figure 2, Supplementary Table 4,

Supplementary Figure 5).3 As expected, those individuals with a genetic risk profile score

above one standard deviation from the population mean, indicative of a roughly 34%

increase in genetic risk scores above the control mean, had a significantly higher risk of PD

(from meta-analysis odds ratio = 1.51, 95% CI = 1.38–1.66, p=2×10−16). In an analysis of

outliers, we compared the 5th quintile of genetic risk scores to the 1st quintile of genetic risk

as a reference, the odds ratio was 3.31 (95% CI = 2.55–4.30, p=2×10−16). These odds ratios

are larger compared to earlier publications and may be due to finer scale imputation used in

the discovery phase of this project, as well as the inclusion of additional loci and to some

degree differing distributions of cumulative genetic risk scores across populations in the

analysis.3,4 Cohort level summary statistics were significantly heterogeneous for both trend

based analyses (I2 = 0.74, heterogeneity p-value = 0.003) and the comparisons of the highest

versus lowest risk quintiles (I2 = 0.70, heterogeneity p-value = 0.01). Therefore, a random

effects model was used to account for the heterogeneity of effect.

For each of the 28 SNPs included in the risk profile analyses, we attempted to infer

functional consequences in frontal cortex and cerebellar tissue samples from neurologically

normal individuals that were assayed for both genome-wide methylation and expression

levels.26 These analyses may shed light on potential disease mechanisms for follow-up in
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future studies. We tested cis associations (any methylation or expression probes +/− 1Mb

from each SNP) in each of the datasets. After quality control, 25 SNPs of interest from our

meta-analysis passed quality control in the mRNA expression datasets and all 28 SNPs of

interest passed quality control the CpG methylation datasets. We tested multiple probes per

SNP in each set of analyses. A total of 336 unique SNP-probe pairs were tested in the frontal

cortex mRNA expression dataset, 865 pairs in the frontal cortex CpG methylation dataset,

333 pairs in the cerebellar mRNA expression dataset and 1,097 pairs in the cerebellar CpG

methylation dataset. Associations were tested using linear regression adjusting for

appropriate covariates and resulting p-values adjusted based on the false-discovery rate

correction (see Online Methods for details).

After correcting for multiple tests, we found 30 significant associations between SNPs of

interest and either CpG methylation or mRNA expression (Supplementary Table 5) across

six loci. Of particular interest were associations at rs199347 on chromosome 7 and rs823118

on chromosome 1, as both SNPs are significantly associated with both methylation and

expression changes in each brain region. The risk allele (A) at rs199347 on chromosome 7

was associated with increased expression of two probes tagging NUPL2 as well as with

decreased methylation of GPNMB in both brain regions. These data suggest that risk at the

locus containing rs199347 might be due to increased transcription of NUPL2 further

bolstered by decreased methylation. On chromosome 1, the risk allele (T) at rs823118 was

associated with decreased expression of NUCKS1 and increased expression of RAB7L1, as

well as increased DNA methylation detected by two probes close to FLJ32569 in both brain

tissues. These data suggest a complicated risk locus at the NUCKS1/RAB7L1/FLJ32569

region, where the same risk allele is associated with both increased expression of RAB7L1 as

well as increased regulation of nearby genes NUCKS1 and FLJ32569. The possibility of

multiple functionally active risk variants at this locus seems likely and is evident in the

results of our conditional phase of analyses (Table 2). The complicated nature of this locus

may be suggestive of some type of interaction or epistatic effect as well and it is likely that

future functional and deep sequencing studies will be required to understand the basis of

association at this region.

In total here we have identified 28 independent risk loci for PD; 22 found in the discovery

phase and confirmed by replication, two previously reported loci confirmed in the

replication phase, and four loci identified by a second risk allele exerting an effect

independent of the primary risk allele.

URL’s

MACH2QTLv1.11 (http://www.sph.umich.edu/csg/abecasis/MaCH/download/) MiniMac

(http://genome.sph.umich.edu/wiki/Minimac) 1000 Genomes haplotypes (http://

www.sph.umich.edu/csg/abecasis/MaCH/download/) Summary statistics of this study have

been made available at http://www.pdgene.org (Note to the editor/reviewers: Summary

statistics of the discovery, conditional and replication phase of this study will be made

available to the community at the listed URL upon publication of this study)
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ONLINE METHODS

Discovery Methods

All studies willing to participate with genome-wide genotyping data on Parkinson’s diseases

cases and controls were included in this effort. For specific details on these studies, please

refer to individual publications [IPDGC, PD GWAS Consortium, 23&Me, CHARGE,

PDGENE, and Ashkenazi studies].2–6,10,17,27–30 For this analysis, the 23andMe cohort was

split into two subsets “v2” and “v3”. The “v2” designation refers to a subset of samples

genotyped on the Illumina HumanHap550+ BeadChip, the “v3” designation refers to a

subset of samples genotyped on the Illumina Human OmniExpress+ BeadChip. Besides

different genotyping arrays, sample handling, ascertainment, quality control and analytic

methods were identical across the 23andMe subsets. For 3 out of the 15 studies contributing

to the discovery phase of analyses, population controls were utilized to some degree, totaling

8,156 samples (Supplementary Table 1). Based on a prevalence of 2 in 1,000, we could

estimate a misclassification of approximately 16 samples across datasets. This would likely

have a small impact based on our large sample size, meta-analytic design and interest in

relatively common allele frequencies.

In general standard quality control was applied by each study for sample inclusion,

including case age at onset over 18 years, no known mutations in genes associated with

Mendelian forms of PD (SNCA, PARK2, DJ-1, PINK1, LRRK2), minimum sample call rate

> 95%, European ancestry confirmed through principal components or multidimensional

scaling analyses, no relation to other samples in the meta-analysis (checked when possible

by use of dbGAP available data) at the cousin level or closer (except in the case of

Framingham Heart Study). Studies deriving samples from the same geographic region (or

globally in the case of the 23AndMe dataset) cross-checked for relatedness when data access

was permitted by using identity by descent filtering to remove related samples both within

and across datasets contributing to the meta-analysis. If samples overlapped studies involved

in the meta-analysis, the sample was excluded from the series with less dense genotyping.

All participants donated DNA samples and provided informed consent for participation in

genetics studies. Prior to imputation, SNPs were filtered using study specific criteria

including a minimum call rate of > 95%, a minor allele frequency > 1%, Hardy-Weinberg

equilibrium p-values > 1×10−4 in controls and non-random missingness by phenotype or

haplotype at p-values > 1×10−4. SNPs ambiguous to strand (A/T and G/C) were also

removed. Imputation to a standard reference panel from the 1000 Genomes Project (August

2010 release, European ancestry only) was then carried out using miniMac on default

settings.31

Imputed dosages were then analyzed using logistic regression for case-control studies or cox

regression for cohort studies (Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE) Consortium cohorts with incident cases) adjusting for the first 2

eigenvectors from principal components analysis, age at onset (cases) or exam (controls),

and sex. Eigenvectors from principal components for use as covariates were generated on a

study specific level, with each dataset applying its own adjustment separately. This was also

repeated in the replication by generating unique eigenvectors for each ancestry stratified
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dataset for use as covariates. The Framingham Heart Study utilized generalized estimating

equations clustered on pedigrees to account for family relationships.

Meta-analysis was conducted based on the fixed-effect model as implemented in METAL

by combining summary statistics across datasets.32 At the meta-analytic level, summary

statistics were filtered for inclusion after meeting a minimum imputation quality (RSQ from

miniMac) of 0.30, minor allele frequency greater than 0.1% across studies, realistic beta

coefficients where the absolute value of beta was less than 5, and passing initial quality

control in at least three of the contributing studies. In addition, we tested novel random-

effects approaches from Han and Eskin, 2011; however, this method did not identify any

novel loci and since the results across both methodologies were near identical, thus only

fixed-effect results are reported here.33

Conditional Methods

Conditional analyses were undertaken using identical statistical models as in the discovery

phase except for the inclusion of allele dosages from the most significant SNP per locus as

an additional covariate. For each locus identified as genome-wide significant in the

discovery phase, we reran cohort level analyses in a subset of 7 datasets with the largest

counts of cases (due to primary data availability at the participant level, only IPDGC-NIA,

IPDGC-NL, IPDGC-GE, 23&Me, PROGENI-GenePD, NGRC and HIHG were included)

testing all SNPs within +/− 1MB from the 26 genome-wide significant SNPs in Table 1,

while adjusting for the SNP with the most extreme p-value per locus. These summary

statistics were then meta-analyzed in the same manner as the discovery phase analyses. The

threshold for multiple test correction across secondary loci for conditional analyses was set

to 1×10−5 based on Bonferroni correction for the number of SNPs tested across all regions.

These methods were also applied to look for tertiary signals at all loci; three tertiary loci

were identified, but these signals were not included in the replication array and are therefore

not shown (data available upon request to corresponding author).

Replication Methods

Replication genotyping was carried out using the Illumina NeuroX genotyping array, with

all samples genotyped at the National Institute on Aging’s Laboratory of Neurogenetics

(LNG). In brief, the NeuroX array includes over 24,000 neurodegenerative-focused-variants

added to the existing >240,000 exonic variants already available on Illumina’s Infinium

HumanExome BeadChip. Of these neurodegenerative-focused variants, over 9,000 variants

are dedicated to Parkinson’s disease and include tagging SNPs, proxies and technical

replicates for loci of interest related to the discovery phase of this study. For each genome-

wide significant locus identified in the discovery phase of this study and in the conditional

analyses, loci were covered on the array by either 5 additional proxy SNPs or 5 technical

replicates if no proxy SNPs were available. Loci were defined as any SNP reaching a

genome-wide significant p-value and correlated at r2 < 0.50 with any other significant SNPs

within 250 kilobases within each genomic region of interest. Proxies were selected based on

this 250kb threshold and LD defined using 1000 genomes European ancestry samples from

the same panel in which the discovery series was imputed. Proxies were ranked by discovery

phase p-value after meeting the LD threshold minimum of r2 > 0.50 with the most
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significant SNP in the locus. Nominated proxies with the smallest discovery phase p-value

were given precedence in replication analyses when the most significant SNP from the

discovery phase was not available or not successfully assayed on the NeuroX array. For

replication, 39 SNPs or their highest ranked proxy in terms of discovery phase or conditional

p-value were utilized in the replication analyses. All summary statistics for these replication

SNPs will be made available on the PDgene website (PDGene database (http://

www.pdgene.org). Genotypes were called using Illumina GenomeStudio, and all PD related

SNPs analyzed for this study were manually clustered and visually inspected. Standard

exome content variants included on the NeuroX array were called using a cluster file from

the CHARGE Consortium based on over 60,000 samples and these variants were used for

sample quality control.34 Over 14,000 samples genotyped on the array at LNG were used in

the variant calling process.

From called genotypes, PD cases and neurologically normal controls were extracted and

underwent quality control as per standard GWAS, with slight deviations from normal

practices to account for the bias in NeuroX array content. Variants with GenTrain scores >

0.70 (indicative of quality genotype clusters) from the standard content of the NeuroX array

were extracted first to calculate call rates. Samples with call rates < 95% were excluded, as

well as samples whose genetically determined sex did not match that from clinical data and

samples exhibiting excess heterozygosity. After these initial exclusions, SNPs overlapping

with HapMap Phase 3 samples were extracted from the previous subset and pruned for LD

(SNPs excluded if r2 > 0.50 within a 50 SNP sliding window), as well as concurrently

excluding SNPs with MAF < 5%, HWE p-values < 1×10−5 in controls, and per SNP

missingness rates > 5%. At this stage, pairwise identity by descent filtering was then used to

remove samples that were cryptically related and principal components analysis was used to

identify samples that were to be excluded due to genetic ancestry not consistent with

primarily European descent based on comparisons with HapMap Phase 3 reference

populations. After these exclusions, the samples passing quality control were separated into

distinct datasets based on the country and center of origin. All samples in the replication

series were ascertained as follows: case ascertainment was based on UK brain bank criteria

from clinic visit, or use of PD medication or medical records of PD diagnosis by clinician;

recruited controls include individuals free of known neurological disease either by clinical

assessment and/or self-report. The final replication set consisted of 5,353 cases and 5,551

controls with all relevant phenotypic data for this analysis stratified across American (2,407

cases and 2,782 controls), French (553 cases, 474 controls), German (1,044 cases and 871

controls), Greek (944 cases and 877 controls) and British (405 cases and 547 controls)

participants.

Within each subset of samples passing quality control, principal components analysis was

used to generate eigenvectors for use as covariates to account for population substructure

within each cohort based on common high quality SNPs that have also been LD pruned as

described above. Within each subset of samples, logistic regression adjusting for the first 2

eigenvectors from principal components analysis, age at onset (cases) or exam (controls),

and sex was used to examine associations of each nominated SNP with PD. After subset

summary statistics were generated, fixed-effect meta-analyses were used to generate

aggregate summary statistics and quantify heterogeneity across subsets for all 39 replication
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target SNPs placed on the array. As a note, regions around these SNPs +/− 500kb were not

included in the sample QC procedure, and these 39 SNPs were manually clustered to

evaluate quality genotyping.

Risk Profiling Methods

Risk profiles were generated incorporating three groups of SNPs. The first group included

genome-wide significant index SNPs (or their proxies) from the discovery phase that

replicated in the independent replication phase (n=22). The second group comprised

conditional SNPs that validated in the replication phase (n=4). The third group consisted of

previously reported SNPs that did not quite meet genome-wide significance in the discovery

phase but provided evidence of association in the replication phase (n=2). These risk profiles

were generated using weights based on effect estimates from the discovery phase of this

study using methodologies described in detail elsewhere.3,4,11,35 In brief, genetic risk scores

were scaled on a per SNP basis using effect estimates from the discovery phase then applied

to the genotype data generated for the samples in the replication phase to create the dataset

for analyses of the risk profiles. Within each subset of the replication sample series, overall

trend tests for PD risk were evaluated using logistic regression with the risk profile score

predicting affection status adjusted for the first 2 eigenvectors from PCA as well as age and

sex. Each subset was also divided into quintiles based on their risk profile scores, and

similar logistic regression models were used to estimate risk associated in each of the 4

higher risk quintiles compared to the lowest risk quintile. All risk profile summary statistics

were meta-analyzed across subsets using random-effects to account for effect heterogeneity.

To evaluate clinical predictability of PD, all risk profiles were combined into one model

across replication subsets, adjusting for age, sex and cohort/subset membership in receiver-

operator curve analyses.

Expression and Methylation Quantitative Trait Locus Methods

Overlapping SNPs identified in the discovery phase (Tables 1 and 2) that were successfully

genotyped or imputed in the combined North American Brain Expression Consortium

(NABEC) and United Kingdom Brain Expression Consortium (UKBEC) datasets were

tested for association with proximal expression and methylation levels (GSE36192). Allelic

dosages of SNPs of interest were tested for association with all methylation and expression

probes within +/− 1MB from each SNP using linear regression adjusting for covariates of

gender, age at death, the first two component vectors from multi-dimensional scaling, post

mortem interval (PMI), brain bank and batch in which preparation or hybridization were

performed, using MACH2QTLv1.11 (http://www.sph.umich.edu/csg/abecasis/MaCH/

download/). These analyses were run separately for frontal cortex and cerebellar regions,

each with analyses focusing on methylation (292 samples) or expression (399 samples). For

these four analyses, significance was based on standard FDR adjustments for multiple

testing. Further details on consortia membership, acknowledgments and full methods for the

expression and methylation portions of this study, please see Supplementary Note.
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EXPRESSION AND METHYLATION METHODS

Frozen frontal cortex and cerebellar samples were obtained from > 399 self-reported

European ancestry samples without determinable neuropathological evidence of

disease.26,36 Genomic DNA was extracted with phenol-chloroform. Bisulfite converted

DNA and assayed at > 27,000 sites on the Illumina Infinium HumanMethylation27

BeadChips. MRNA expression levels were assayed using Illumina HumanHT-12 v3

Expression Beadchips. In brief, Individual probes were excluded from analyses if the p-

value for detection was > 0.01 or there was less than 95% completeness of data per probe,

and samples were excluded if <95% of probes were detected. Probes were also removed if

an analyzed SNP was within the probe or the probe mapped ambiguously to multiple

locations in the genome. Expression data were cubic spline normalized and log2-

transformed prior to analyses.

Each tissue sample was genotyped using the Illumina HumanHap550 v3, Human610-Quad

v1 or Human660W-Quad v1 Infinium Beadchips, shared SNPs were extracted prior to QC

and imputation. Standard GWAS quality control was undertaken with inclusion criteria such

as: minimum call rate 95% for both participants and SNPs, MAF > 0.01, HWE > 1×10−7, no

first-degree relatives in the sample collection (identity by descent score < 0.125 in PLINK),

and European ancestry confirmed by multidimensional scaling analyses.

Data were imputed using MiniMac (http://genome.sph.umich.edu/wiki/Minimac) to the most

recent data freeze of 1000 Genomes haplotypes (http://www.sph.umich.edu/csg/abecasis/

MaCH/download/1000G.2012-03-14.html) using default settings. All imputed SNPs were

filtered for a minimum imputation quality of 0.30. After quality control, data were available

for > 10 million SNPs, with expression data on 399 samples (9814 probes from the frontal

cortex and 9587 probes in cerebellum) and methylation data on 292 samples (27465 CpG

sites in the frontal cortex tissue samples and 27419 CpG sites in the cerebellum).

Linear regression models were utilized to estimate associations between allele dosages of

per SNP and gene expression or methylation levels adjusted for covariates of gender, age at

death, the first two component vectors from multi-dimensional scaling, post mortem interval

(PMI), brain bank and batch in which preparation or hybridization were performed, using

MACH2QTLv1.11 (http://www.sph.umich.edu/csg/abecasis/MaCH/download/). Analyses

were carried out separately for each brain region and each array type. Only probes within +/

− 1MB were analyzed to test only cis associations. From these analysis results, data were

mined for 28 replciated SNPs of interest included in Table 1 and Table 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Manhattan plot of discovery phase meta-analyses.
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Figure 2.
Forest plots describing cohort level and summary effects of risk profile analyses.
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