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Xenografted human iPSC‑derived neurons with the familial Alzheimer’s 
disease APPV717I mutation reveal dysregulated transcriptome signatures 
linked to synaptic function and implicate LINGO2 as a disease signaling 
mediator
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Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, and disease mechanisms are still not fully understood. Here, we 
explored pathological changes in human induced pluripotent stem cell (iPSC)-derived neurons carrying the familial AD APPV717I 
mutation after cell injection into the mouse forebrain. APPV717I mutant iPSCs and isogenic controls were differentiated into neurons 
revealing enhanced Aβ42 production, elevated phospho-tau, and impaired neurite outgrowth in  APPV717I neurons. Two months 
after transplantation,  APPV717I and control neural cells showed robust engraftment but at 12 months post-injection,  APPV717I grafts 
were smaller and demonstrated impaired neurite outgrowth compared to controls, while plaque and tangle pathology were not seen. 
Single-nucleus RNA-sequencing of micro-dissected grafts, performed 2 months after cell injection, identified significantly altered 
transcriptome signatures in  APPV717I iPSC-derived neurons pointing towards dysregulated synaptic function and axon guidance. 
Interestingly,  APPV717I neurons showed an increased expression of genes, many of which are also upregulated in postmortem 
neurons of AD patients including the transmembrane protein LINGO2. Downregulation of LINGO2 in cultured  APPV717I neurons 
rescued neurite outgrowth deficits and reversed key AD-associated transcriptional changes related but not limited to synaptic func-
tion, apoptosis and cellular senescence. These results provide important insights into transcriptional dysregulation in xenografted 
 APPV717I neurons linked to synaptic function, and they indicate that LINGO2 may represent a potential therapeutic target in AD.
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Introduction

Alzheimer’s disease (AD) is the most frequent form of 
dementia affecting millions of people without a cure. 
AD is characterized by deposition of β-amyloid plaques 
and phosphorylated tau (p-tau)-positive neurofibrillary 
tangles in patient brains with neuronal loss, synaptic 
dysfunction and gliosis [56, 57]. Mutations in genes 
involved in Aβ production, including APP, PSEN1, and 
PSEN2, cause early-onset familial AD (fAD) [12, 25], 
and genome-wide association studies (GWAS) have iden-
tified gene variants, such as APOE, that are associated 
with increased risk of developing sporadic late-onset AD 
[75].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00401-024-02755-5&domain=pdf
http://orcid.org/0000-0001-6487-8857
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Given the limited treatment options for AD patients 
and the growing demand for disease modeling platforms 
using human cells, induced pluripotent stem cells (iPSCs) 
have emerged as a powerful tool to examine AD pheno-
types. Differentiated fAD neurons show AD pathological 
features in vitro including increased Aβ42 production and 
elevated levels of p-tau [29, 35, 41, 45, 50, 64, 77]. How-
ever, adequate cell–cell interactions and the systematic 
complexity of the brain microenvironment are difficult to 
model in vitro. The injection of diseased or healthy iPSC-
derived neural cells into the mouse brain could overcome 
this limitation, since previous reports have demonstrated 
successful survival of human iPSC-derived neural cells 
after intracranial injection into rodent brains [2, 15, 16, 21, 
22, 28, 42, 61]. These models provide unique opportuni-
ties to characterize neuronal maturation, cell type-specific 
vulnerability or dysregulation, and graft–host interactions 
in a more physiological environmental context in vivo, as 
compared to pure in vitro studies.

Here, we injected iPSC-derived neural precursor cells 
(NPCs) carrying the fAD-associated APPV717I mutation 
(APPLon) and their isogenic controls (Ctrls) into the striatum 
and cortex of 2-month-old, immunocompromised mice, fol-
lowed by histological and transcriptional analyses on grafted 
cells. This approach generated neuronal grafts with signifi-
cantly altered transcriptome profiles in APPV717I neurons that 
recapitulate synaptic function-related transcriptomic dysreg-
ulation of AD with identification of potential therapeutic 
targets, including the transmembrane protein LINGO2, as 
demonstrated by comparative single cell analysis using sin-
gle nucleus RNA-sequencing (snRNA-seq).

Materials and methods

iPSC generation and differentiation

CRISPR/Cas9 genome editing was used to generate inde-
pendent APPV717I heterozygous knock-in clones in the 
control iPSC line IMR90 [clone 4, WiCell; 26, 78, 79] as 
described previously for clone 88 [68]. Clone C20 (red dots) 
and clone C30 (blue dots) were utilized in this study. These 
clones also harbor a tet-on NGN2 construct (with rtTA), but 
doxycycline was not added to differentiation steps. NPCs 
were generated from iPSC lines as previously described [14, 
20, 22, 52, 53]. Briefly, ReLeSR (STEMCELL 05872) disso-
ciated iPSC colonies were resuspended in iPSC media con-
taining 10 µM SB-431542 (Ascent Scientific), 1 µM Dorso-
morphin, 3 µM CHIR 99021 (Axon Medchem), and 0.5 µM 
purmorphamine (PMA; Alexis) and cultured as embryoid 
bodies (EBs). Medium was changed on day 2 to NPC prim-
ing medium containing the same supplements in the base of 

equal mix of DMEM-F12 (Gibco) and Neurobasal A (Gibco) 
supplemented with 0.5X B27 without vitamin A (Gibco; 
12587010), 0.5X N2 (Gibco, 17-502-048), and 1% penicil-
lin/streptomycin/glutamine (N2/B27 medium). On day 4, 
SB-431542 and Dorsomorphin were replaced with 200 µM 
ascorbic acid as the NPC maintenance media. On day 6, 
EBs were mechanically dissociated into smaller pieces and 
plated onto Matrigel-coated plates (Corning Matrigel mem-
brane matrix HC 08-774-392) in NPC maintenance media. 
On day 12, cells were dissociated with Accutase (Millipore 
Sigma) into single cells and replated onto new Matrigel-
coated plates. NPC lines were expanded and banked.

All experiments in this study used NPCs passages above 
12. NPCs were differentiated into neurons as previously 
described [14, 22, 53]. Briefly, NPCs were dissociated 
with Accutase into 50,000 cells/mL and plated onto new 
Matrigel-coated plates with NPC maintenance media, which 
is changed to neuronal induction N2/B27 medium that con-
tains 10 ng/mL FGF8, 1 µM PMA, and 200 µM ascorbic 
acid 2 days later. On day 6 of neuronal induction, media was 
replaced by neuronal maturation media containing 10 ng/mL 
GDNF, 10 ng/mL TGF-β3, 10 ng/mL BDNF (Peprotech), 
200 µM ascorbic acid and 500 µM dbcAMP (Sigma Aldrich, 
D0260). Media was changed every other day and cells were 
harvested after 3 weeks in neuronal maturation media.

Transplantation

All animal experiments were adhered to protocols approved 
by the Animal Care and Use Committee at Columbia Uni-
versity (AC-AABM1557). Transplantation experiments were 
conducted as previously described [22]. Briefly, cultured 
NPCs were lifted using Accutase (Millipore Sigma) and 
washed twice with PBS then resuspended in PBS at a density 
of 50,000 cells/µL. Three microliters of cell suspension were 
injected into the right hemisphere (position from bregma: 
+ 0.5 mm anterior, + 2.0 mm lateral, − 3.0 mm ventral) of 
8-week-old NSG mice (NOD.Cg-Prkdcscid  Il2rgtm1Wjl/SzJ 
mice, Strain #: 005557, The Jackson Laboratory).

Microdissection of grafts

Mice were anesthetized with ketamine/xylazine cocktail 
(ketamine concentration: 0.08 mg/g of mouse; xylazine 
concentration: 0.012  mg/g of mouse) followed by 
decapitation. Brains were dissected out and sectioned into 
400 μm brain slices in ice-cold HBSS using a tissue chopper 
(McIlwain). Brain slices were then transferred into HBSS-
filled petri dishes and human grafts were micro-dissected 
under a dissection microscope (Morrell) using 21-gauge 
needles (BD™). Dissected grafts were snap-frozen and 
stored at − 80 °C for snRNA-seq or protein isolation.
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Immunohistochemistry of mouse brain tissue 
with grafts

Mice were anesthetized with ketamine/xylazine cocktail 
and perfused with PBS followed by 4% PFA 2 months 
after transplantation. Brains were harvested and fixed in 
4% PFA overnight followed by storage in 15% sucrose 
in PBS for at least 24 h till sectioning. Brains were snap-
frozen in cold 2-methyl-butane (MilliporeSigma) on dry ice 
and sectioned using a cryostat (Leica) at 10 µm thickness. 
Sections were mounted onto glass slides for hematoxylin 
and eosin (H&E) staining or immunofluorescent staining 
as previously described with a few modifications [51]. 
Briefly, frozen slides were warmed to room temperature then 
washed in PBS for three times followed by 1 h blocking 
in 5% normal goat serum (NGS) or normal donkey serum 
(NDS) in 0.2% PBST (Triton X100). Primary antibodies 
were diluted in blocking buffer according to manufacturer’s 
suggested dilutions and were put onto slides in a humidified 
staining tray (Research Products International Corp; 50-998-
211) overnight. On the following day, slides were washed 
in PBS three times and incubated in secondary antibodies 
conjugated with AlexaFluor (Invitrogen) for 1 h at room 
temperature, followed by three times of washes with PBS 
and mounting in antifade mounting medium with DAPI 
(Vector Laboratories; NC9029229). Images of grafts 
were taken using the Leica Thunder microscope. Primary 
antibodies used in this study include: HNA (human nuclear 
antigen; MilliporeSigma; MAB1281; 1:200), NeuN (Abcam; 
ab104225; 1:500); LINGO2 (Thermo Fisher; PA5-99869; 
1:200); hNCAM (human-specific NCAM; ERIC1; Santa 
Cruz; sc-106; 1:200); hGFAP (human-specific GFAP; 
Takara Bio; STEM123; 1:500), GFAP (MilliporeSigma; 
MAB360; 1:500), IBA1 (Wako; 1919741; 1:500), and SPP1 
(R&D; AF808SP; 1:50).

Quantification of graft size

H&E-stained brain slides were scanned using the Leica 
Thunder microscope. Unbiased estimates of the volume of 
transplants were calculated using the Cavalieri estimator 
probe on H&E-stained serial 10 μm-thick brain sections. 
Cell counts were obtained applying the fractionator probe. 
Every tenth 10-μm-thick section of the graft was analyzed 
for the quantification. For immunofluorescent stained 
sections, grafts were located based on  HNA+ area or cellular 
density of DAPI.  HNA+,  DAPI+,  NeuN+,  Iba1+, and  SPP1+ 
cells were manually counted. GFAP immunointensity within 
the graft and within 50 μm diameter surrounding the graft 
was measured using ImageJ software. QuPath software was 
used for the quantification of  hNCAM+ fibers in indicated 
brain areas.

Single nuclei isolation and sequencing

Nuclei from micro-dissected grafts were isolated as previously 
described [3]. Briefly, frozen grafts were homogenized using 
a Dounce homogenizer in a tissue homogenizing buffer that 
contains 30% sucrose and 0.1% Triton-X 100. 15 strokes 
with the loss pestle followed by 15 strokes with the tight 
pestle were applied to each graft. The brain lysate was then 
mixed well using P1000 pipette followed by filtration through 
35 μm nylon mesh (Corning; 352235), followed by 10 min 
centrifugation of 1000 g at 4 °C. The pellet was resuspended 
in homogenizing buffer and filtered through 35 μm nylon mesh 
again followed by 10 min centrifugation of 1000g at 4 °C. The 
pellet was resuspended in PBS supplemented with 1% BSA 
and a RNAase inhibitor (Invitrogen; SUPERaseIN; AM2696). 
Samples were then submitted to the Columbia Genome Center 
for further processing and sequencing. Chromium Controller 
(10× Genomics) was used and single Cell 3′ Reagent Kit v2 
or v3 (Chromium Single Cell 3’ Library & Gel Bead Kit v2, 
catalog number: 120237; Chromium Single Cell A Chip Kit, 
48 runs, catalog number: 120236; 10× Genomics) was used. 
Illumina NOVAseq 6000 platformV4 with 150 bp paired end 
reads was applied for the sequencing step.

Statistics

Statistical comparisons between groups were performed 
using GraphPad Prism. Unpaired two-tailed t-test was used 
for comparing two groups as indicated in the figure legends. 
One-way ANOVA followed by Tukey’s multiple comparison 
tests was used to compare more than two groups.

Data availability

The raw fastq data of bulk and single nucleus RNA-seq data 
are available through GEO under the SuperSeries record 
of GSE231640 or individually through GEO accession 
numbers GSE231638 and GSE231639, respectively.

Additional information about materials and methods used 
in this study is provided as supplemental material.

Results

APPV717I iPSC neurons show amyloid and tau 
pathology, impaired neurite outgrowth, 
and dysregulated transcriptional and metabolic 
signatures

Two independent iPSC clones carrying the APPV717I muta-
tion and their isogenic Ctrls were programmed into sta-
ble neural progenitor cell (NPC) lines, followed by fur-
ther differentiation into neurons for 4  weeks (Fig.  1a). 
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Immunofluorescent staining showed successful generation 
of neurons expressing neuron-specific class III beta-tubu-
lin  (TUBB3+;  TUJ1+). APPV717I- and Ctrl-derived NPCs 
demonstrated equivalent differentiation into glutamatergic 
and GABAergic neurons (Fig. 1b). Aβ ELISA of the media 
supernatant revealed elevated Aβ42 secretion in APPV717I 
neurons, driving the increase of Aβ42/Aβ40 ratio without 
changes in the Aβ40 and Aβ38 levels (Fig. 1c). An analysis 
of the overall expression of the APP protein did not show a 
significant difference between the two groups, implying that 
the elevated production of Aβ42 may be attributed to APP 
cleavage rather than an increase in APP expression (Fig-
ure S1a, b). This observation aligns more closely with the 

physiological characteristics observed in human AD cases 
[44].  APPV717I neurons expressed increased levels of p-tau 
assessed by elevated PHF1 (Ser396/Ser404) antibody reac-
tivity (Fig. 1d), while other changes in p-tau expression were 
not observed, including Ser202/Ser205 (AT8), S356 (p-Tau 
356), T217 (p-Tau 217), and T231 (AT180) (Figure S1a, b). 
To visualize neurites, Ctrl or  APPV717I NPCs were labeled 
with GFP or mCherry, respectively, and neurite length was 
evaluated in neurons 5 days of post-differentiation. An 
assessment of neurite lengths in  APPV717I and Ctrl cultures 
revealed an impairment of neurite outgrowth in the  APPV717I 
group (Fig. 1e).

Fig. 1  APPV717I iPSC neurons show amyloid and tau pathology, 
impaired neurite outgrowth, and dysregulated transcriptional and 
metabolic signatures. a Schematic illustration of neuronal differ-
entiation in  vitro. b Immunostainings and quantification of βIII-
tubulin+  (TUBB3+,  TUJ1+),  GABA+ and vGLUT1+ neurons. 
Nuclei are counterstained with DAPI.  APPV717I and Ctrl neurons 
show equivalent numbers of neurons as well as glutamatergic and 
GABAergic neuronal subtypes. Blue and red dots represent the two 
different cell clones, and each dot represents an independent differ-
entiation. c Amyloid β ELISA for Aβ42, Aβ40 and Aβ38 on condi-
tioned media of  APPV717I and Ctrl neurons showing increased pro-
duction of Aβ42 compared with Ctrls, driving the increase of Aβ42/
Aβ40 ratio. No differences in Aβ40 and Aβ38 levels were observed 
between  APPV717I and Ctrl. d Western blot images and quantifica-
tion of the expression of PHF1 (p-tau), HT7 (total tau) and ACTIN 
in  APPV717I and Ctrl neurons showing increased p-tau but no changes 

in total tau expression in  APPV717I neurons. e Representative images 
and quantifications of neurite outgrowth in  APPV717I and Ctrl neurons 
labeled with mCherry and GFP, respectively.  APPV717I neurons show 
an impairment of neurite outgrowth 5 days of post-differentiation. f 
Heatmap of the top 100 most variable DEGs in neurons from bulk 
RNA-seq that are similar between the two  APPV717I clones but are 
significantly different from Ctrls. g Active network pathway enrich-
ment analysis of DEGs in  APPV717I neurons and Ctrl neurons show 
changes of many cellular pathway in  APPV717I neurons. The x-axis 
shows the normalized enrichment values. The adjusted p value and 
number of genes are also denoted by color and by size, respectively. h 
Seahorse assays of  APPV717I and Ctrl neurons showing that  APPV717I 
neurons have an elevated oxygen consumption rate compared to Ctrl 
neurons. i Quantification of seahorse assays. Student t-test was used 
in b, c and i. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Next, we performed bulk RNA-seq on differentiated 
 APPV717I and Ctrl neurons (Fig. 1f and g). We identified the 
top 100 most variable genes conserved between  APPV717I 
neurons derived from two separate clones, and significantly 
different from their isogenic Ctrls (Fig. 1f; Table S1). Sev-
eral top differential genes are involved in synaptic regula-
tion including GABRA3, GRM7, RBFOX1, and DPP10 [30, 
33, 62, 69, 73]. Active sub-pathway enrichment analysis 
revealed enrichment of several AD-related pathways includ-
ing the MAPK signaling pathway, calcium signaling path-
way, apoptosis, and the p53 signaling pathway (Fig. 1g; 
Table S1). Interestingly, several cancer-related pathways 
were also significantly dysregulated in  APPV717I cells. We 
also compared our in vitro bulk-seq DEGs with published 
in vitro sequencing data on human PSEN mutation carrier-
derived iPSC neurons [11]. While we did not identify tran-
scriptome profiles of dedifferentiation [11], a feature also 
seen in directly transdifferentiated AD-induced neurons 
(AD iNs) [37], we observed dysregulation of some cell-
cycle reentering makers in our  APPV717I neurons including 
CDKN1A, TP53, CDK1, HES1 and REST-repressed (GAD1) 
gene. Pathway analysis of overlapping up- and downregu-
lated genes in PSEN and  APPV717I neurons showed some 
common significantly dysregulated pathways including can-
cer-related pathways and cellular senescence (Figure S1c, 
d), suggesting convergent dysregulated pathways affected 
by familial PSEN and APP mutations.

Next, we wondered if  APPV717I neurons show mitochon-
drial phenotypes since mitochondrial dysfunction and abnor-
mal bioenergetic profiles have been implicated in the patho-
genesis of AD, including elevated oxidative stress [40]. Our 
bulk expression data identified dysregulation of metabolic 
and mitochondrial function-related pathways in  APPV717I 
neurons, including central carbon metabolism, amino acid 
metabolism and calcium signaling (Fig. 1g). We evalu-
ated mitochondrial function in  APPV717I neurons. Seahorse 
assays revealed an increased oxidative consumption rate in 
 APPV717I neurons with elevated basal respiration, proton 
leak, maximal respiration, non-mitochondrial respiration, 
and a trend towards increased ATP production (p = 0.06) 
(Fig. 1h and i). We then performed polar metabolite profiling 
of metabolites involved in the glycolysis, TCA cycle and the 
metabolism of fatty acids, amino acids, and nucleotides in 
our  APPV717I neurons combined with quantitative pathway 
enrichment analysis of dysregulated metabolites. These anal-
yses revealed alterations in several key metabolic pathways 
in  APPV717I neurons, including glycolysis, aspartate metab-
olism, urea cycle and purine and pyrimidine metabolism, 
which have been implicated in AD (Figure S1e-f; Table S1) 
[47]. These data indicate altered bioenergetic profiles in 
 APPV717I neurons compared to their isogenic Ctrls.

APPV717I and Ctrl iPSC‑derived neural grafts survive 
in the adult mouse brain and are composed 
predominantly of neurons

To study the pathology of  APPV717I neurons in a three-
dimensional, physiological environment, we next trans-
planted  APPV717I and Ctrl iPSC-derived NPCs into the 
cortex and striatum of 2-month-old immunodeficient NOD.
Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Fig. 2a). Eight weeks after 
injection, brains were examined histologically, revealing via-
ble neuronal grafts in all animals without tissue overgrowth 
and with similar graft sizes in the  APPV717I and Ctrl group 
(Fig. 2b). Quantification of immunostainings for NeuN, 
human-specific GFAP and human nuclear antigen (HNA) 
demonstrated that about 90% of the injected human cells 
had differentiated into  NeuN+/HNA+ neurons and that about 
10% had differentiated into  hGFAP+ astrocytes, with similar 
percentages in both groups (Fig. 2c–i).  APPV717I and Ctrl 
neurons also expressed the neural cell adhesion molecule 
NCAM using a human-specific antibody (hNCAM; Fig. 2g 
and h). These findings indicated successful survival and 
maturation of neural cells in vivo (Fig. 2b). No Aβ+ amy-
loid plaques or p-tau+ neurofibrillary tangles were observed 
at this point of analysis. We also examined the host micro-
environment within and adjacent to the  APPV717I and Ctrl 
neuronal grafts and quantified the abundance of  GFAP+ 
reactive astrocytes and of  Iba1+ and  SPP1+ microglia in the 
graft core and at the graft–host interface. Although we did 
not observe significant differences in microglial activation 
and astrocyte reactivity, a trend towards increased GFAP 
reactivity within AD grafts (p = 0.06) was present in these 
areas at this time point of grafting (Figure S2a, b).

Single‑nucleus RNA‑seq reveals increased 
vulnerability and synaptic dysfunction 
in transplanted  APPV717I neurons

Encouraged by the successful survival of neuronal grafts, 
we next asked if the grafted  APPV717I neurons carried 
altered gene expression signatures in the adult brain. 
We micro-dissected  APPV717I and Ctrl grafts from the 
brains and performed single nucleus RNA-sequencing 
(snRNA-seq), which captures both engrafted human 
cells and nearby host cells (Fig. 3a). Within the cluster 
of human nuclei from all grafts, we identified a total of 
15,699  APPV717I and 20,497 Ctrl nuclei, with ~ 90% of 
nuclei annotated as neurons (14,367  APPV717I neurons 
and 17,928 Ctrl neurons) and 10% as astrocytes (1332 
 APPV717I astrocytes and 2569 Ctrl astrocytes), which is 
consistent with our histological analysis (Fig. 3b). Nota-
bly, there was a separation within the neuronal cluster with 
glutamatergic and GABAergic neurons when comparing 
the  APPV717I and Ctrl groups in the UMAP plot (Fig. 3c; 
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Figure S3a–c). We identified differentially expressed genes 
(DEGs) in  APPV717I neurons and investigated the KEGG 
pathways that were enriched in  APPV717I versus Ctrl neu-
rons (Fig. 3d and e; Table S1). As with our bulk RNA-
seq analysis, many synaptic function-related pathways 
were dysregulated in AD neurons including glutamater-
gic synapse, GABAergic synapse, long-term potentiation, 
calcium signaling, and long-term depression. In addition, 
pathways linked to mitophagy, MAPK signaling pathway, 
axon guidance and Alzheimer’s disease were also enriched 

in  APPV717I neurons (Fig. 3e; Table S1). A clear separa-
tion of transcriptome profiles was also observed in grafted 
 APPV717I astrocytes with an enrichment of many KEGG 
pathways including glutamatergic synapse, axon guidance 
and Rap and Ras signaling pathways, that play important 
roles in the pathogenesis of AD (Figure S4a–c; Table S1).

To examine how the brain environment affects DEG 
patterns in  APPV717I neurons, we compared differences in 
DEGs in human neuronal clusters comparing in vitro bulk-
seq and in vivo pseudobulk seq data (Fig. 3f and g). We 

Fig. 2  Histology of  APPV717I and Ctrl grafts 2 months after cell injec-
tion into the cortex and striatum of adult mice. a Schematic illustra-
tion of NPC transplantation into the brain of an immunocompromised 
adult mouse. Post-transplantation analysis, including histology and 
snRNA-seq, was conducted after 8 weeks of grafting. b H&E stain-
ing and volume quantification of mouse brain slices with human 
grafts. Human cells appear lighter compared to mouse cells. Graft 
sizes were comparable between  APPV717I and Ctrl. c and d Quanti-
fication of neurons (c) and astrocytes (d) in  APPV717I and Ctrl grafts. 
Around 90% human cells differentiated into neurons and 10% of cells 

differentiated into astrocytes in both groups. e Immunostainings of 
Ctrl and  APPV717I grafts for neurons using antibodies for NeuN and 
human nuclear antigen (HNA) with DAPI nuclear staining. f DAB 
stainings for NeuN highlighting neurons within Ctrl and  APPV717I 
grafts. g and h DAB stainings for the neural cell adhesion molecule 
NCAM using a human-specific antibody (hNCAM) highlighting neu-
rons in the center (g) and periphery (h) of Ctrl and  APPV717I grafts. i 
Immunostainings of Ctrl and  APPV717I grafts for astrocytes using an 
antibody for human glial fibrillary acidic protein (hGFAP) with DAPI 
nuclear staining.
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Fig. 3  Single-nucleus RNA-sequencing of  APPV717I and Ctrl grafts 
2 months post-engraftment. a–c UAMPs showing separations of 
nuclear profiles comparing human versus mouse (a), human neurons 
versus human astrocytes (b), as well as human  APPV717I neurons 
versus human Ctrl neurons (c). d Heatmap showing the top 30 most 
variable up- and downregulated DEGs in grafted  APPV717I versus Ctrl 
neurons. e Pathway enrichment analysis of DEGs in grafted  APPV717I 
versus Ctrl neurons. The x-axis shows the normalized enrichment 

values. The adjusted p value and number of genes are also denoted 
by color and by size, respectively. f Venn diagram showing up- and 
downregulated DEGs in  APPV717I versus Ctrl neurons in grafts versus 
in vitro. g Pathway enrichment analysis of DEGs uniquely found in 
grafted  APPV717I neurons. The x-axis shows the normalized enrich-
ment values. The adjusted p value and number of genes are also 
denoted by color and by size, respectively
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found that synaptic function-related pathways including 
glutamatergic synapse and long-term depression, calcium 
signaling pathways as well as neurodevelopment related 
pathways, including cell adhesion molecules and axon 
guidance, are further enriched in grafts compared to 
cultured cells. These results suggest that the in  vivo 
environment promotes the development of synaptic 
function and the maturation of neurons, and they highlight 
synaptic dysfunction in  APPV717I neurons in vivo (Fig. 3f 
and g).

We next investigated gene expression profiles in host cells 
within and adjacent to  APPV717I and Ctrl grafts to interrogate 
non-cell autonomous transcriptomic changes induced by 
grafted human cells (Figure S2c–g). We identified the 
major murine cell types including neurons, microglia, 
astrocytes, oligodendrocytes, and endothelial cells (Figure 
S2c–d). Interestingly, the host neurons within and adjacent 
to  APPV717I grafts demonstrated significantly altered gene 
expression profiles (Figure S2c, d), with 65 upregulated 
and 142 downregulated DEGs in mouse neurons in the 
 APPV717I group (Figure S2e, f; Table S1). Pathway analysis 
of these DEGs revealed many perturbed cellular pathways 
that are essential for normal brain function, including 
several aforementioned synaptic function-related pathways 
(glutamatergic synapse, GABAergic synapse, long-term 
potentiation, calcium signaling, and long-term depression), 
small GTPase-mediated pathways, axon guidance, and the 
MAPK signaling pathway (Figure S2g; Table S1). These 
results indicate that engrafted human  APPV717I neurons 
and astrocytes induce significant cell-extrinsic changes in 
previously healthy neighboring murine host neurons.

Comparative single nucleus RNA‑seq analysis 
of grafted  APPV717I and human postmortem AD 
neurons captures overlapping transcriptome 
signatures

To further characterize the single cell transcriptome pro-
file in grafted  APPV717I neurons, we compared upregulated 
DEGs of in vitro-cultured and grafted  APPV717I neurons 
with published DEGs from cortical neurons profiled from 
postmortem AD brain tissue from individuals in the ROS 
and MAP cohorts [10, 34] (Fig. 4a). We also included an 
additional group of AD-associated GWAS hits [60] (https:// 
www. ebi. ac. uk/ gwas/) for this comparative analysis to 
expand the pool of AD-relevant genes and also to curate the 
list of overlapping genes with importance to AD (Fig. 4a). 
Notably, almost 40% of the upregulated DEGs in  APPV717I 
grafts are also found in human AD brains (compared to 
healthy controls) or in AD GWAS studies (150 out of 387 
DEGs; Fig. 4a; red circle; Table S1). KEGG pathway analy-
sis of these shared DEGs revealed changes in neuroactive 
ligand–receptor interaction, axon guidance and synaptic 

function-related pathways in  APPV717I neurons, including 
glutamatergic and GABAergic synapse (Fig. 4b; Table S1). 
Although there are substantial differences in maturity and 
circuit-formation between our grafted neurons and aged 
neurons from postmortem tissue, these results indicate that 
important AD-related transcriptional changes, in particular 
synapse-associated ones, can be captured in our chimeric 
transplantation model of AD. Immunoblotting of micro-dis-
sected  APPV717I and Ctrl grafts further confirmed the phe-
notype of impaired neurite and synaptic health, as  APPV717I 
grafts showed a significant reduction of hNCAM and PSD95 
proteins compared to Ctrl grafts (Fig. 4c).

To further validate this finding and to evaluate if these 
early transcriptional phenotypes in grafted  APPV717I neurons 
translate into changes in neuronal survival and neurite 
extension in the mouse brain later-on, we transplanted 
 APPV717I and Ctrl NPCs into the cortex and striatum of 
adult mice followed by histological analysis 12 months 
after cell injection (Figure S5). While all mice contained 
surviving grafts, the graft size and the total number of 
surviving neurons were significantly reduced in the  APPV717I 
group (Figure S5a-c). Amyloid plaque pathology was not 
observed in the grafts, but the  APPV717I grafts contained an 
increased number of p-tau+ (AT8+) neurons with diffuse 
cytoplasmic staining without tangle formation (Figure 
S5d-e). Concordantly, MC1 stainings for conformationally 
altered tau were negative (Figure S5f). A small number 
of cells in both groups (less than 1%) was positive for the 
apoptosis marker cleaved caspase 3 (Figure S5g) or for the 
phosphorylated form of the necroptosis marker Receptor 
Interacting Protein Kinase 1 (pRIP1) (Figure S5h). We 
then examined the outgrowth of transplanted  APPV717I and 
Ctrl neurons in the brains 12 months after injection and 
found pronounced impairment of neurite extension into 
the surrounding brain parenchyma with reduced number of 
 hNCAM+ axonal projections in the cortex, basal ganglia, 
and white matter tracts of the ipsilateral and contralateral 
hemispheres in the  APPV717I group (Figure S5i-p).

We next focused on the DEGs that are consistently 
upregulated in cultured and 2  month-grafted  APPV717I 
neurons and in neurons from postmortem AD brain tissue 
(Fig. 4a blue circle; Fig. 4d, Figure S3d, Table S1). Based 
on the overall expression levels and expression fold-changes 
in AD neurons, their cellular function, and their relevance 
to AD, we selected 12 genes for validation by RTqPCR 
in cultured  APPV717I neurons. 8 of these genes (LINGO2, 
RBFOX1, NRG3, IL1RAPL1, GRM7, DPP10, SYN1, and 
HCN1) were significantly upregulated (Fig.  4e), while 
4 of these genes (GABRA2, PCDH11X, KHDRBS2, and 
PLCXD3) demonstrated only a trend towards increased 
expression in the  APPV717I group (Figure S3e). Among 
these 8 significantly upregulated genes, LINGO2 and 
RBFOX1 are also listed in AD GWAS studies and thus, 

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
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Fig. 4  Comparative single nucleus RNA-seq analysis of grafted and 
human postmortem  APPV717I neurons captures overlapping tran-
scriptome signatures. a Venn diagram of upregulated DEGs derived 
from snRNA-seq of human postmortem AD versus Ctrl neurons, 
AD GWAS hits (GWAS Catalog; EMBL-EBI), snRNA-seq of trans-
planted human  APPV717I versus Ctrl neurons, and cultured  APPV717I 
versus Ctrl neurons. Red circle indicates DEGs overlapping between 
grafted  APPV717I neurons and human AD brains/GWAS. Blue circle 
indicates DEGs overlapping between in  vitro, graft and human AD 
brains/GWAS. b Pathway analysis of DEGs overlapping between all 4 
groups (red circle in a). Grafted  APPV717I neurons show preservation 
of dysfunctional pathways of AD brains that are related to synaptic 

function. The x-axis shows the gene ratio. The adjusted p value and 
number of genes are also denoted by color and by size, respectively. 
c Western blot images with quantification after micro-dissection of 
 APPV717I and Ctrl grafts showing reduced expression of PSD95 and 
hNCAM in  APPV717I grafts. d Violin plots showing expression levels 
of indicated genes in grafted  APPV717I and Ctrl neurons. e RTqPCR 
validation of the expression of selected DEGs in cultured  APPV717I 
versus Ctrl neurons. f and g Immunostainings (f) with quantifica-
tion (g) for the validation of increased expression of LINGO2 and 
RBFOX1 in grafted human  APPV717I cells. Student t-test was used in 
c, e and g, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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we further validated an upregulation of these two markers 
in  APPV717I grafts by immunostaining (Fig. 4f and g). In 
contrast to upregulated DEGs, only few genes (TCEAL2, 
EBF1, EBF2, MAP1LC3A, ZNF429, ZNF793, ZNF248 and 
ZNF680) were commonly downregulated in cultured, grafted 
and postmortem AD neurons, all of which demonstrated 
relatively low expression levels in  APPV717I grafts (Figure 
S3f, g).

Downregulation of LINGO2 rescues neurite 
outgrowth deficits and reverses gene expression 
of AD‑related pathways in  APPV717I neurons

Having identified LINGO2 and RBFOX1 as key genes that 
show conserved changes in our in vitro system as well as 
in human genetic and postmortem tissue data, we asked if 
targeting LINGO2 and RBFOX1 would lead to a rescue of 
disease phenotypes in  APPV717I neurons, thereby establish-
ing these genes as potential therapeutic targets in AD. While 
downregulation of RBFOX1 showed only a limited effect 
on the phenotypes of  APPV717I neurons (Figure S6a–g), 
LINGO2 showed more pronounced effects in our targeting 
experiments. LINGO2 (leucine rich repeat and Ig domain 
containing 2) is a transmembrane protein and a homolog of 
LINGO1, which negatively regulates neuronal growth and 
cell survival [27]. To assess LINGO2 function in  APPV717I 
neurons, LINGO2 knockdown NPC lines were generated 
by transducing NPCs with lentiviral particles containing 
LINGO2 shRNA (Fig. 5a). Downregulation of LINGO2 in 
differentiated  APPV717I neurons was confirmed by RTqPCR 
and did not affect the expression of LINGO1, which was also 
upregulated in AD neurons (Fig. 5b). We next performed 
neurite outgrowth assays by measuring lengths of neurons 
24 h after replating at the end of differentiation [14]. These 
assays confirmed our previous findings of impaired neurite 
extension in  APPV717I neurons (Fig. 1e), with reduced neu-
rite lengths in non-target-shRNA transduced  APPV717I neu-
rons (AD-NT) compared to non-target-shRNA transduced 
Ctrl neurons (Ctrl-NT) (Fig. 5c). However, LINGO2 knock-
down in  APPV717I neurons  (APPV717I-LINGO2KD) showed 
a significant improvement of neurite outgrowth (Fig. 5c). 
To ensure that the neurite outgrowth changes were not influ-
enced by a potential vulnerability caused by replating neu-
rons, we also measured neurite lengths in these three groups 
after 5 days of differentiation and a similar rescue effect of 
LINGO2 knockdown on neurite outgrowth was observed in 
our  APPV717I neurons (Figure S7a-b). Together, these data 
suggest that LINGO2 knockdown rescued neurite outgrowth 
deficits of  APPV717I neurons.

We next performed bulk RNA-seq on differentiated 
Ctrl-NT,  APPV717I-NT and  APPV717I-LINGO2KD neurons to 
characterize genes and pathways that are rescued by LINGO2 
knockdown (Fig. 5d–g; Table S1). Principal component 

analysis demonstrated that these three groups formed 
separate clusters (Figure S7c). Compared to  APPV717I-NT 
neurons, 407 genes were significantly upregulated, 
and 520 genes were significantly downregulated in 
 APPV717I-LINGO2KD neurons (Figure S7d; Table S1). We 
then selected genes from this DEG pool, whose expression 
is similar in Ctrl-NT and  APPV717I-LINGO2KD neurons but 
significantly different in  APPV717I-NT neurons. A total of 191 
genes were identified and the top 100 most variable genes 
are shown in Fig. 5d (see also Table S1). Pathway analysis 
of these DEGs identified several AD-related pathways 
including the p53 signaling pathway, apoptosis, necroptosis, 
mitophagy, and cellular senescence and synapse-related 
pathways such as calcium signaling, which were rescued 
by LINGO2 KD (Fig. 5g-h; Table S1). Rescued expression 
of key DEGs in these pathways showed some functional 
overlap (Fig. 5f), and were validated by RTqPCR, including 
BAX, ITPR1, CAMK2D, GADD45A, SQSTM1, TNFRSF10, 
MDM2, and CDKN1A (Fig. 5h). Interestingly, LINGO2 KD 
increased Aβ42 production without significantly altering the 
Aβ42/Aβ40 ratio, and it had no effect on p-tau levels (Figure 
S7e-i), indicating that the rescue effects on aforementioned 
pathways may be independent of Aβ and tau pathology in 
 APPV717I-LINGO2KD neurons.

The KEGG pathway analysis also identified alterations 
in the ERK/MAPK signaling pathway (Fig.  5e). The 
ERK signaling pathway has been associated with p53-
mediated apoptosis and promotes cellular senescence [67, 
80], and hyperphosphorylation of ERK has been linked 
to the pathogenesis of AD [32]. Thus, we performed 
immunoblotting for ERK and phospho-ERK on neuronal 
lysates and found a decrease of total ERK and p-ERK/
ERK in  APPV717I neurons after LINGO2 KD (Fig. 5i). 
These findings indicate that downregulation of p-ERK in 
 APPV717I neurons via LINGO KD might at least in part 
explain observed beneficial effects on p53-, apoptosis-, 
and cellular senescence-associated pathways (Fig. 5j).

Discussion

Here, we characterized pathological and transcriptomic 
changes in human iPSC-derived neurons carrying the 
APPV717I mutation and uncovered previously unrecognized 
transcriptomic alterations induced by this common fAD 
mutation. In vitro differentiated  APPV717I neurons exhib-
ited elevated levels of Aβ42 and p-tau, consistent with pub-
lished literature demonstrating that the APPV717I mutation 
alters APP cleavage, favors Aβ42 production and induces tau 
pathology [41, 48, 68]. In addition, we observed mitochon-
drial dysfunction, neurite outgrowth deficits, and altered 
polar metabolite profiling in  APPV717I neurons compared to 
their isogenic Ctrl in vitro, as similarly described in various 
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amyloid models [7, 8, 39, 49, 63, 74]. Xenografted NPCs 
successfully survived and differentiated into neurons and 
astrocytes in adult mouse brains. snRNA-seq analysis of 
micro-dissected human grafts revealed significantly altered 
transcriptional profiles in  APPV717I neurons, including those 
related to dysregulated synaptic function. These changes 

were further highlighted by comparing DEGs of  APPV717I 
grafts with data from human postmortem AD brains and 
GWAS studies.

The transcriptome changes in grafted human  APPV717I 
neurons may be a result of both cell autonomous and non-
cell autonomous effects that are mediated, at least in part, 

Fig. 5  Downregulation of LINGO2 rescues neurite outgrowth defi-
cits and reverses gene expression of AD-related pathways in  APPV717I 
neurons. a Schematic illustration of shRNA-mediated downregula-
tion of LINGO2 in  APPV717I neurons in  vitro. b RTqPCR demon-
strates successful downregulation of LINGO2, but not LINGO1, in 
 APPV717I neurons. c Images and quantifications of neurite outgrowth 
show that LINGO2 knockdown (LINGO2KD) rescues the neurite 
outgrowth deficit of  APPV717I cells. d Heatmap showing the top 100 
most variable rescued DEGs after LINGO2 knockdown in  APPV717I 
cells. e Pathway enrichment analysis of rescued DEGs by LINGO2 
knockdown in  APPV717I neurons. The x-axis shows the normalized 
enrichment values. The adjusted p value and number of genes are also 
denoted by color and by size, respectively. f Term gene graph show-
ing functional overlap between selected rescued pathways. g Heat-
maps of rescued genes in selected pathways. h RTqPCR validation 

of selected key modulating genes. i Western blot images with quan-
tification of the expression of p-ERK and ERK in Ctrl and  APPV717I 
neurons with and without LINGO2 knockdown. j Schematic draw-
ing summarizing the downstream effects of LINGO2 downregula-
tion in  APPV717I neurons. In  APPV717I neurons, LINGO2 expression 
is increased leading to hyperactivated ERK that results in increased 
signaling in p53, BAX, and p21-related pathways and contributes to 
cellar senescence and apoptosis. Downregulation of LINGO2 allevi-
ates the hyperphosphorylation of ERK that attenuates cellular senes-
cence and apoptosis driven by p53, BAX, and p21-related pathways. 
One-way ANOVA with Tukey post-hoc test was used in b, c, h and 
i, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Ctrl-NT and 
 APPV717I-NT: Ctrl and  APPV717I neurons transduced with non-target-
control virus
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by Aβ. The APPV717I mutation increases the production of 
Aβ42 in neurons, and there is increasing evidence that pre-
fibrillar soluble oligomeric Aβ species play a central role in 
AD pathogenesis, damping neuronal function and contrib-
uting to brain damage in AD, that led to the Aβ oligomer 
(AβO) hypothesis [59, 72]. In support of this hypothesis, a 
single exposure to low levels of Aβ42 is sufficient to induce 
synapse-related gene expression changes in iPSC-derived 
neurons and calcium signaling alterations in iPSC-derived 
astrocytes that may contribute to early changes in neuronal 
network activities [36]. In addition, increased intracellu-
lar Aβ production can affect cellular pathways and synap-
tic health that precedes plaque formation [6, 17]. In line 
with these studies, the transcriptome changes we observed 
in grafted human  APPV717I neurons and astrocytes can be 
explained by the exposure to Aβ42 produced by neighboring 
 APPV717I cells and by APP cleavage alterations intracellu-
larly. Such increased exposure to Aβ may also explain some 
of the synaptic functional changes in early AD brains that 
proceed plaques, tangles, and neuronal cell death [18].

The injection of human  APPV717I neurons and astrocytes 
resulted in significant transcriptional alterations in 
previously healthy neighboring murine host neurons, 
disrupting many cellular pathways essential for normal 
brain function, including those related to synaptic function. 
These effects are likely induced by Aβ42 secreted by human 
 APPV717I neurons, but other secreted factors or direct contact 
with  APPV717I cells may also contribute to the transcriptome 
changes. These findings further underscore the non-cell 
autonomous effects of the  APPV717I mutation on cellular 
function.

Our cell injection model complements previously pub-
lished neuronal chimeric models related to AD, which 
have proven instrumental in AD research [28]. The injec-
tion of human embryonic stem cell (ESC)-derived NPCs 
into immunocompromised APP/PS1-21-NOD-SCID mice 
[15] or Rag2−/−/AppNL−G−F mice [5] resulted in successful 
engraftment of neurons exhibiting key AD pathological fea-
tures in the presence of amyloid plaques, which were not 
seen after cell injection into NOD-SCID or Rag2−/− control 
mice devoid of Aβ pathology. These pathological features 
included amyloid-associated neurite dystrophy 4 months 
after cell injection [15], formation of p-tau positive tangles in 
human neurons 18 months after cell injection, and increased 
death of human neurons linked to MEG3-associated necrop-
tosis, which was noted already 6 months after cell injec-
tion [5]. Besides amyloid-induced toxicity, chimeric models 
have been employed to investigate AD risk factors, such as 
APOE4. The injection of human iPSC-derived APOE4/4 
neurons into E4KI mice has revealed dysregulated pathways 
encompassing synaptic function, calcium homeostasis, and 
apoptosis 7 months after cell injection [42]. Complementing 
these studies, we have noted changes in AD-related synaptic 

gene expression signatures in xenografted  APPV717I neurons 
2 months after cell injection, and we have identified neuronal 
cell loss, neurite outgrowth deficits and p-tau pathology in 
 APPV717I neurons 12 months post-injection. Interestingly, 
transplanted  APPV717I neurons did not induce plaque forma-
tion at both time points. The absence of plaque formation 
could be related to an intact amyloid clearing system in the 
host brains, to the still relatively limited observation time of 
up to 12 months post-injection, and to an elevated Aβ pro-
duction that may not be sufficient to induce plaque formation 
in the mouse brains. Genetically modified amyloid mouse 
models often overexpress the human APP gene with multiple 
familial AD mutations but still require several months to 
develop plaques [55]. A heterozygous APP knock-in mouse 
model of AD that harbors the Swedish and Beyreuther/
Iberian mutations  (AppNL−F/wt mice) exhibits cortical amy-
loidosis only after 24 months [54]. Our human  APPV717I 
neurons, which are heterozygous for the fAD mutation, were 
xenografted in a small portion of the brains of NSG mice 
for up to 12 months. Consequently, a lack of plaque forma-
tion is not surprising. However, pronounced transcriptome 
alterations were evident in xenografted  APPV717I neurons 
despite the lack of plaque formation, highlighting a possi-
ble substantial toxicity of soluble Aβ42 oligomers. The lack 
of amyloid plaques may also explain observed differences 
in necroptotic cell death, which was low in our 12-month 
 APPV717I grafts but significantly induced by amyloid plaques 
in human ESC-derived neural grafts [5]. Despite variations 
in study strategies and the focus on different genetic variants, 
time points of analysis and mouse models for cell injection, 
the convergence of various disease phenotypes in our and 
published studies suggests a shared disturbance in several 
cellular pathways that may contribute to the pathogenesis 
of AD.

LINGO2 emerged as one of the upregulated genes in 
the neurons of both  APPV717I grafts and in postmortem 
brain tissue from donors with AD. LINGO2 is a paralog of 
LINGO1 with assumed similar function as LINGO1 [13], 
which increases neuronal vulnerability and inhibits neurite 
regeneration in a spinal cord lesion model [27]. LINGO1 
and LINGO2 are associated with increased risk of essential 
tremor and Parkinson’s disease, and a single nucleotide 
polymorphism of LINGO2 is associated with increased risk 
of AD [43, 71]. LINGO1, along with LINGO2 and LINGO3, 
promotes lysosomal degradation of APP in immortalized 
cell lines of AD, leading to a decrease in Aβ production from 
the amyloidogenic pathway [13], while beneficial effects 
of LINGO1 blockage on amyloid burden have also been 
reported in AD mouse models [23]. We found that LINGO2 
downregulation elevated Aβ42 levels in  APPV717I neurons but 
it is currently not known if LINGO2 interacts with APP, as 
described for LINGO1 that directly interacts with APP via 
its ectodomain [4, 65]. LINGO2 and LINGO1 proteins share 
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61% sequence similarity [38] encouraging future studies to 
precisely examine a potential interaction of LINGO2 with 
wildtype and mutant forms of APP. Notably, a recent study 
revealed that cell-secreted Aβ upregulates genes related to 
synaptic function, with LINGO2 identified among DEGs 
in human induced neurons [36]. This finding suggests that 
LINGO2 expression levels can be elevated by increased 
Aβ secretion, which triggers signaling cascades that may 
contribute to cellular damage.

Consistent with reported functions of LINGO1/LINGO2, 
downregulation of LINGO2 rescued neurite outgrowth 
deficits in  APPV717I neurons. In addition, the LINGO2 KD 
reversed several transcriptome signatures in  APPV717I neu-
rons to Ctrl levels, including those related to synaptic func-
tion as well as apoptosis and cellular senescence, which are 
activated in AD in addition to alternative cell death-asso-
ciated pathways [24, 70]. Recent work demonstrated that 
AD patient brains contain a significantly higher number of 
neurons that express senescence marker, and cultured AD 
neurons (iNs) displayed a senescence-like state with a senes-
cence-associated pro-inflammatory phenotype [24]. Regula-
tion of senescence and cell viability has been linked to the 
ERK signaling pathway [9, 58, 76]. While the effects of 
ERK signaling depend on cell type, duration and magnitude 
of activation [9, 66], its activation can be pro-apoptotic and 
promotes cellular senescence via p53 and p21 pathways [31, 
32, 67]. Furthermore, its activation supports cell death in 
cultured neurons [66]. Here, we demonstrate an enrichment 
of the ERK/MAPK signaling pathway in  APPV717I neurons, 
which was reversed after LINGO2 KD. In addition, down-
regulation of LINGO2 reduced the levels of p-ERK and total 
ERK in  APPV717I neurons. These findings are consistent with 
previous reports that showed reduced phosphorylation of 
ERK after LINGO2 downregulation in cancer cells [31]. 
Thus, our findings suggest that LINGO2 KD confers benefi-
cial effects in  APPV717I neurons by affecting cellular signal-
ing pathways including ERK/MAPK signaling with a down-
regulation of apoptosis- and senescence-associated genes. 
Future studies examining the effect of LINGO2 KD in vivo 
and evaluating its effect in combination with anti-amyloid 
drugs might provide additional insights into LINGO2 as a 
potential therapeutic target in AD.

Our transplantation approach could be applied to 
study the effects of selected compounds of interest on 
 APPV717I neurons and their microenvironment in vivo and 
to assess their blood brain barrier penetrance and efficacy 
in preclinical settings. Yet, despite its strong translational 
value, there are some limitations to this study. First, only 
male mice and only female  APPV717I and Ctrl cells were 
used in this study, while sex-differences in astroglial and 
microglial reactivity [1, 19] and in AD pathology [46] 
have been described. This is partially mitigated by our 

comparison with published data from postmortem human 
tissue that included balanced sampling of donors of both 
sexes. Future comparisons between female and male mice 
as well as female and male cells for injection could identify 
sex-specific changes in AD disease phenotypes. Second, 
 APPV717I and Ctrl cells were injected into the forebrain 
of NSG mice lacking amyloid or tau pathology. Since 
AD pathology in host brains can accelerate and aggravate 
pathology in transplanted cells [5, 15], future comparative 
studies could include such models as well as different sites of 
injection and time points of analysis to assess additional cell-
extrinsic effects of the host microenvironment on grafted 
 APPV717I neurons. Third, there are many differences between 
the DEGs in human postmortem AD neurons and the DEGs 
in grafted  APPV717I neurons. These differences could 
be related to the mutational status of neurons and to the 
presence of AD histopathological changes in human brains 
but not in grafts including amyloid plaques, neurofibrillary 
tangles and reactive microglia. Fourth, we downregulated 
LINGO2 in  APPV717I neurons and tested rescue of neurite 
outgrowth and transcriptional dysregulation only in vitro 
since those phenotypes were very prominent in cultured 
neurons. Future studies could test the effects of LINGO 
KD in transplanted  APPV717I neurons, which might provide 
additional information about the function of LINGO2 on 
neuronal health. In addition, it is very unlikely that LINGO2 
is the only driver of AD pathogenesis. Several other potential 
therapeutic targets surfaced with our approach and their 
disease mechanisms remain to be further explored.
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