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TOMM40 ’523 genotype and late-life cognitive decline.
Methods: Participants were community-dwelling older persons who had annual cognitive assess-
ments and brain autopsies after death. Genotyping used DNA from peripheral blood or postmortem
brain tissue. Linear mixed models assessed the extent to which the association of ’523 genotype with
cognitive decline is attributable to neuropathologies.
Results: Relative to ε3/3 homozygotes with ’523-S/VL or ’523-VL/VL genotype, both ’523-L
carriers and ε3/3 homozygotes with ’523-S/S genotype had faster cognitive decline. The association
of ’523-L with cognitive decline was attenuated and no longer significant after controlling for
Alzheimer’s and other neuropathologies. By contrast, the association of ’523-S/S was unchanged.
Discussion: There are two distinct TOMM40 ’523 signals in relation to late-life cognitive decline.
One signal primarily acts through AD and other common neuropathologies, whereas the other
operates through a different mechanism.
� 2017 the Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Apolipoprotein E (APOE Q) is the best-known susceptibil-
ity gene for late-onset Alzheimer disease (AD) [1]. The
region on chromosome 19 that harbors the APOE gene
includes a large haplotype block that contains several other
genes including apolipoprotein C1 (APOC1) and translocase
of outer mitochondrial membrane 40 (TOMM40) [2]. Beside
APOE ε alleles, multiple genetic variations within the block
have also been implicated in AD [3–7]. TOMM40 ’523, a
poly-T polymorphism at an intronic region of TOMM40, is
of particular interest. The variable length of poly-T repeat
ghts reserved.
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at ’523 locus is associated with age at disease onset and
cognition [7–9]. Notably, the variant is in linkage
disequilibrium (LD) with APOE genotype. Among
Caucasians, APOE ε4 is exclusively linked to the long
(’523-L) poly-T repeat whereas ε3 can be linked to either
short (’523-S) or very long (’523-VL) poly-T repeat. This
LD structure has two implications. The close linkage be-
tween ε4 and ’523-L raises the question whether TOMM40
’523-L is merely a proxy of ε4 [10]. By contrast, three major
’523 genotypes are present in APOE ε3/3 homozygotes,
namely ’523-S/S, ’523-S/VL and ’523-VL/VL. An earlier
study found that age at AD onset varies across these three ge-
notypes [11], and we recently reported that ’523-S/S carriers
exhibit faster decline in late-life cognition compared with
’523-S/VL or ’523-VL/VL carriers [12]. These findings sug-
gest that the ’523 effect is not fully attributable to the LD
with APOE variants. However, the neurobiologic or patho-
biologic basis underlying these associations remains unclear.
Evidence suggests that the ε4 allele is directly involved in
the pathogenesis of AD via regulating b-amyloid accumula-
tion, a key neuropathologic feature of the disease [13–15]. In
this study, we aimed to determine whether the ’523 effect
was related to AD or other neuropathologies among
persons with APOE ε3/3.

To examine the role of common neuropathologies in the
relationship between TOMM40 ’523 genotype and longitudi-
nal cognitive decline, we leveraged cognitive, genetic, and
neuropathologic data from a large number of community-
based older Caucasian Americans who were followed annu-
ally for up to 21 years and had undergone brain autopsy after
death. We previously reported that AD pathology in general,
and b-amyloid in particular, mediates the effect of APOE ε4
with cognitive decline and AD dementia [16,17]. Owing to its
strong linkage with APOE ε4, we first confirm that the same
relationship exists for TOMM40 ’523-L. Then, we test the
hypothesis that among persons with APOE ε3/3, the
’523-S/S is also associated with measures of AD pathology.
Failure to find such an association, in contrast to a strong
association between the APOE ε4–’523-L haplotype and
AD pathology, would suggest that the two genes have
separate and relatively independent effects on cognition and
operate through different pathologic mechanisms.
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2. Methods

2.1. Study participants

Participants came from two ongoing longitudinal cohort
studies of aging and dementia, the Religious Orders Study
(ROS) [18] and the Rush Memory and Aging Project
(MAP) [19]. ROS and MAP enroll community-dwelling
older persons without known dementia. Participants were
followed annually for detailed cognitive and clinical assess-
ments; all agreed to brain donation after death. Both studies
were approved by the Institutional Review Board of Rush
University Medical Center, and written informed consent
FLA 5.4.0 DTD � JALZ2398_proof
and an Anatomical Gift Act were provided by each partici-
pant. By early January 2017, 1501 participants of European
ancestry had died, of which 1326 had undergone brain
autopsy (autopsy rate 5 88.3%). The present study focused
on individuals who had genotype data and longitudinal
cognitive assessments (N 5 1114). The mean age at death
was 89.4 years (standard deviation [SD] 5 6.4), 66.6%
were females (N 5 742), and the mean education was
16.3 years (SD 5 3.6).

2.2. APOE and TOMM40 ’523 genotyping

DNA was extracted from peripheral blood and in some
cases from frozen postmortem brain tissue. The genotyping
were performed at Polymorphic DNA Technologies
(Alameda, CA). The vendor was blinded to all clinical and
neuropathologic information. APOE genotype was based
on two polymorphisms (rs429358 and rs7412) at exon 4 of
the APOE gene. TOMM40 ’523 refers to rs10524523, a
homopolymer length polymorphism (poly-T) at intron 6 of
the TOMM40 gene (chr19:44,899,792-44,899,826, human
genome reference assembly GRCh38/hg38). The ’523 geno-
type was determined by the length of poly-T repeat, as
previously described [20]. Briefly, a ’523 short allele
(’523-S) has poly-T repeat length less than 20, a long allele
(’523-L) has poly-T repeat length between 20 and 29, and a
very long allele (’523-VL) has poly-T repeat length of 30
and above.

2.3. Annual cognitive assessments

Participants underwent uniform annual cognitive assess-
ments for up to 22 years (mean5 8.3, SD5 4.5). Cognitive
performance was assessed using a battery of 17 tests [21].
Scores from each test were standardized using the baseline
mean and SD of the two cohorts. The resulting z-scores
were averaged across the tests to obtain a composite measure
of global cognition. The composite measure minimizes the
floor and ceiling artifacts that are common for individual
tests, and similar approach has been applied in many other
studies [22–25].

2.4. Postmortem neuropathologic evaluations

At autopsy, we quantified the burdens of common
age-related neuropathologies including AD, macroscopic
infarcts, microinfarcts, Lewy bodies, hippocampal
sclerosis, TDP-43 Q, cerebral amyloid angiopathy, athero-
sclerosis, and arteriolosclerosis. b-amyloid and phosphory-
lated PHFtau Qtangles, two molecular-specific pathologic
hallmarks of AD, were assessed in eight brain regions using
immunohistochemistry [26]. Percent area positive for
b-amyloid was computed for each region using image anal-
ysis and averaged across the regions to obtain a summary
measure of b-amyloid load. Density of PHFtau tangles
per mm2 was computed for each region using a stereologi-
cal mapping station and averaged to obtain a summary
� 15 June 2017 � 1:13 am � ce
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measure of PHFtau tangle density. Chronic macroscopic in-
farcts were recorded during gross examination and verified
histologically [27]. Chronic microinfarcts were identified
in a minimum of nine regions using hematoxylin and eosin
(H&E) staining [28]. The presence of Lewy bodies in
neocortical regions was identified using a-synuclein immu-
nostaining [29]. Hippocampal sclerosis refers to severe
neuronal loss and astrogliosis of CA1 and/or subiculum
and was determined using H&E staining [30]. TDP-43
pathology was assessed in five regions using monoclonal
antibodies to phosphorylated TDP-43 and was rated on a
four-level scale including no inclusion, inclusion in amyg-
dala, inclusions in amygdala and limbic, or inclusions in
amygdala, limbic, and neocortex [31]. Cerebral amyloid
angiopathy was assessed in four neocortical regions using
monoclonal antibodies to b-amyloid [32]. Amount of amy-
loid deposition in the vessel walls was scored for each
region, and the average scores across the regions were sum-
marized into a four-level scale representing none, mild,
moderate, or severe. Atherosclerosis was assessed in the
circle of Willis during gross examination and arterioloscle-
rosis was assessed in anterior basal ganglia using H&E
staining, and both were rated on a four-level scale of
none, mild, moderate, or severe [33].
Table 1

Basic Q10characteristics of the study participants (N 5 1114)

Mean (SD) or N (%)

Age at death (years) 89.4 (6.4)

Female, N (%) 742 (66.6)

Education (years) 16.3 (3.6)

Number of cognitive assessments 8.3 (4.5)

APOE genotype

ε2/2 6 (0.5)

ε2/3 142 (12.8)

ε2/4 27 (2.4)

ε3/3 670 (60.1)

ε3/4 251 (22.5)

ε4/4 18 (1.6)

TOMM40 ’523 genotype

Short/short (S/S) 199 (17.9)

Short/long (S/L) 141 (12.7)

Short/very long (S/VL) 389 (34.9)

Long/long (L/L) 18 (1.6)

Long/very long (L/VL) 136 (12.2)

Very-long/very long (VL/VL) 231 (20.7)

Abbreviation: SD, standard deviation.
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2.5. Statistical analysis

Frequency tables and Cohn’s k described the linkage
pattern between APOE and TOMM40 ’523 genotypes. Anal-
ysis of covariance examined the adjusted mean level of
continuous pathologic indices by ’523 genotype. For each
of the binary (or ordinal) pathologic indices, logistic regres-
sion tested the ’523 association with the odds of having the
corresponding pathology (or the odds of having more severe
pathology).

To examine the extent to which common neuropathol-
ogies contribute to the association between ’523 genotype
with cognitive decline, we applied linear mixed models
with annual global cognition as the longitudinal outcome.
The models included a term for time in years before death,
which estimates the mean rate of cognitive decline. The
predictor of main interest was interaction term between
’523 genotype and time, which estimates the genotype asso-
ciation with cognitive decline. We repeated the models three
times, (1) without adjustment for neuropathologies; (2)
adjustment for AD pathologies; and (3) adjustment for AD
and other common neuropathologies. If neuropathologies
are involved in the association of ’523 genotype with cogni-
tive decline, we expect that the estimate for the interaction
term and the corresponding statistical significance would
be attenuated after controlling for neuropathologies.

The analyses were performed using SAS/STAT soft-
ware, version 9.4 for Linux (SAS Institute Inc., Cary,
NC, USA). Statistical significance was determined at a
level of 0.05, and all the models were controlled for age,
sex, and education.
FLA 5.4.0 DTD � JALZ2398_proof
3. Results

3.1. The linkage pattern between APOE and TOMM40
’523

Of the 1114 autopsied individuals included in the study,
60.1% were of APOE ε3/3 genotype, 26.6% were ε4 carriers
(i.e., ε2/4, ε3/4, or ε4/4) and the rest were ε2 carriers
(Table 1). The well-known LD between APOE and
TOMM40 ’523 was clearly evident (Table 2). Specifically,
APOE ε4 carriers and TOMM40 ’523-L carriers were highly
concordant such that 94.9% of all ε4 carriers had ’523-L and
95.3% of all ’523-L carriers had ε4 (Cohen’s k5 0.93, 95%
confidence interval [CI] 5 0.91–0.96). By contrast, three
major ’523 genotypes were observed in APOE ε3/3 homozy-
gotes, of which ’523-S/S accounted for 25.5%, ’523-S/VL
and ’523-VL/VL accounted for 46.7% and 25.7%, respec-
tively. Notably, the ’523-L allele was also absent from ε2
carriers in this autopsied sample.
3.2. TOMM40 ’523 and cognitive decline

Before examining their association with neuropa-
thology, we first confirm that both ’523-L carriers in LD
with ε4 and the ε3/3 homozygotes with ’523-S/S exhibit
faster decline in the current sample, which represents a
subset of autopsied individuals used in our prior report
[12]. As expected, the results from a linear mixed model
(Table 3 Model A) found that compared with ε3/3 homozy-
gotes with ’523-S/VL or ’523-VL/VL genotype, ’523-L
carriers declined faster in cognition (estimate 5 20.059,
standard error [SE] 5 0.009, P , .001). Furthermore, ε3/
3 homozygotes with ’523-S/S also had faster decline but
with a weaker effect that was approximately 40% that of
’523-L (estimate 5 20.023, SE 5 0.010, P 5 .024).
� 15 June 2017 � 1:13 am � ce



Table 2

Distribution of TOMM40 ’523 genotype by APOE

Frequency row

percent column

percent TOMM40 ’523-S/S TOMM40 ’523-S/VL TOMM40 ’523-VL/VL TOMM40 ’523-S/L TOMM40 ’523-L/VL TOMM40 ’523-L/L

APOE ε2* 27 70 51 0 0 0

18.24 47.30 34.46 0.00 0.00 0.00

13.57 17.99 22.08 0.00 0.00 0.00

APOE ε3/3 171 313 172 5 9 0

25.52 46.72 25.67 0.75 1.34 0.00

85.93 80.46 74.46 3.55 6.62 0.00

APOE ε4y 1 6 8 136 127 18

0.34 2.03 2.70 45.95 42.91 6.08

0.50 1.54 3.46 96.45 93.38 100.00

Abbreviations: S/S, short/short; S/VL, short/very long; VL/VL, very-long/very long; S/L, short/long; L/VL, long/very long; L/L, Long/long.

*ε2 consists of ε2/2 and ε2/3.
y
ε4 consists of ε2/4, ε3/4, and ε4/4.
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3.3. TOMM40 ’523 and neuropathologies

Next, we examine the genotype associations with
b-amyloid load and PHFtau tangle density. The distribu-
tions of both indices by ’523 genotypes showed that
average level of b-amyloid and PHFtau tangle pathology
was noticeably elevated among ’523-L carriers, similar
to APOE ε4. Burdens of these pathologies were similar
by the ’523-S/S status (Fig. 1A and 1B). In analysis of
covariance models adjusted for demographics, compared
with the reference group (i.e., ε3/3 homozygotes
with ’523-S/VL or ’523-VL/VL genotype), the levels
of b-amyloid load and PHFtau tangle density on average
were higher in ’523-L carriers (both P’s , .001). By
contrast, we did not observe difference in AD
Table 3

TOMM40 ’523 genotypes, neuropathologies, and cognitive decline

Model A

Estimate (SE), P

Age 0.0001 (0.0006), .927

Male 0.022 (0.008), .008

Education 0.0026 (0.0011), .018

Amyloid load -

PHFtau tangle density -

Macroscopic infarcts -

Microinfarcts -

Lewy bodies -

Hippocampal sclerosis -

TDP-43 -

CAA -

Atherosclerosis -

Arteriolosclerosis -

’523-S/S 20.023 (0.010), .024

’523-L 20.059 (0.009), ,.001

Abbreviations: CAA, cerebral amyloid angiopathy; SE, standard error.

NOTE. Estimates in each column were obtained from separate linear mixed mod

death, which refer to the associations of corresponding predictors with annual rat

controlled for demographics and AD (amyloid and tangle) pathologies; and Mode

FLA 5.4.0 DTD � JALZ2398_proof
pathologies for ε3/3 homozygotes with ’523-S/S
(Table 4).

Similar results were observed in relation to other
common age-related neuropathologies (Table 4). Briefly,
’523-L carriers were more likely to have macroscopic
infarcts (odds ratio [OR] 5 1.45, 95% CI 5 1.07–1.98)
and hippocampal sclerosis (OR 5 1.85, 95% CI 5 1.13–
3.02). In addition, they had greater odds of having more
advanced TDP-43 pathology (OR 5 2.03, 95%
CI 5 1.51–2.73) and amyloid angiopathy (OR 5 3.77,
95% CI 5 2.84–5.00). Notably, the association with these
non-AD pathologies persisted even after the adjustment for
b-amyloid load and PHFtau tangle density. By contrast, we
did not find significant association of ’523-S/S with any of
the neuropathologic indices examined (all P’s . .05).
Model B Model C

Estimate (SE), P Estimate (SE), P

0.0014 (0.0006), .013 0.0027 (0.0006), ,.001

0.005 (0.008), .517 0.007 (0.007), .312

0.0021 (0.0009), .028 0.0017 (0.0009), .050

20.006 (0.003), .051 20.006 (0.003), .074

20.038 (0.003), ,.001 20.033 (0.003), ,.001

- 20.024 (0.007), ,.001

- 0.004 (0.007), .560

- 20.057 (0.009), ,.001

- 20.041 (0.011), ,.001

- 20.010 (0.003), ,.001

- 20.008 (0.004), .043

- 20.017 (0.004), ,.001

- 20.007 (0.004), .048

20.019 (0.009), 2.031 20.022 (0.008), .007

20.024 (0.008), .003 20.011 (0.008), .160

els. The estimates came from the interaction terms with time in years before

e of decline. Model A was controlled for demographics only; Model B was

l C was controlled for demographics, AD, and other non-AD pathologies.
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Fig. 1. Distributions of common neuropathologic indices by TOMM40 ’523 genotypes. Panel A: box plot for b amyloid load; Panel B: box plot for PHFtau tangle

density; Panel C through Panel I: bar charts for percent participants with cerebral infarcts (C), Lewy bodies (D), hippocampal sclerosis (E), TDP-43 (F), amyloid

angiopathy (G), atherosclerosis (H), and arteriolosclerosis (I). Abbreviations: CAA, cerebral amyloid angiopathy; L, long; S, short; VL, very long.
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3.4. The role of neuropathologies in TOMM40 ’523
association with cognitive decline

To investigate the role of neuropathologies in
TOMM40 ’523 association with cognitive decline, we
first extended the previous linear mixed model by adding
terms for b-amyloid load and PHFtau tangle density
(Table 3 Model B). AD pathologies, PHFtau tangle
density in particular, were associated with faster cogni-
tive decline. After controlling for AD pathologies, while
the association of ’523-L remained significant, the effect
size was attenuated by about 60% such that the point
estimate was reduced from 20.059 to 20.024
(SE 5 0.008, P 5 .003). By contrast, the estimate for
’523-S/S only changed about 17% from 20.023 to
20.019 (SE 5 0.009, P 5 .031).
FLA 5.4.0 DTD � JALZ2398_proof
Next, we repeated the model by adding terms for other
non-AD pathologic indices (Table 3 Model C). In addition
to AD, multiple pathologies including macroscopic in-
farcts, neocortical Lewy bodies, hippocampal sclerosis,
TDP-43, amyloid angiopathy, and atherosclerosis were
independently associated with faster decline in cognition.
Notably, we observed further attenuation of the ’523-L as-
sociation with cognitive decline from the original 20.059
to 20.011, an 80% reduction such that it no longer reached
statistical significance (SE 5 0.008, P 5 .160). By contrast,
the estimate for ’523-S/S remained almost identical; it was
originally 20.023, and after controlling for AD and other
pathologies, it was 20.022 (SE 5 0.008, P 5 .007). This
strongly suggests that the association of ’523-S/S with
decline was not attributable to these pathologies. Fig. 2
� 15 June 2017 � 1:13 am � ce



Table 4

TOMM40 ’523 genotypes and neuropathologies

Neuropathologic outcomes Estimate (SE), P

Amyloid load*

’523-S/S 0.042 (0.098), .669

’523-L 0.674 (0.082), ,.001

PHFtau tangle density*

’523-S/S 0.114 (0.115), .323

’523-L 0.818 (0.096), ,.001

Macroscopic infarctsy

’523-S/S 20.103 (0.194), .593

’523-L 0.373 (0.158), 0.018

Microinfarctsy

’523-S/S 0.290 (0.192), .131

’523-L 0.108 (0.166), .513

Lewy bodiesy

’523-S/S 20.052 (0.276), .852

’523-L 0.331 (0.213), .120

Hippocampal sclerosisy

’523-S/S 20.346 (0.370), .350

’523-L 0.615 (0.250), .014

TDP-43y

’523-S/S 0.079 (0.180), .661

’523-L 0.709 (0.151), ,.001

Cerebral amyloid angiopathyy

’523-S/S 0.049 (0.167), .769

’523-L 1.327 (0.144), ,.001

Atherosclerosisy

’523-S/S 20.181 (0.166), .276

’523-L 0.054 (0.139), .699

Arteriolosclerosisy

’523-S/S 20.084 (0.164), .608

’523-L 0.096 (0.137), .483

Abbreviation: SE, standard error.

NOTE. The estimates show the associations of corresponding ’523 geno-

types relative to the reference (’523-S/VL or ’523-VL/VL). The estimates

from logistic regression were log odds ratios of having a neuropathology

(or log odds of having more advanced neuropathology) relative to the refer-

ence.

*Estimates in each cell were obtained from separatemodels of analyses of

covariance, adjusted for demographics.
yEstimates in each cell were obtained from separate models of logistic

regression, adjusted for demographics.
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illustrates that the ’523-L association with cognitive
decline varied before and after controlling for neuropathol-
ogies, but ’523-S/S did not.
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4. Discussion

There is evidence that multiple genetic variations in
the APOE haplotype block are implicated in AD demen-
tia susceptibility [3–7]. Using data from more than 1000
community-dwelling older persons who had died and
undergone brain autopsy, we confirmed two distinct asso-
ciation signals at the TOMM40 ’523 locus in relation to
late-life cognitive decline, the clinical hallmark of AD.
We investigated the extent to which AD and other
common age-related neuropathologies contribute to these
relationships. We found ’523-L carriers had higher
FLA 5.4.0 DTD � JALZ2398_proof
burden of neuropathologies including AD and other com-
mon non-AD neuropathologies. By contrast, we did not
observe difference in neuropathologies for ε3/3 homozy-
gotes with ’523-S/S. Notably, the ’523-L association
with cognitive decline is mediated through common neu-
ropathologies. This is expected due to its strong LD with
APOE ε4. On the other hand, the ’523-S/S association
among APOE ε3/3 homozygotes is not explained by
these pathologies, indicating a separate association
signal. These findings offer new insights into the neuro-
pathologic basis underlying the association between
TOMM40 ’523 and late-life cognitive decline and pro-
vide strong evidence that a haplotype within TOMM40
is associated with AD independent of APOE ε4. Because
of the strong linkage between TOMM40 ’523-L and
APOE ε4 [10,34], ’523-L carriers almost exclusively
have the ε4 allele and vice versa, and less than 3% of
1114 individuals included in this study are discordant
cases. Consequently, we expect that the relationship be-
tween ’523-L and neuropathologies as well as down-
stream cognitive decline would highly mimic that of
ε4. Indeed, we found that ’523-L was strongly associated
with multiple neuropathologies including AD. Similar
associations have been widely reported for APOE ε4
[32,35–38]. Furthermore, we found that ’523-L carriers
had faster cognitive decline and the association dimin-
ished after accounting for neuropathologies. This is high-
ly consistent with our previous observation that the
association of ε4 with cognition and cognitive decline
is also largely attributable to AD and other non-AD pa-
thologies [16,17]. Taken together, these findings
suggest that ’523-L and ε4 share a common neuropatho-
logic footprint in relation to cognitive decline. However,
our study does not inform the extent to which the APOE
ε4–’523-L haplotype associations with neuropathologies
and cognitive decline results from APOE ε4, ’523-L, or
the complete haplotype.

In contrast to APOE ε4, three major TOMM40 ’523
genotypes are present in APOE ε3/3 homozygotes. Previ-
ous studies show that the risk of clinical diagnosis of AD
and age at onset differ by these ’523 genotypes, though
findings are inconsistent [10,11,20,39,40]. Using data
from the entire ROS and MAP cohorts, both dead and
alive, we previously reported an association of
TOMM40 ’523-S/S with faster cognitive decline among
APOE ε3/3 homozygotes. Here, we expand on prior
work in an important way. After confirming that the
same association exists among the autopsied subgroup,
we examine its relation to multiple neuropathologies.
We show that unlike ’523-L, none of these pathologic
indices differ by ’523-S/S status. Consequently, the asso-
ciation of ’523-S/S with cognitive decline is not affected
by any of these pathologies, including AD. Our findings
implicate that ’523-S/S represents a risk factor for cogni-
tive decline separate from ’523-L or APOE ε4; further-
more, the neuropathologic basis of this association also
� 15 June 2017 � 1:13 am � ce
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Fig. 2. The effects of TOMM40 ’523 genotypes on annual rate of cognitive decline before and after the adjustment for neuropathologies. On the x-axis, “A: No

path” refers to the effects estimated from the model adjusted only for demographics; “B: AD” refers to the effect estimated from the model adjusted for de-

mographics and AD pathologies only; “C: AD and other pathologies” refers to the effect estimated from the full model adjusted for demographics, AD, and

other non-AD pathologies. Mean estimates 1/21.96 standard error for the effects of ’523-L and ’523-S/S are shown on the y-axis. It is evident that the asso-

ciation of ’523-L with cognitive decline was attenuated after controlling AD pathology and became not significant after further controlling for other non-AD

pathologies (left panel). By contrast, the association of ’523-S/S remained essentially unchanged, such that the estimates with and without controlling for pa-

thologies are similar and all are significantly above zero (right panel). Abbreviation: AD, Alzheimer’s disease.
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differs from that of ’523-L or ε4. These results are
somewhat unexpected. However, emerging evidence
from large clinical pathologic studies suggests that while
common neuropathologic burdens such as Alzheimer’s,
cerebrovascular, or Lewy body diseases account for a
majority of person-specific variation in late-life cognitive
decline, an appreciable amount of variation remains
unexplained (i.e., residual cognitive decline) [21]. The
independent association of ’523-S/S with cognitive
decline reported here suggests that it accounts for some
of this residual decline.

The molecular effects of APOE–TOMM40 ’523
haplotypes remain unclear. Proteins encoded by both
genes have been functionally implicated in AD and other
neurodegenerative diseases. Although the involvement of
APOE in b-amyloid accumulation and clearance has
been well established [14,41,42], mitochondrial
dysfunction is also shown to increase the risk for AD
[43,44]. The mitochondrial protein encoded by TOMM40
is essential in transporting protein precursors into
mitochondria [45,46]. Alterations of TOMM40
expression have been reported in AD, but with
conflicting results [47,48]. Notably, several studies have
shown a cis-eQTL where ’523-S acts as a repressor to
reduce the gene expression [48,49]. This regulatory
function of the ’523 variant has also been reported in
human cell culture, where the study demonstrates that
’523 is a putative regulatory element that influences the
TOMM40 promoter activity in vitro [50].

To our knowledge, this is the largest study to interrogate
the relationship between TOMM40 ’523 with postmortem
neuropathologies. Comprehensive postmortem evaluations
quantified multiple neuropathologies that are observed in
aging brain. Annual uniform cognitive assessments up to
FLA 5.4.0 DTD � JALZ2398_proof
22 years help to capture person-specific trajectories of
cognitive change with a high level of fidelity. Limitations
are noted. The present study is restricted to older persons
of European ancestry. The linkage patterns of APOE and
TOMM40 ’523 are known to differ in African Americans;
therefore, the extent to which these findings are generaliz-
able to other population is unknown. In addition, both
ROS and MAP are voluntary cohorts, and the findings await
replications from other longitudinal clinical pathologic
studies.

In conclusion, through investigating the role of
Alzheimer and other common neuropathologies in the
relationship between TOMM40 ’523 and late-life cognitive
decline, the study revealed two distinct association signals.
The association of TOMM40 ’523-L with cognitive decline
is primarily mediated by common neuropathologies. By
contrast, the association of TOMM40 ’523-S/S is relatively
independent of these pathologies.
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RESEARCH IN CONTEXT

1. Systematic review: Literature reviews via PubMed
search suggest that TOMM40 ’523 variant is associ-
ated with late-life cognitive decline and the associ-
ation is not fully attributable to the linkage
disequilibrium with APOE variant. Yet, the under-
lying neuropathologic correlates remain unclear.

2. Interpretation: Through investigating the role of AD
and other common neuropathologies in the relation-
ship between TOMM40 ’523 and longitudinal cogni-
tive decline, this study reveals two association
signals. The ’523 long allele, in linkage with APOE
ε4, primarily acts through common neuropathol-
ogies, whereas the ’523 short/short genotype among
APOE ε3/3 homozygotes represents a separate risk
factor that operates through a different mechanism.

3. Future directions: This study is restricted to older
persons of European ancestry, and the generaliz-
ability of our findings to other populations awaits
investigation. Future studies are warranted to deter-
mine the neurobiology that drives the association of
TOMM40 ’523 with cognitive decline that are not
due to common age-related neuropathologies.
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