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SUMMARY
The complex pathobiology of late-onset Alzheimer’s disease (AD) poses significant challenges to therapeutic
and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing
fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution
sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expres-
sion, whichwe call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived
notions about the disease. In addition to highlighting biological pathways beyond the classical pathology
hallmarks, these advances have revitalized drug discovery efforts and are driving improvements in clinical
tools. We review genetic, epigenomic, and gene expression findings related to AD pathogenesis and explore
how their integration enables a better understanding of the multicellular imbalances contributing to this het-
erogeneous condition. The frontiers opening on the back of these researchmilestones promise a future of AD
care that is both more personalized and predictive.
INTRODUCTION

Alzheimer’s disease (AD) has traditionally been considered first

and foremost a neurodegenerative condition. This neuron-

centric view of AD is not wholly unjustified, as synapse and

neuronal loss are cornerstone features of the worsening cogni-

tive outcomes associated with disease progression.1,2 In addi-

tion, two primary histopathological hallmarks, extracellular

b-amyloid deposition and intraneuronal neurofibrillary tangles

of hyperphosphorylated tau protein, have informed much of

the research on AD pathogenesis and are still fundamental

scoring criteria of present molecular attempts to stage disease

trajectory.3 However, we now know that the disease is more

multifaceted than this, comprising different cell types, inflamma-

tory overloads, the vasculature, and uniquely vulnerable brain re-

gions, among others.4 Therefore, the limited success of AD ther-

apies, which have focused largely on mitigating b-amyloid

pathology,5 may stem from our inability to tackle the complexity

of the disease and the heterogenicity of those suffering from it.

The genome holds the key to many of these individual differ-

ences. Genetics account for up to 58%–79% of AD risk,6 and

about 75 susceptibility loci have been discovered to date.7–13

For comparison, the genetic component of Parkinson’s disease

is about 15%.14 In fact, the heritability of AD is so great that

parental disease history has been employed to identify AD-by-

proxy cases in attempts to increase the power of genetic asso-

ciation studies.7,9 Still, it has not been trivial to translate these

genetic links into mechanistic breakthroughs and therapeutic

targets, as the resulting functional outcomes and causal genes
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linked to each polymorphism remain mostly unresolved.

Research efforts have also been dedicated to dynamic gene

expression processes, namely the epigenome, the transcrip-

tome, and the proteome. Such analyses provide amore nuanced

assessment of AD-associated imbalances across the different

stages of the disease than that afforded by genetic association

studies. At any rate, both approaches are complementary, and

their integration is crucial to elucidating the mechanisms that un-

derlie AD.

Here, we explore how genomic research has advanced the un-

derstanding of late-onset AD. This is, for us, the first meaning of

the ‘‘broken’’ AD genome, akin to unraveling a code. But various

processes centered on our DNA become dysfunctional in AD,

imparting an equally significant connotation to the term; i.e.,

‘‘broken’’ in this context alludes to the genome as a driver of dis-

ease. We primarily highlight findings originating from human da-

tasets, as existing disease models often fail to recapitulate the

full pathological spectrum of AD. We recognize the importance

of these tools and, when appropriate, reference insights ob-

tained using them. We also identify challenges for the field and

discuss strategies for amassing the wealth of genomic informa-

tion now available for developing therapeutics and clinical tools.

The genetic etiology of AD
Genetic studies have transformed our understanding of AD etiol-

ogy and promise to revolutionize treatment by allowing for

personalized care and focused pharmaceutical development

programs. Genetic associations also provide corroboration of

the importance of b-amyloid in the pathogenesis of familial AD,
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Figure 1. Intersecting paths: The genome and AD

Despite the etiology of AD being dominated by a strong genetic component,

nonheritable elements also play a role in shaping disease risk. These

encompass behavioral factors, such as nutrition, physical activity, and sleep,

in addition to environmental determinants, including pollution and socio-

economical status. Together, they affect gene expression across the lifespan.

The genome further interacts with the gradual accrual of neuropathological

alterations in the brain, comprising both protective and disease-driving pro-

grams in a multicellular web of feedback and feedforward responses.
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as pro-amyloidogenic mutations in genes involved in its meta-

bolism (APP, PSEN1, and PSEN2) are generally causative of

this rare form of the condition.15 How our genes contribute to

sporadic AD, which accounts for >99% of all cases, is less clear,

as their interaction with non-heritable factors, such as lifestyle,

pre-existing conditions, and environmental exposures, will influ-

ence clinical outcomes to a greater degree (Figure 1). We can

therefore distinguish two types of DNA variation: polymorphisms

associated with ‘‘deterministic’’ genes (APP, PSEN1, and

PSEN2) at one end of the spectrum, which predict with high cer-

tainty that carriers will develop AD, and those that increase its

likelihood but do not directly cause AD, known as ‘‘risk’’ genes.16

The latter underlie the genetic component of sporadic AD and

are relatively frequent in the population, but their contribution

to total individual risk is generally small.16 The APOE ε4

(APOE4) allele is an important exception in that it increases life-

time AD risk by more than 50% in homozygotic carriers and

about 20%–30% in those who inherit APOE4 from one parent

and the more common APOE3 allele from the other.17 Given its

prevalence, our discussion will be focused on sporadic (also

known as late-onset) AD.

Despite APOE4 being the major genetic risk factor for AD, not

allAPOE-related genetic signals are harmful. Indeed, the ε2 allele

is associated with a significantly reduced disease risk, and ho-

mozygous APOE2 carriers have a particularly low likelihood of

developing the condition.18 Globally, there are three main

APOE alleles encoding protein isoforms that diverge at only

two amino acid positions. Each isoform influences disease

differently (lifetime risk ε4 > ε3 > ε2) and does so in a dose-

dependent manner.19,20 In relation to the ε3/ε3 genotype, each

additional copy of the ε4 allele amounts to a higher risk of AD

and a younger age of onset.21 APOE4, which is found in 40%–

50% of AD individuals,22 is also associated with other neurolog-
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ical disorders23,24 and increases the risk for age-related cogni-

tive impairment in non-demented individuals,25 underscoring

the key role played by apoE in brain health. Recent evidence in-

dicates that its contribution to AD risk stems partly from the dif-

ferential impact that each apoE isoform has on myelination.26

Overall, the APOE4 allele is associated with an estimated 3–4

times increased risk, but it does not fully account for the herita-

bility of AD. Genome-wide association studies (GWASs) have

identified around 75 loci that collectively contribute to disease

risk, highlighting the polygenic nature of sporadic AD.11 On a

pathway level, GWAS hits have implicated endosomal traf-

ficking, the immune response, lipid metabolism, and vascular

factors as pivotal in pathogenesis, among others (Fig-

ure 2A).11,13,16,27 It is important to note, however, that most

GWAS signals occur in non-coding regions of the genome,

and, therefore, it has not always been easy to establish how

these polymorphisms affect disease susceptibility (Fig-

ure 2B).10,28 For example, non-coding DNA variants can disturb

gene expression by disrupting transcription factor recognition

sequences.29 While they are typically assigned to the gene that

maps closest to the lead single-nucleotide polymorphism

(SNP),30 regulatory domains can be located far outside the

core transcription unit of a gene (i.e., coding sequences and

proximal gene promoters/enhancers).31 Hence, once located,

the functional mapping of most GWAS signals requires further

mechanistic exploration. As a result, despite some successes,

such as the identification of altered splicing as the likely mecha-

nism behind the effects of the PICALM, CLU, and PTK2B risk al-

leles,32 it remains unresolved how most genetic variants affect

disease susceptibility. Until then, gene annotations should be in-

terpreted cautiously.

The untangling of AD’s genetic architecture has further been

hampered by a poor understanding of the spatiotemporal

context by which risk loci modulate pathogenesis. Indeed, the

effects of genetic variation in non-coding regions of our genome

often have a strong cell-type-specific component.36 Interest-

ingly, enhancers exhibiting tissue-specific activity are enriched

within intronic regions of the genome,37 exactly where most

AD GWAS signals accumulate (Figure 2B). Consecutively larger

GWAS studies reporting an ever-greater number of AD risk loci

are not the solution; instead, it is necessary to precisely link

non-coding genetic variants to their functional consequences,

which requires studying when and where they interact with the

disease pathological cascade. The recent availability of cell-

type-specific resources makes this increasingly feasible in

AD.26,27,38–40 As an example, only recently did the brain vascula-

ture emerge as a site of AD risk gene expression.27 A tailored sin-

gle-nucleus profiling protocol was at the core of this insight,27

illustrating how GWAS discoveries require proper contextualiza-

tion (Figure 3). While this finding was incidental, others have

taken a more directed approach toward dissecting the impact

of non-coding genomic variation in AD.41 Using massively paral-

lel reporter assays to systematically test the regulatory conse-

quences of thousands of common SNPs associated with AD, a

plurality of variants that affect gene expression were found to

converge within microglial enhancers.41

Most risk genes highlighted in Figures 2 and 3 are linked with

what are called ‘‘common’’ variants. These are defined by their



Figure 2. Functional mapping of late-onset AD genetic etiology

(A) Pathway enrichment of genetic loci linked to AD based on statistically significant GWAS signals identified by Bellenguez et al.,11 a two-stage case-control

study totaling 111,326 clinically diagnosed/’’proxy’’ AD cases and 677,663 control individuals, published in 2022. Their analysis, the largest to date, led to the

identification of 75 risk loci, including 42 novel genetic associations. GWAS hits are genetic variants that occur more frequently in individuals with a particular trait

or disease. These polymorphisms aremost common in non-coding genomic regions and, as a rule of thumb, require additional validations before annotations can

be unambiguously assigned to a specific gene. We used Metascape, SynGO, expression profiles, and manual curation to group genes according to their

function;33,34 a small fraction of hits could not be interpreted confidently and were omitted. Unsurprisingly, various genes overlap across distinct functional

processes, particularly with regards to APPmetabolism, immunity, and the endo-lysosomal pathway, such are the interdependencies between these processes.

We note, in addition, thatADAM10 and ADAM17 are a-secretases; their identification suggests that altered non-amyloidogenic APP processing can influence AD

pathogenesis.

(B) Genomic distribution of lead SNPs associated with increased AD risk. GWAS data weremined from panel compiled by Andrews et al.35 Functional annotations

were performed using gnomAD and GWAS Catalog.
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occurrence in more than 5% of the population. There are, how-

ever, other informative genetic signals below that frequency

threshold, collectively known as ‘‘rare’’ variants.42 Indeed, not

all genetic variance associated with the disease is captured by

commonly occurring SNPs.42,43 Despite not being found in

many individuals, these rare variants typically impact disease

risk more strongly than common polymorphisms, and, hence,

their identification can lead to mechanistic breakthroughs. The

discovery of rare TREM2 variants that as much as triple an indi-

vidual’s disease susceptibility is paradigmatic of this potential.44
Notably, many of the loci with known rare variants are also asso-

ciated with common polymorphisms in GWAS studies, including

TREM2, SORL1, ADAM10, and ABCA7,45 highlighting how both

avenues of exploration ultimately serve a shared purpose.42

While we have focused our present survey on SNPs linked to dis-

ease risk, the heritability of AD is also thought to be affected by

large genomic variations (>50 bp) known globally as structural

variants.43 They include copy number variations, insertions, in-

versions, and translocations, among other alterations. Even if

quite rare, the finding of duplication events in the APP locus of
Cell Genomics 4, 100555, May 8, 2024 3
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Figure 3. Cellular map of AD genetic risk

Shown is an expression profile overview of priori-

tized genetic loci harboring genome-wide signifi-

cant signals linked to AD risk.

(A) Simplified Manhattan plot derived from the

dataset collected by Bellenguez et al.11 The p

values were calculated using a fixed-effect meta-

analysis. Brackets indicate different prioritized

genes in the same locus. Note also that GWAS

signals from independent studies linked to EPHA1

stem from two adjacent loci.

(B) Proportional expression of GWAS hits across

parenchymal dorsolateral prefrontal cortex cells.

Ex. neuron, excitatory neuron; In. neuron, inhibi-

tory neuron; OPC, oligodendrocyte precursor cell.

Expression values are weighted on a 0–100 scale;

darker colors indicate progressively higher

expression values.

(C) Differential gene expression analysis centered

on the interaction between APOE genotype and

other AD GWAS hits. Data points in (B) and

(C) were mined from snRNA-seq analyses per-

formed by Blanchard et al.26

(D) Proportional expression of GWAS hits across

major vascular cell types (hippocampus and supe-

rior frontal cortex). Asterisks mark the cell

type carrying the strongest overall expression for

each gene. aSMC, vascular smooth muscle cell;

aaSMC, arteriolar smooth muscle cell; T-Pericyte,

solute-transport pericyte; M-Pericyte, ECM, extra-

cellular matrix-regulating pericyte; P-Fibroblast,

perivascular fibroblast; M-Fibroblast, meningeal

fibroblast; P-Macrophage, perivascular macro-

phage. Vessel isolation and nuclei extraction for

sequencing (VINE-seq) data were extracted from

Yang et al.27

(E) Gene expression comparison between AD and

control cases. This analysis was circumscribed to

the cell type most highly enriched in each gene (i.e.,

those marked with an asterisk in D). All transcrip-

tional trends shown should be regarded as indica-

tive due to limited sample sizes and, at times, high

interindividual variation.
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families with early-onset AD remains a clear example of the dele-

terious consequences these genomic events can have in

affected individuals.46 Overall, research on this topic has been

impacted by the limitations of array-based and short-read tech-

nologies typically employed in the field, but that may soon

change with the increasing implementation of long-read

sequencing platforms.

Despite these challenges, AD research has advanced to the

point that polygenic risk scores can be calculated with accu-

racy.47 These metrics attempt to quantify how much disease

risk is affected by one’s genetic landscape. Asmentioned above,

most SNPs negligibly contribute to AD risk and have little predic-

tive value on their own (note that APOE signals are treated

outside of polygenic risk score frameworks).47 But whenmultiple

variants are assessed together, an individual’s risk can be more

confidently extrapolated. Polygenic risk scores are particularly

useful when combined with other factors that affect disease

risk. For example, models incorporating APOE status, polygenic

risk scores, sex, and age reliably predict AD with 75%–85% ac-

curacy.48,49 Overall, compared to age or APOE status, the effect

size of polygenic risk scores is relatively small. Still, their inclu-

sion in risk models overall improves AD risk prediction by 1.6-

to 1.9-fold, a modest but certainly not negligible increment.11

While genetic profiling is not yet ready for widespread clinical

use, there is hope that thesemetrics can gradually start to be im-

plemented as a tool for assessing disease risk as well as defining

treatment regimens and patient stratification in clinical trials.

APOE4 carriers have a higher risk of side effects caused by the

recently approved aducanumab anti-amyloid therapy,50 high-

lighting howgenomics can inform therapeutic decisions. Howev-

er, to deliver on this promise, ancestry diversity among study

participants has to be improved to ensure that genetic research

equally benefits all racial and ethnic groups.51 These and other

related questions have been the focus of a recent review on

the genetic causes of AD.12 Similarly of note, the Alzheimer’s

Disease Variant Portal (https://advp.niagads.org) is a curated,

up-to-date collection of genetic association findings across

>80 cohorts and 8 populations.28

Somatic genomic damage in AD neurons
The genetic variants linked to AD risk discussed in the previous

section are inherited through the germline from one’s parents

and are present in all somatic cells of the body. However, as

we age, DNA damage, including strand breaks and base modifi-

cations, occurs due to errors in DNA repair.52De novomutations

can also be triggered by by-products of cellular metabolism

(e.g., genotoxic reactive oxygen species),53 among other mech-

anisms. While DNA replication and cell division have traditionally

been seen as major mutagenic forces,54,55 recent evidence sug-

gests that neurons accumulate mutations throughout life at

similar rates as mitotically active cells.56 Interestingly, neurons

in AD accrue hundreds more somatic single-nucleotide variants

(sSNVs) relative to the levels seen in normal aging (874more mu-

tation events, on average, per neuron, a 49% increase over con-

trol cells).57 This observation suggests that there are additional

DNA damage-driving processes at play in AD. For example,

cytosine-to-adenine substitutions, an enriched sSNV in AD neu-

rons,57 are associated with oxidative damage,58 which has been
documented previously in AD.59 The distribution of somatic var-

iants in AD is also telling, in that sSNVs are found broadly

dispersed across the genome.57 Mechanistically, it is worth re-

marking that base excision repair, a pathway for removing

damaged bases, is impaired in AD.60 The genomic damage

seen in AD may thus be a consequence of a higher mutational

potential (i.e., oxidative burden), deficient DNA repair pro-

cesses,60 or a combination of both (Figure 4).

Other works shed light on the functional outcomes driven by

somatic DNA changes. Links between loci with high accumula-

tion of DNA damage and gene expression abnormalities have

been documented,62 whereas neuronal genome structural varia-

tions associated with DNA double-strand breaks aligned with

transcriptional abnormalities have also been described.61 While

our discussion up until there focused on neuronal cells, a preprint

using single-cell full-transcript RNA sequencing technology simi-

larly points to an increased somatic mutational burden being

present in glial cell types from AD individuals.63 Tellingly, as in

neurons, these somatic changes correlate with gene expression

alterations.63 Collectively, these studies suggest that dysregu-

lated gene expression is influenced by genomic damage. This

could happen via disruptions in gene regulatory elements,

changes in 3D genome organization, or, as documented byMiller

and colleagues, coding region alterations that essentially create

genetic knockouts.57 In light of the recently identified link be-

tween neuronal activity and DNA repair mechanisms in neu-

rons,64 it is also conceivable that synaptic dysfunction, a hall-

mark feature of AD decline,2 has a compounding effect on

genome integrity.

Epigenetic hallmarks
Until now, we have discussed the interplay between DNA poly-

morphisms and AD pathophysiology. However, genetics does

not explain all phenotypic variance. Our environment and life-

style interact with the genome through epigenetic mechanisms

and impact key AD-related genes and pathways.65 Various

forms of epigenetic regulation exist, with DNA methylation and

histone post-translational modifications being prominent para-

digms discussed below.

DNA methylation

The first large-scale studies of epigenetic changes associated

with AD centered onCpGmethylation.66,67 CpG sites are defined

by two consecutive (50 / 30) cytosine and guanine nucleotides

on the same strand of DNA, and many CpG sites clustered

together at high frequency on a genomic stretch form ‘‘CpG

islands,’’ a typical feature of mammalian gene promoters. CpG

sites are enriched in 5-methylcytosine (5mC), with up to 60%–

90% of all CpG cytosines being methylated in mammalian ge-

nomes.68 Interest by AD researchers in the 5mC modification

can be understood from landmark reports likening certain DNA

methylation signatures to an ‘‘epigenetic clock,’’ in that they

enable accurate age estimates across the entire lifespan of

both mice and humans.69 Links to learning and memory mecha-

nisms are also well characterized.70 A genome-wide analysis of

differentially methylated DNA regions across hundreds of AD

brain samples revealed a robust association between ANK1 (an-

kyrin 1) hypermethylation and AD-related neuropathology.67 This

observation was substantiated across multiple regions of the
Cell Genomics 4, 100555, May 8, 2024 5
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Figure 4. Somatic mosaicism in the AD

brain

As we age, DNA damage accumulates due to

oxidative stress and other factors. Building on top

of previous studies, a recent high-resolution survey

of genomic integrity in the brain revealed that,

compared to control cells, mutational rates are

higher in excitatory neurons from AD donors than

in normal aging. The mutational signatures in AD

neurons are also different, hinting that the under-

lying processes sparking these changes are

unique to AD.57 In addition to SNVs, which are

discussed in detail in the main text, DNA double-strand breaks leading to gene fusions in AD excitatory neurons have also been reported recently.61 It is

speculated that increased oxidative damage related to AD pathology acts as a primary genotoxic trigger. ROS, reactive oxygen species.
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cortex in independent sample cohorts, including the entorhinal

cortex,67 an early focal point of AD lesions.71 Another report

found 71 differentially methylated CpG sites significantly corre-

lated with AD pathology.66 In addition to ANK1, altered CpG

methylation signals in two loci known to harbor AD susceptibility

polymorphisms, ABCA7 and BIN1, were detected in AD co-

horts.66 The authors also identified direct and indirect (i.e., asso-

ciation through common interactors) connections to various

other AD genes,66 consistent with the hypothesis that AD risk

is determined by a combination of different sources of genomic

variation (genetic and epigenetic). A subsequent study focusing

on ADGWAS genes found that 3 other loci—SORL1,HLA-DRB5,

and SLC24A4—have altered DNA methylation profiles in AD.72

More recently, a meta-analysis of six independent DNA methyl-

ation datasets identified 220 differentially methylated CpGs

linked to AD, annotatable to 121 genes.73 Comparably, CpG

methylation changes in the AD parahippocampal gyrus clustered

around 270 genomic regions.74 Most relevant perhaps was the

authors’ integration of these signals with various gene expres-

sion metrics generated from the same individuals.74 Their model

predicts that differential methylation explains, on average, 39%

of the variance associated with protein expression in AD.74 Over-

all, it is noteworthy that these studies unanimously report that

AD-related DNA methylation patterns emerge in discrete chro-

mosomal regions. It is therefore unlikely that they constitute a

generalized (i.e., unspecific), genome-wide process. In a clear

illustration of this phenomenon, genomic regions with AD-asso-

ciated methylation patterns were less likely to be linked to genes

actively transcribed in the healthy aging brain, suggesting that

these changes are driven by AD-specific triggers.66

Histone modifications and chromatin accessibility

Differently to the relatively stable DNA methylation marks, his-

tone modifications are more dynamically regulated, and, as a

rule of thumb, thousands of differentially enriched domains are

picked out in profiling studies centered on these signals. Of the

various modifications known, histone acetylation has attracted

most attention in AD research, not least given its links to cogni-

tion and the therapeutic promise of histone deacetylase inhibi-

tors in preclinical models of AD.75 Among these, the lysine

H4K16 acetylation (H4K16ac) mark offers a good illustration of

the importance of epigenetics for understanding aging biology,

from old yeast cells to human disease.76,77 In S. cerevisiae,

Dang et at. identified an age-associated increase in H4K16ac

at specific subtelomeric regions linked with dysfunctional tran-
6 Cell Genomics 4, 100555, May 8, 2024
scriptional silencing at these loci.77 Extending on these findings,

comparative H4K16ac genome-wide analyses of AD individuals

performed against both younger and age-matched cognitively

normal controls by the same laboratory uncovered that, while

normal aging predominantly leads to increases in H4K16ac,

AD is associated with H4K16ac loss in the lateral temporal

lobe, including in the proximity of AD susceptibility loci.76 Broad

dysregulation of lysine H3K27 acetylation (H3K27ac) in the AD

entorhinal cortex has also been reported.78 Of particular note,

tau neuropathology, unlike b-amyloid, correlates with lysine

H3K9 acetylation (H3K9ac) dysregulation in the AD dorsolateral

prefrontal cortex, being linked to significant variation (both gains

and losses) in up to 23% of all H3K9ac domains measured.79 In

contrast, tau-related H3K9ac alterations tend to cluster in large

genomic segments covering several megabase pairs, indicating

that tau pathology drives widespread chromatin remodeling in

AD.79 This is consistent with earlier evidence in Drosophila link-

ing neuronal overexpression of tau to global heterochromatin

relaxation.80 The disease relevance of these analyses is further

supported by an unbiased proteomics screen that singled out

H3K27ac and H3K9ac enrichments as the main histone modifi-

cations specific to AD.81

Some studies are remarkable also for their push to turn the

correlative epigenomic analyses at the core of their work into

testable hypotheses. For instance, by manipulating histone

modification levels, Nativio et al. showed that increased

H3K27ac and H3K9ac levels worsened b-amyloid toxicity in

flies,81 whereas Klein and colleagues, in addition to confirming

key aspects of their model in mouse models of tau pathology

and induced pluripotent stem cell (iPSC)-derived human neu-

rons, used their datasets to identify a small-molecule inhibitor

that attenuates tau-related alterations of chromatin structure.79

Despite important limitations, especially their reliance on bulk

brain tissue preparations, these studies collectively underscore

the complexity of the AD epigenome and its links to disease-

associated transcriptional programs. Looking forward, single

cell-resolved analyses, which are likely to become a mainstay

of the field in the future,82 will be key to finely dissect the role

of histone modifications and other epigenetic events in AD.

Work by Roussos and colleagues is a major step forward in

this direction and demonstrates the power of measuring cell-

specific disease signatures.83 Using fluorescence-activated

sorting to initially separate neuronal (NeuN+) and non-neuronal

(NeuN�) nuclei, the authors then resorted to assay for



Review
ll

OPEN ACCESS
transposase-accessible chromatin with sequencing (ATAC-seq)

to produce genome-wide chromatin accessibility maps from AD

and control brains. Overall, thousands of regulatory sequences

were found to display disease-associated chromatin changes,

including instances of cell-type- and/or brain-region-specific re-

sponses.83 Building on the availability of RNA sequencing (RNA-

seq) data from the same individuals, their analyses revealed that,

globally, more than 70% of transcriptional variance can be ex-

plained by chromatin accessibility.83 This inference implies that

epigenetic mechanisms affecting chromatin structure are likely

major determinants of AD-associated gene expression.

Technological developments have also allowed multi-omics

analyses that combine single-nucleus RNA-seq (snRNA-seq)

and single-nucleus ATAC-seq to probe cell-type-specific regula-

tory regions involved in AD-associated gene expression.40,84

Here, different from previous efforts, where the two readouts

were integrated from separate pipelines,85 transcriptional

changes and chromatin accessibility were captured from the

same nuclei, increasing the likelihood of linking the two phenom-

ena in a more relevant manner.40,84 Particularly of note, using

clinical and pathological measurements to stratify AD sufferers

into early- and late-stage groups, Xiong et al. found that disease

progression is associated with epigenomic erosion, a type of

dysregulation marked by global shifts in chromatin accessibility

and overall loss of cell identity.40 They further observed that mi-

croglial enhancers are hotspots for AD GWAS hits, consistent

with similar observations by other groups.41,86

The transcriptome at single-cell resolution
The first snRNA-seq survey of the embryonic human prefrontal

cortex was followed soon after by the publication of two sin-

gle-cell atlases of the AD brain.38,39,87 The study by Grubman

and colleagues is an important landmark because it profiled

the entorhinal cortex,39 one of the earliest regions affected by

AD.71 However, the substantially higher statistical power of Ma-

thys et al. (80,660 nuclei across 48 individuals versus 13,214

nuclei from six control and six disease cases in Grubman et al.)

contributed decisively to this resource becoming the most

widely used. Like many previous bulk transcriptomic studies,

the prefrontal cortex was the tissue of choice for their analyses.38

The study design adopted by Mathys and coworkers is also

notable for capturing more fully the pathological progression of

AD. Specifically, b-amyloid levels were used for segregating in-

dividuals into early- and late-stage disease subgroups, revealing

that transcriptional changes (both gene up- and downregulation)

were strongest and highly cell-type-specific early on.38 By

contrast, as the disease advances, a generalized activation of

proteostasis-related pathways and stress response genes was

detectable in all cell types.38 In addition, gene expression pro-

grams linked to AD pathology were substantially different be-

tween males and females, particularly in neurons and oligoden-

drocytes38 (Figure 5A). Myelination-related processes were

another key aspect of AD biology that emerged from their inves-

tigation.38 They appeared recurrently as a top functional cate-

gory not just in oligodendrocytes and oligodendrocyte precursor

cells but in other cell types as well.38 These concerted changes,

also documented by Grubman et al., possibly indicate a

compensatory response to myelin loss and/or a widespread
‘‘last-ditch’’ regulatory program aimed at maintaining myelin

integrity.38,39 Further work from Tsai’s group has since uncov-

ered a link between cholesterol dysregulation and impairedmye-

lination in APOE4 carriers (Figure 5B).26 Substantial transcrip-

tional differences between APOE3 and APOE4 genotypes

correlated with cognitive impairment were also found enriched

in cerebrovascular cells,88 helping to explain, at the molecular

level, how APOE4-dependent AD decline leads to brain vascula-

ture dysregulation.89

Recent developments have addressed some of the limitations

of earlier snRNA-seq resources, whose reduced sample sizes

were insufficient to capture in full the clinicopathological and

cellular heterogeneity of AD. Using a new computational frame-

work, CelMod, an expanded cellular map of the AD neocortex

was constructed from a snRNA-seq cohort of 24 individuals by

exploiting an existing large-scale bulk RNA-seq database.92

This analysis provided a robust and unprecedented glimpse

into the diverse cell populations and coordinated cellular re-

sponses associated with AD, among which the detection of an

overall decrease in somatostatin inhibitory neurons and the iden-

tification of two oligodendrocyte transcriptional states strongly

linked with tau pathology and cognitive decline stand out as sig-

nificant findings.92 Of particular note, Mathys and colleagues

recently produced themost comprehensive AD snRNA-seq atlas

to date.93 They sequenced 2.3 million prefrontal cortex nuclei

from 427 Religious Orders Study and Rush Memory and Aging

Project (ROSMAP) participants covering individuals with varying

degrees of pathology and cognitive profiles.93 Echoing the find-

ings by Consens et al. and those obtained using CelMod,92,94

this new dataset highlighted the particular vulnerability of so-

matostatin inhibitory neurons to AD pathology.93 Differences in

cell type composition were also evident in association with

cognitive impairment: remarkably, two distinct subtypes of inhib-

itory neurons (Reelin [RELN]-positive LAMP5 neurons and the

entire subclass of somatostatin-expressing GABAergic neurons)

were overrepresented in individuals with the highest levels of

global cognitive function.93 At the molecular level, a coordinated

increase in the expression of DNA damage response genes and

cohesin, a ring-link protein complex that regulates chromatid

cohesion, DNA repair, and other functions,95 was observed

across excitatory neurons subtypes and oligodendrocytes in in-

dividuals with high levels of AD pathology.93

Our understanding of ADmicroglia has perhaps benefitted the

most from this push formore comprehensive single cell-resolved

datasets. Despite important successes, including the isolation of

livemicroglia from fresh surgical samples,96 their low abundance

in the brain and diverse cellular states has been challenging to

circumvent. In an analysis of 443 subjects, including 217 AD pa-

tients with varying degrees of disease progression and 194,000

nuclei, Sun et al. provided the most complete profile yet of these

cells in the human brain.97 Interestingly, the authors identified a

discrepancy between the rich diversity of microglia transcrip-

tional states (12 in total) and the comparatively limited heteroge-

neity of these cells at the chromatin accessibility level (3 epige-

nomic states). The study also questions the significance of

disease-associated microglia (DAMs) in AD. DAM states were

initially identified in AD transgenic mice,98 but these signatures

were generally poorly enriched in the human brain.97
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Figure 5. The AD transcriptome at scale

(A) It has long been known that women are disproportionately affected by AD. Investigations into gene expression patterns associated with the disease have

revealed that this sexual dimorphism is evident also at the transcriptional level, with female and male individuals responding differentially to pathology. snRNA-

seq analyses have made it possible to pinpoint these differences to specific cell types, with neurons and oligodendrocytes emerging as hotspots of sex-biased

responses.38

(B) Single-nucleus transcriptional profiling has also been instrumental in furthering our understanding of the effects mediated by APOE4 on the human brain. This

led researchers to zero in on cholesterol dyshomeostasis in oligodendrocytes as a root cause of myelination-related defects in APOE4 carriers. Specifically,

aberrant cholesterol deposition in APOE4 oligodendrocytes leads to endoplasmic reticulum stress pathway activation and ATF6 translocation to the nucleus, a

transcription factor known to mediate lipotoxic responses. While the underlying molecular mechanisms remain incompletely defined, the upregulation of

cholesterol metabolism genes in APOE4 oligodendrocytes coincides with decreased expression of myelin-associated genes and reduced overall myelination

levels.26

(C and D) High-resolution spatial transcriptomics applied to the TauPS2APP animal model has revealed that Ab plaques are surrounded in their immediate vicinity

by a core shell structure of DAMs. Disease-associated astrocyte-like cells, oligodendrocytes, OPCs, and endothelial cells are found more distally, showing small

but significant enrichments within 10–30 mm from plaques.90 In contrast, hyperphosphorylated tau (p-tau), which is found primarily in hippocampal CA1

excitatory neurons, is associated with a localized enrichment of oligodendrocyte subtypes.90 Interestingly, while both pathologies trigger oligodendrocyte

reactivity, these analyses suggest that different subpopulations are recruited in response to amyloid and tau.90 The finding that microglia accumulate around Ab

plaques is not new,91 but methods like STARmap PLUS are opening doors to an unprecedented view of the molecular and cellular features related to AD

neuropathology.
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We feel compelled to highlight two additional reports. First, the

transcriptomic profiling of AD neuronal somata bearing neurofi-

brillary tangles revealed with detail the molecular changes spe-

cifically associated with these lesions.99 Among other findings,

a common set of dysregulated genes related to synaptic trans-

mission pathways were identified across various subtypes of

neurons with tau pathology.99 Activation of cellular stress-

related genes was another shared feature among tangle-positive

neurons.99 Notably,ATF4, a central transcriptional effector of the

integrated stress response,100 was highly upregulated in these

cells,99 in line with recent observations linking ATF4-dependent

transcription to tau pathology in neurons via its dimerization

with another transcription factor, CREB3L2.101 Second, given

that synaptic dysfunction and loss are tightly correlated with

cognitive impairment in AD,2 the development of a droplet-

based platform for the transcriptional profiling of individual syn-

apses is particularly meaningful.102 At the time of writing, the new

methodology has only been applied to the study of an amyloid-

opathy mouse model; it was, however, validated to work with

frozen human brain samples.102 While the specificity of this

new approach is currently under debate,103 we are hopeful a cat-

alog of AD-associated synaptic gene expression changes will be

available to the community in the future.

Spatial transcriptomics: The new frontier
The emergence of high-throughput spatially resolvedmethods is

revolutionizing our ability to query gene expression relationships

between neighboring cells within tissues and their interaction

with localized neuropathology.104 ‘‘Spatial transcriptomics’’

was first used by AD researchers aiming to elucidate how gene

expression is impacted in the immediate vicinity of b-amyloid

plaques.105 Initially investigated in a mouse model (APPNL-G-F)

and subsequently validated in human AD brains, two distinct

gene co-expression networks reactive to b-amyloid deposition

were discovered,105 namely, an early responsemodule activated

under mild amyloid stress enriched in myelination-related genes

and expressed primarily by oligodendrocytes, followed by a

multicellular program involving complement and endo-lyso-

somal genes that develops gradually with advancing pathol-

ogy.105 Parenthetically, the finding that plaques trigger strong

transcriptional effects in their vicinity rebukes suggestions that

b-amyloid pathology plays a bystander role in the neurodegener-

ative cascade driving AD decline.106 Another group expanded on

these observations by also cataloging gene expression alter-

ations proximal to tau aggregates in the human middle temporal

gyrus.107 Among other findings, overlapping but also dissimilar

transcriptional responses were documented adjacent to b-amy-

loid and tau lesions.107

As remarkable as these findings are, the field of AD spatial

transcriptomics is still in its infancy, not least because the small

sample sizes in these studies preclude inferences about key AD

covariates, such as sex, genotype, and subject age. The tech-

nologies backing the analyses described above also do not

reach single-cell resolution and cannot acquire mRNA and pro-

tein signals from the same tissue section; rather, transcriptomic

snapshots originate from thousands of circular tissue domains

55–100 mm in diameter, and neuropathology markers are stained

in contiguous brain slices.105,107 The recent development of
STARmap PLUS partially addresses these limitations in that it af-

fords subcellular spatial resolution with simultaneous detection

of RNA and protein in the same tissue section (Figures 5C and

5D).90 The trade-off is its current reduced genome coverage,

particularly in the original implementation of the method.108

Notably, when applied to the study of TauPS2APP mice, which

display both amyloid and tau pathology, STARmap PLUS re-

vealed that hippocampal tau lesions are strongly associated

with the accumulation of three oligodendrocyte subtypes inde-

pendent of local b-amyloid status.90 The authors also found

that a subpopulation of microglia transcriptionally reminiscent

of DAMs establishes intimate contacts with b-amyloid plaques

in early disease stages (Figure 5C).90 The existence of DAMs, a

protective subtype of microglia, had been first detected by

snRNA-seq in transgenic AD mice,98 underlining the fact that

both methodologies should be seen as complementary.

snRNA-seq is useful to characterize the global cellular heteroge-

neity of tissues; in turn, spatial transcriptomics brings to view

gene expression relationships between cells and their surround-

ings. Recent work by Sadick al. provides a roadmap in this direc-

tion; by combining snRNA-seq with existing spatial transcrip-

tomic resources, they pinpointed the location of AD-associated

astrocyte subtypes to specific cortical layers.109

Diamond in the rough: AD brain proteomics
Historically, protein sequencing predates that of DNA and

RNA.110 That early start has since been overshadowed by the

growth of genomics, powered by the development of PCR.

The absence of amplification strategies for proteins and the

complexity of these molecules help explain why the field of pro-

teomics has lagged.110,111 Regardless, proteins often act as the

de facto biological effectors of the information stored in our

genome and are thus of central importance to understanding

cell phenotypes. While mRNA measurements are used as a

proxy for protein levels, mRNA and protein profiles exhibit only

partial consistency.112 Observations in AD confirm this trend,

with 40%–50% of protein co-expression modules with dis-

ease-associated changes not being seen in RNA networks

derived from the same individuals.113–115 This realization implies

that not all gene expression changes involved in AD pathophys-

iology occur through mechanisms manifested at the mRNA level

despite our substantially better account of the AD transcriptome.

Ultimately, AD is a proteinopathy and, as such, has protein dys-

metabolism at its core.116

A robust finding from proteomics surveys of the AD brain per-

tains to the high preservation of protein networks across different

cortical regions.117,118 This suggests an overlap in the biological

processes and cell types contributing to the expression patterns

observed in AD. Consistent with this idea, many of the protein

network alterations associated with the disease appear to be

linked to specific cell types and can sometimes show strong as-

sociations with neuropathology and other relevant clinical fea-

tures.117,119 For instance, in a recent large-scale proteomics

study, a module related to mitogen-activated protein kinase

(MAPK) signaling and metabolism was the most highly corre-

lated with cognitive function.115 By contrast, another set of

co-expressed proteins, encompassing a collection of extracel-

lular matrix-related genes, was shown to be influenced by
Cell Genomics 4, 100555, May 8, 2024 9
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APOE4.115 This effect was, however, independent of the cogni-

tive trajectory.115 Revealingly, neither of these modules was pre-

served at the mRNA level, underscoring the value of considering

the proteome for understanding AD pathophysiology.115 The

implication of alteredMAPK signaling in AD pathogenesis is sup-

ported by Bai et al. using a different cohort of patients.119 Their

work is also noteworthy for its stratification of cases across the

AD clinicopathological continuum, in addition to whole proteome

and phosphoproteome profiling.119 In this vein, evidence from a

proteomics study focusing specifically on resilience to AD impli-

cates actin filament-based processes and injury responses as

core molecular features of resilience.120 In relation to potential

cell-type-specific programs, an earlier study of >2,000 brains

identified a module linked to glial sugar metabolism suggested

to function as part of an anti-inflammatory response.117 These

analyses tentatively pinpoint astrocytes and microglia as the

source of this co-expressed protein network.117 As proteomic

methodologies with single-cell resolution are still not wide-

spread, weighted gene correlation network analysis (WGCNA)

algorithms are now being used to cluster and simplify data

from large-scale proteomics experiments. Simply put, WGCNA

algorithms are used to contextualize proteomics readouts via

computational inferences. In other words, without additional val-

idations, presently available proteome-wide profiles cannot yet

be ascribed to a particular cell type with absolute confidence.

This outlook may soon change, as protein imaging approaches

with multiplex potential have recently been described.121,122

While proteome coverage is nowhere near that afforded by con-

ventional mass spectrometry-based protocols, these technolo-

gies boast the kind of detail needed to visualize gene expression

at the protein level in situ in the diseased brain.

Toward a unified view of AD
No matter how rich in detail, none of the modalities surveyed

above paint a complete picture on their own. From genetics to

proteomics, all biological layers contribute linked pieces of evi-

dence. However, when considered separately, each approach

falls short of fully capturing the processes that affect AD, result-

ing in potential missed insights and misleading signals. The de-

mand for integrative analyses that merge different types of

data into a common framework is demonstrated by the finding

that RNA and protein networks are not aligned in AD.115 We

have also underscored how efforts to interpret genetic variants

related to AD risk have gained momentum since the emergence

of single-cell transcriptomic and epigenomic resources,27

among other synergies. Except for AD genetics, we are, in

essence, probing different facets of the same question. Ulti-

mately, aftermany landmark contributions and significant invest-

ment, we must maximize what can be learned from existing

omics catalogs. This goes beyond bringing together different

molecular readouts, as the coherent incorporation of these

with clinical, epidemiological, and brain imaging datasets is

bound to further enrich our ability to capture sources of intra-

and interindividual variability within the heterogeneous AD

landscape.

Implementations of this vision are already underway. The

ROSMAP project, which is part of the wider Accelerating

Medicines Partnership-Alzheimer’s Disease consortium, has
10 Cell Genomics 4, 100555, May 8, 2024
emerged as a particularly amenable platform for multilevel inte-

gration strategies. The ROSMAP cohort combines two large, de-

cades-long studies of aging and dementia launched in the

1990s, comprising annual psychological and clinical evaluations,

including blood draws, plus harmonized neuropathological ex-

amination after death. The cross-modality characterization of

participants has since allowed specific molecular and cellular re-

sponses to be connected to AD endophenotypes, such as cogni-

tive decline and neuropathology features.92,123 The power of this

effort is epitomized by the recent back-to-back publication of

four landmark papers using the ROSMAP cohort.40,61,93,97

Through their integrative analyses that correlate detailed

genomic profiles with clinicopathological features, the authors

achieved what is a transformative multiscale resource poised

to shape AD research for years to come.40,61,93,97 The Seattle

Alzheimer’s Disease Cell Atlas (SEA-AD; available through

SEA-AD.org) is also emerging as a landmark for the field.124

Drawing on prior knowledge in the BRAIN Initiative Cell Census

Network, SEA-AD combines single-cell profiling and spatial ge-

nomics with image-based quantitative neuropathology scoring

schemes and deep clinical phenotyping. In a preprint,124 the

SEA-AD consortium reports, among other observations, that a

subset of GABAergic interneurons are impacted in AD, corrobo-

rating independent findings from other patient cohorts.92–94 They

advance earlier evidence by pinpointing these affected cell sub-

types predominantly to upper cortical layers.124 Another recent

approach has been to look for patterns across epigenomics,

transcriptomics, proteomics, and metabolomics data to differ-

entiate AD subtypes at the molecular level.125 Using the post-

mortem brain as a starting point, three robust AD subtypes

were identified, with the first characterized by metabolic alter-

ations and the other two presenting unique RNA and epigenetic

signatures.125 Critically, this multidimensional classification in-

dex of AD was extrapolatable to blood samples,125 opening

doors to potential future utilization of minimally invasive molecu-

lar profiling as a clinical tool. In the same vein, Yang et al. jointly

leveraged bulk RNA-seq, DNA methylation, histone acetylation,

proteomics, and metabolomics datasets in the same model in

their attempt to better stratify aging individuals at the molecular

level.126 Of these data modalities, histone acetylation, DNA

methylation, and RNA abundance were found to be the most

useful metrics in capturing cognitive trajectories.126 Methods

for cross-querying brain-imaging biomarkers (e.g., hippocampal

volume) and molecular readouts are also in development. For

example, the Alzheimer’s Disease Neuroimaging Initiative has

recently proposed a comprehensive strategy to integrate genetic

and transcriptomic measurements with brain structural mag-

netic resonance imaging.127 A different approach altogether

has been the application of deep learning tools to infer dis-

ease-associated protein changes linked to AD clinical features

from transcriptomic profiles.113

Genomic biomarkers
The clinical and pathological presentation of AD is highly hetero-

geneous, being influenced by interactions between genotype,

environment, cognitive reserve, and a range of demographic

factors, among other determinants. Besides b-amyloid

and tau, which capture only a portion of the biological

http://SEA-AD.org
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mechanisms underlying AD, there is a growing appreciation for

the co-occurrence of cerebrovascular disease and other concur-

rent pathologies,128 complicating reductionist attempts to quan-

tify heterogeneity among patients based on traditional metrics

(e.g., b-amyloid 42 [Ab42]/Ab40 ratios or phospho-tau levels). Un-

derstandably, the search for novel biomarkers continues to be a

major focus of investigation.

More than any other ‘‘omics’’ field, proteomics has been

extensively deployed as a systems-based approach to

biomarker discovery. While blood-based analyses have also

been performed and offer undeniable advantages in clinical set-

tings due to their less invasive nature,129 cerebrospinal fluid

(CSF) remains a promising option for biomarker studies in AD

research based on its association with the brain’s biochemical

milieu.130 Consistent with this idea, the degree of correspon-

dence between CSF and brain proteomes in AD is indeed sub-

stantial.114,117 For example, in the most comprehensive study

to date, 15 of the 44 protein modules identified in the brain

were conserved in the CSF.114 Further analyses grouped these

overlapping modules into five distinct biomarker panels reflect-

ing various pathophysiological processes associated with AD,

including synaptic, vascular, glial, and metabolic dysfunction.114

Interestingly, glial-enriched myelination and immunity panels

were increased in both brain andCSF proteomes, whereas those

linked to synaptic and metabolic function displayed opposing

trends, being decreased in the brain of individuals with AD but

elevated in the CSF. By contrast, despite marginal increases in

the AD brain, proteins in the vascular panel exhibited a sharp

decline in CSF.114

Non-coding RNAs (ncRNAs) constitute upward of 90% of all

the RNAs made from the human genome, yet their importance

was largely unrecognized until recently. The intricacies of each

family of ncRNAs are outside of the purview of this text, and

we choose instead to highlight here recent investigations em-

ploying CSF ncRNAs signatures as biomarkers of AD pathol-

ogy.131 Interestingly, a combined set of three microRNAs (miR-

NAs) (miR-27a-3p, miR-30a-5p, and miR-34c, all increased in

AD) and three PIWI-interacting RNAs (piRNAs; piR_019324

[decreased] and piR_019949 and piR_020364 [both increased])

adequately detects AD and is also suitable for predicting the

conversion of mild cognitive impairment to AD dementia.131

When considered together with phospho-tau and Ab42/40 ratio

measures, this miRNA-piRNA signature performed even better,

achieving striking area under the curve (AUC) values of 0.98,

‘‘diagnosing’’ AD.131 In a first, Wingo et al. developed an integra-

tive approach to define new molecular players underlying varia-

tion in cognitive trajectory (rate of change in cognitive perfor-

mance over time) using global brain miRNA profiles as a

starting point.132 Among these, two miRNAs, miR-132-3p and

miR-29a-3p, emerged as particularly significant factors in deter-

mining cognitive trajectories. The findings further indicate that

both miRNAs influence cognitive trajectories, at least to some

extent, independent of various common age-related pathol-

ogies, including Ab and neurofibrillary tangles.132

Much remains to be done to fully connect complex biomarker

profiles to specific disease trajectories. In any case, these efforts

already represent a significant departure from our reliance on

hallmark pathology markers as measures of AD states. Ulti-
mately, they should allow for better stratification of patients,

paving the way for improved therapeutic interventions and early

disease monitoring.

Genomics-driven drug development
Besides helping shape much of the discourse on the molecular

and cellular underpinnings of AD, genomics promises to unlock

new treatment avenues. To begin with, drug targets backed by

genetic evidence are twice as likely to lead to approved thera-

pies.133 In a field marred by failures despite enormous invest-

ment by governments and industry, these improved odds of suc-

cess are non-negligible. With about 75 loci currently associated

with AD risk,11–13 GWASs have undoubtedly changed the playing

field. Anti-amyloid therapies do continue to garner attention, but

pharmaceutical development pipelines are diversifying.134

These include apoE/lipid metabolism and the endo-lysosomal

network, two pathways whose involvement in AD pathophysi-

ology finds direct support in the genetic etiology of sporadic

AD.134 Treatment modalities are also expanding; for example,

a tau-targeting antisense oligonucleotide reduced total tau

CSF levels in a phase 1b trial in adults with mild AD.135 A small

interfering RNA therapeutic targetingAPPmRNA is also in devel-

opment (ClinicalTrials.gov: NCT05231785). In light of this wider

landscape, it is worth stressing that the conceptual view that pre-

vailed in the past three decades—the amyloid cascade hypoth-

esis—was fueled by a series of genetic findings.136 Back then,

the assumption was that late-onset AD shared essentially the

same pathogenic mechanism as familial forms of the condition,

albeit on a slower time frame.136 The pathobiology of sporadic

AD proved to be more nuanced than the simplicity those genetic

discoveries suggested, and we are today in a better position to

implement drug development strategies informed by genetic

and genomic data.

Most academic laboratories lack the resources and expertise

to develop novel drugs from the ground up. Therefore, we see

value in exploring an alternative strategy that democratizes the

use of existing genomic datasets. It combines drug repurposing

with an ever-growing initiative by the Broad Institute and the Li-

brary of Integrated Network-based Cellular Signatures (LINCS)

project that has characterized, to date, more than 1.5 million

gene expression profiles for a range of drugs and other perturba-

tions.137,138 A key feature of this platform, named the Connectiv-

ity Map (CMap; https://clue.io), is allowing users to compare dis-

ease-linked gene expression changes against drug-induced

transcriptomic patterns to identify prospective therapeutic com-

pounds based on high dissimilarity scores. It discovers mole-

cules with the potential to counteract disease-associated tran-

scriptional responses and normalize gene expression. At the

other end of the spectrum, it can also pick out drugs that mimic

specific protective transcriptional programs as candidates for

bolstering resilience to disease. Unlike traditional approaches

to drug development, which focus on single-target or single-

pathway interventions, CMap is agnostic to the underlying

pathobiology and operates under no mechanistic preconcep-

tions. Rather, by focusing on an unbiased measure, gene

expression, CMap circumvents our incomplete understanding

of complex diseases such as AD and provides away of achieving

wide-reaching cellular outcomes.
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Several successful implementations of CMap in preclinical AD

studies have already been reported.79,101,139 The study conduct-

ed byWilliams et al. represents an important step forward in over-

coming a major hurdle posed by CMap for repurposing efforts in

AD.139 Specifically, they addressed the platform’s current reliance

on perturbation-induced transcriptional profiles originating from

cell lines with limited disease relevance. Their approach began

with mining drug candidates predicted by CMap to oppose

different aspects of the AD transcriptional landscape, including

early- and late-stage disease responses. These compounds

were then screened in iPSC-derived human cortical neurons us-

ing microarrays. Remarkably, of an initial set of 153 compounds

identified by CMap, 51 produced desirable transcriptional out-

comes in neuronal cultures. Enrichment analyses further revealed

that the best-performing interventions frequently upregulated

mitochondrial processes, consistent with the well-established

role of mitochondrial dysfunction in AD pathogenesis.139 In addi-

tion, an alternative strategy has been to focus on how individual

transcriptional pathways are modulated in disease and explore

candidate drugs based on those activities.101 It is similarly note-

worthy that AD-related epigenomic signatures have been shown

to be a viable input for CMap.79 As discussed above, tau pathol-

ogy is associated with broad changes in H3K9ac domains and

chromatin organization.79 This knowledge informed the subse-

quent identification of a heat shock protein inhibitor that attenu-

ates tau-induced chromatin rearrangements.79

Alternative approaches to drug repurposing targeting gene

expression have also been explored.140 DRIAD (Drug Repurpos-

ing in AD) is a machine learning framework that quantifies asso-

ciations between pathological stages and any biological process

that can be described by a list of genes.140 It was trained on two

types of transcriptomic data, AD brain profiles stratified by Braak

scores and drug-elicited responses measured in neuron-glia co-

cultures. The initial cohort of chemical entities tested by DRIAD

comprised 80 kinase inhibitors, many of which are US Food

and Drug Administration-approved molecules. Analysis of top-

ranked drugs revealed some interesting trends, including priori-

tization of innate immunity, autophagy, and microtubule dy-

namics modulators140 as well as molecules also highlighted by

CMap.101

Globally, the concept of drug repurposing for AD has received

significant attention, with 28% of the 187 ongoing clinical trials

involving repurposed molecules.141 These agents exhibit higher

success rates than new chemical entities and, overall, offer a

cost-effective approach to expedite the development of treat-

ments. Lamivudine, a common antiretroviral medication used

to treat human immunodeficiency virus (HIV) and hepatitis B vi-

rus (HBV) infections, is a relevant case in point.141 Currently in

phase 2 (ClinicalTrials.gov: NCT04552795), this inhibitor has

been shown to interfere with age-associated inflammation medi-

ated by retrotransposon activation.142 While much remains un-

known regarding how DNA transposable elements contribute

to AD neurodegeneration, lamivudine illustrates what there is

to be gained by learning about our genome. That a drug listed

by the World Health Organization as an essential medicine for

priority conditions may one day be used to treat another urgent

human health crisis would have been nothing less than a remark-

able exercise in foresight.
12 Cell Genomics 4, 100555, May 8, 2024
Outlook
How do we effectively utilize the vast wealth of genomics data

currently at our disposal? On the one hand, the complex and

interconnected nature of the genome necessitates approaches

that integrate data modalities into a unified framework. Howev-

er, while the field has benefitted from recent technological ad-

vances in genomics, we must recognize that the availability of

data does not equate to proportional increments in knowledge.

Such large-scale ventures are futile without proper context and

careful interpretation. The focus should be the pursuit of path-

ophysiological insights and their translation into consequential

outcomes for patients. Improved study designs are generally

warranted to capture the heterogeneity of AD. Indeed, despite

the fact that two-thirds of AD cases are women (US estimates),

genomic research has generally failed to address these differ-

ences. We have extensively discussed the findings by Mathys

et al.,38 but two additional studies deserve acknowledgment

for their landmark contributions. The first report documented

how menopause-related changes in follicle-stimulating hor-

mone levels are tied to worse disease phenotypes in a mouse

model of AD via upregulation of the transcription factor

C/EBPb.143 In the same vein, Yan and colleagues found that

a deubiquitinase located on chromosome X, USP11, escapes

X inactivation and leads to compromised tau homeostasis in

women.144 Sex-specific genetic associations have also been

identified, such as an intergenic variant linked to TSPAN13

that protects against tau pathology in male carriers.145 These

works provide clarity on the sexual dimorphism of AD, which

we hope will inspire further research. AD also disproportion-

ately impacts certain racial and ethnic populations, such as

Black and Hispanic adults,146 but the specificities within

their genomes remain understudied. Efforts such as the

Health & Aging Brain among Latino Elders, the Washington

Heights-Hamilton Heights-Inwood Community Aging Project,

the National Alzheimer’s Coordinating Center retention drive

of American Indian and Alaska Native participants,147 and the

recent initiative targeting Asian Americans and Asian Cana-

dians are examples of initiatives to address this gap.148–150

Considering that the genetic interactions that influence disease

onset and progression might differ, we further see potential in

attempts to disambiguate between genes that act early on

from those that shape the ensuing disease cascade. Doing

so is key to prioritizing targets for drug discovery and expand-

ing the predictive value of genetic results in the clinic. Ulti-

mately, and paraphrasing John von Neumann, it might be

that AD ‘‘is much too complicated to allow anything but ap-

proximations.’’ Still, the genomic readouts we have today

constitute our clearest shot at unraveling this multilayered dis-

order. The promise is real, and the technology is at our finger-

tips. It is now up to us as a community to make it happen.
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