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Abstract

INTRODUCTION:Alzheimer’s disease (AD) is the leading cause of dementia, affecting

around 50million individuals worldwide. Brain-derived extracellular vesicles (EVs) can

cross the blood–brain barrier carrying neuron-specific molecules, such as microRNAs

(miRNAs), which have potential as biomarkers of neurodegeneration.

METHODS:We explored the association between neuronal-derived EVmiRNAs from

serum and AD clinical status by performing a transcriptome-wide association study

involving 46 participants with clinical AD, 14 participants with preclinical AD, and 60

neurologically healthy controls.

RESULTS: We identified 14 miRNAs associated with AD risk, with more pronounced

transcriptional alterations inpreclinical individuals compared to clinicalAD individuals.

Functional analysis revealed enrichment of miRNA-target genes in neurodegenera-

tive pathways, highlighting synuclein alpha (SNCA), cytochrome c, somatic (CYCS), and

microtubule associated protein tau (MAPT) as key targets.

DISCUSSION: Our results highlight the potential role of neuronal-derived EVs in

neurodegeneration and suggest avenues for further research into brain-derived

biomarkers.
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Highlights

∙ Neuronal-derived extracellular vesicles (NDEVs) carry potential brain biomarkers.

∙ We tested the association between NDEV microRNAs (miRNAs) and Alzheimer’s

disease (AD).

∙ Fourteen NDEVmiRNAswere associated with AD.

∙ Preclinical AD displayedmore pronounced transcriptional changes than clinical AD.

∙ miRNA-target genes were enriched in pathways associated with neurodegenera-

tion.

1 BACKGROUND

Neuropathological hallmarks of Alzheimer’s disease (AD) include

extracellular deposition of amyloid beta (Aβ) proteins forming senile

plaques, neurofibrillary tangles of hyperphosphorylated tau protein

within axons and dendrites, and neuronal loss.1 Despite evidence sug-

gesting that the amyloid system plays a role in the etiology of AD,

the cause of the disease remains elusive.2–5 Several risk factors have

been suggested to modulate the risk of developing AD, with aging

and apolipoprotein E (APOE) ɛ4 allelic variant being the foremost

contributors.6–10 Individuals with AD have access to few therapeu-

tic options, which show mild efficacy, underscoring the need for new,

easily accessible biomarkers that could improve population risk strat-

ification, enhance diagnostic accuracy, and guide the development of

more effective treatments.11,12

Clinically based diagnostic criteria of AD show sub-optimal diag-

nostic accuracy compared with neuropathological evidence of disease,

with sensitivity ranging from 70.9% to 87.3% and specificity ranging

from 44.3% to 70.8%.13,14 The issue is even more pronounced when

considering that over 80% of AD patients have co-pathologies, includ-

ing cerebroascular disease, Lewybodies, andTARDNA-bindingprotein

43 (TDP-43) proteinopathies.15 Recent advances in biomarker discov-

ery showed that cerebrospinal fluid biomarkers and blood biomarkers

such as Aβ and phosphorylated tau protein improve the accuracy of AD

diagnosis.16–21 Emerging evidence suggests that a preclinical phase of

AD could lastmore than a decade, offering a significantwindowof time

for biomarker screening that could possibly lead to an earlier diagnosis

and opportunities for therapeutic intervention.22,23

Neurons are the primary targets of degeneration in AD, and gain-

ing direct insights from these challenging-to-access cells is paramount

to enhance our understanding of the pathological processes sur-

rounding the disease. Extracellular vesicles (EVs) are small cell-

specific membrane-bound cargos released by cells, carrying bioactive

molecules such as nucleic acids, metabolites, and proteins, which play a

crucial role in intercellular communication.24 EVsare critical regulators

of neurological health and function in the central nervous system.25,26

Brain-derived extracellular vesicles are able to cross the blood–brain

barrier (BBB), providing readily accessible, neuron-specific insights and

offering a promising source of biomarkers for neurological health. Thus

neuronal EVs quickly gained scientific interest in neurodegeneration.

Recently, Kapogiannis and collaborators showed that plasma neuron-

enriched EVs could be used to predict AD risk.27 Among the cargo

molecules transported by EVs are microRNAs (miRNAs), short non-

coding single-stranded RNA molecules spanning 19 to 24 nucleotides

that are actively involved in the regulation of gene expression. miR-

NAsact as post-transcriptional regulators,modulating geneexpression

in various physiological processes. In the central nervous system, they

play a key role in neuron maturation and neurite growth, and are

implicated in pathological processes, including neurological disorders.

Recent studies have highlighted the diagnostic and prognostic role

of tumor-derived EV miRNAs as circulating biomarkers in cancer, but

their role in AD remains understudied.28–31

Growing evidence links plasmamiRNAswith ADpathogenesis.32–35

Little is known about the contribution of neuronal-derived EV (NDEV)

miRNAs in AD, and studies are focused on patients with symptomatic

AD.36,37 There is a crucial need for accessible and non-invasive prog-

nostic and diagnostic biomarkers that could detect early stages of the

disease and enhance the diagnostic accuracy. For these reasons, we

performed an miRNA transcriptome-wide association study (TWAS)

in 44 clinically diagnosed participants with AD, 14 participants with

preclinical AD who were subsequently diagnosed during follow-up,

and 60 neurologically healthy controlswithin theWashingtonHeights-

Hamilton Heights-Inwood Columbia Aging Project (WHICAP). We

focused onNDEVmiRNAs accessible via routine blood draw, highlight-

ing NDEV miRNA biomarkers that preceded clinical diagnoses as well

as molecular pathways that could be addressed in future research.

2 METHODS

2.1 Study cohort

Serum from 46 participants with AD, 14 participants with preclinical

AD, and 60 age-matched controls collected between 1995 and 2018,
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were obtained from the WHICAP study, a longitudinal multi-ethnic

study that has been enrolling participants 65 years of age and older

since 1992. All participants were interviewed and enrolled after pro-

viding informed consent. The study cohort was evenly divided among

individuals self-identifying as non-HispanicWhite, non-Hispanic Black,

and Hispanic, following the classification guidelines of the 1990 U.S.

Census. AD diagnosis follows the National Institute of Neurolog-

ical and Communicative Disorders and Stroke (NINCDS) and the

Alzheimer’s Disease and Related Disorders Association (ADRDA) con-

sensus criteria.13 Participants were classified as having a clinical

diagnosis of ADbased on a neuropsychological battery and a neurolog-

ical exam.38,39 Preclinical participants were defined as neurologically

healthy at blood draw and received a clinical diagnosis of AD during

follow-up (following up time: 1.1–18.8 years). Healthy controls were

defined as symptom-free at blood draw and were not diagnosed with

AD during follow-up (following up time: 0–7.4 years). We provided

a graphical overview of the workflow (Graphical Abstract, Figure 1).

Demographic information about the study sample is shown in Table S1.

2.2 Neuronal-derived extracellular vesicle
isolation

NDEVs were isolated from 0.2 mL of blood serum using the ExoSORT

isolation kit following the manufacturer’s instructions (NeuroDex,

Natick, MA, USA). In brief, ExoSORT follows an established immuno-

precipitation protocol to capture NDEVs followed by incubation with

antibodies toneuron-specific surfaceproteins, specifically neuroligin-3

(NLGN3) and growth associated protein 43 (GAP43).40,41

2.3 MiRNA sequencing, quality control, and data
processing

NDEVs were directly lysed on the magnetic beads using HTG biospeci-

men lysis buffer and miRNAs were sequenced using the HTG EdgeSeq

miRNA Whole Transcriptome Assay that quantifies the expression of

2083 human miRNAs (HTG Molecular Diagnostics, Inc., Tucson, AZ,

USA). Six quality control samples were analyzed in triplicates and used

RESEARCH-IN-CONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources such as PubMed. Limited infor-

mation exists on the role of microRNAs (miRNAs) in

neuronal-derived EVs (NDEVs) in Alzheimer’s disease

(AD), with most research focusing on clinically diagnosed

patients. All relevant citations are appropriately cited in

themanuscript.

2. Interpretation: Our study identified NDEV miRNAs and

associatedmolecular pathways linked toAD, emphasizing

transcriptional alterations that predominantly impact the

preclinical stage of the disorder.

3. Future directions: Our findings offer support for further

research into brain-derived biomarkers, emphasizing the

potential of non-invasive methods to identify preclinical

AD biomarkers. Expanding the sample size (from the lon-

gitudinal Washington Heights-Hamilton Heights-Inwood

Columbia Aging Project [WHICAP] cohort) and investi-

gating other brain-specific cell types, such as astrocytes

and microglial cells, could strengthen the reliability of

this approach and provide further evidence for the use of

miRNAs as biomarkers for AD.

as internal technical replicates for quality control purposes. Raw read

counts were converted to counts per million, normalized for library

size using trimmed mean of M-values normalization method, and log

transformed prior to analysis.42 Only miRNAs that showed replicate

coefficient of variation (CV) less than 0.20 were kept for analysis

(n= 383).

2.4 Transcriptome-wide association study

In theprimary analysis,we tested the associationbetweenmiRNAsand

AD status, where a case was defined to include those diagnosed with

F IGURE 1 Study workflow. Schematic representation of the study workflow. Abbreviations: AD, Alzheimer’s disease; EVs, extracellular
vesicles; miRNA, microRNA. Figure created with BioRender.com.
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AD at the time of blood draw and those diagnosed at follow-up (n= 60)

compared to neurologically healthy controls (n = 60). We then sep-

arately tested the association between each miRNA and participants

with AD status at blood draw (n = 46) and participants with preclinical

AD (n= 14) compared to healthy controls (n= 60). Statistical modeling

and data analysis were conducted using the R programming language

(v4.2.0).43 Weusedmultivariable linear regressionmodels adjusted for

age, sex, and race/ethnicity of the participants. For interpretation, we

exponentiated the regression coefficient to calculate fold-change (FC)

differences between groups and applied a false discovery rate (FDR)

threshold of 0.05 to adjust formultiple hypothesis testing. The dataset,

including demographic information and log-transformed counts per

million for the383miRNAsanalyzed, hasbeendeposited inZenodo.org

(accession # 14618591).

2.5 Pathway enrichment analysis

We conducted a comprehensive functional enrichment analysis using

theDIANA-miRPath v4.0 tool.44 Weobtained target genes fromdiffer-

entially expressedmiRNAs in ourTWASusing theTarBase v8database,

a collection of experimentally supported miRNA–gene interactions.45

We performed an miRNA-centric analysis using the following set-

tings: (1) long non-coding RNAs were included among targets; (2)

miRbase-v22.1 was the annotation source, and Kyoto Encyclopedia

of Genes and Genomes (KEGG) was the pathways database46; and

(3) an FDR correction with corrected p-value threshold < .05. miR-

6780b-5p was excluded from the analysis because no target genes

were available for this miRNA with the selected resources. Our func-

tional analysis included pathways enriched by genes targeted by

all nine differentially expressed miRNAs. In addition, we performed

a clustering of 109 common miRNA-target genes shared between

“Pathways of neurodegeneration—multiple diseases” and “Parkinson

disease” KEGG pathways using String Consortium database and the

Markov Clustering Algorithm option.47

3 RESULTS

3.1 Study cohort

Almost two-thirds of the study participants were women. Non-

Hispanic White (n = 40), non-Hispanic Black (n = 40), and Hispanic

(n = 40) ethnicities were equally represented within the study cohort.

The average age of participants with AD, participants with preclinical

AD, and controls was 87.2 years (range 78.9–89.9), 82.4 years (range

71.2–88.6), and 86.4 years (range 78.7–90.0) respectively.

3.2 Differentially expressed NDEV miRNAs are
associated with AD risk

We first tested the association between each miRNA and all partici-

pants with AD (including clinical and preclinical AD cases) compared

to neurologically healthy controls. Our TWAS identified nine down-

regulated miRNAs and one upregulated miRNA associated with AD:

miR-6780b-5p (FC = 0.30, FDR = 0.01), miR-27b-3p (FC = 0.66,

FDR = 0.01), miR-3940-5p (FC = 0.51, FDR = 0.01), miR-564

(FC=0.79, FDR=0.02),miR-29c-3p (FC=0.68, FDR=0.03),miR-223-

3p (FC = 0.51, FDR = 0.04), miR-15b-5p (FC = 0.60, FDR = 0.04), miR-

126-5p (FC = 0.70, FDR = 0.04), miR-19a-3p (FC = 0.65, FDR = 0.04),

andmiR_422a (FC= 1.36, FDR= 0.05) (Table 1, Figure 2A, Table S2).

TABLE 1 Neuronal-derived EVmiRNAs associated with Alzheimer’s disease.

miRNA

All AD vs Controls Preclinical AD vs Controls Clinical AD vs Controls

FC 95%CI p-value FDR FC 95%CI p-value FDR FC 95%CI p-value FDR

miR-6780b-5p 0.30 0.18–0.52 2.98x10−5 0.01 0.15 0.06–0.40 1.84x10−4 0.04 0.37 0.20–0.68 1.49x10−3 0.15

miR-27b-3p 0.66 0.54–0.80 6.96x10−5 0.01 0.51 0.36–0.72 2.02x10−4 0.04 0.71 0.57–0.88 2.67x10−3 0.15

miR-3940-5p 0.51 0.36–0.70 8.21x10−5 0.01 0.37 0.20–0.65 9.47x10−4 0.05 0.56 0.39–0.81 2.48x10−3 0.15

miR-564 0.79 0.69– 0.89 2.41x10−4 0.02 0.74 0.58–0.95 0.02 0.11 0.79 0.69–0.91 1.59x10−3 0.15

miR-29c-3p 0.68 0.55–0.84 4.01x10−4 0.03 0.54 0.37–0.77 1.08x10−3 0.05 0.71 0.56–0.90 4.42x10−3 0.15

miR-223-3p 0.51 0.35–0.75 6.81x10−4 0.04 0.35 0.18–0.68 2.33x10−3 0.07 0.57 0.37–0.87 9.18x10−3 0.15

miR-15b-5p 0.60 0.45–0.81 8.79x10−4 0.04 0.40 0.24–0.66 5.69x10−4 0.04 0.66 0.48–0.91 0.01 0.15

miR-126-5p 0.70 0.57–0.86 9.76x10−4 0.04 0.57 0.40–0.82 3.01x10−3 0.08 0.75 0.60–0.94 0.01 0.15

miR-19a-3p 0.65 0.51–0.84 1.02x10−3 0.04 0.51 0.33–0.78 2.21x10−3 0.07 0.68 0.51–0.90 6.89x10−3 0.15

miR-422a 1.36 1.13–1.63 1.21x10−3 0.05 1.33 0.94–1.89 0.11 0.20 1.40 1.16–1.69 7.31x10−4 0.15

miR-144-3p 0.68 0.53–0.88 3.19x10−3 0.06 0.42 0.26–0.66 2.95x10−4 0.04 0.76 0.58–1.00 0.05 0.15

miR-451a 0.44 0.25–0.75 2.74x10-3 0.06 0.19 0.07–0.47 5.80x10−4 0.04 0.53 0.30–0.96 0.04 0.15

let-7f-5p 0.77 0.65–0.91 2.36x10-3 0.06 0.64 0.49–0.82 7.27x10−4 0.04 0.81 0.67–0.97 0.02 0.15

let-7 g-5p 0.79 0.66–0.93 5.82x10-3 0.06 0.62 0.47–0.81 7.87x10−4 0.04 0.85 0.71–1.02 0.09 0.18

Note: Statistically significantmiRNAsassociatedwith the risk ofAD. “ClinicalAD” refers to clinically diagnosedADparticipants at blooddraws. “All AD” groups

clinical AD and preclinical AD. FC represents themiRNA expression ratio. 95%CI shows lower and upper intervals.

Abbreviations: AD, Alzheimer’s disease; CI, confidence intervals; FC, fold change; FDR, false discovery rate; miRNA, microRNA.
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F IGURE 2 Differentially expressedmiRNAs associated with
Alzheimer’s disease. Volcano plot showing themagnitude of change
(FC) and statistical significance (–log10 p-value) of all miRNAs in
participants with clinical and preclinical AD (A), participants with
preclinical AD (B), and participants with clinical AD (C) compared to
healthy aged controls. FC values below 1 indicate lower abundance in
NDEVs of participants with AD (both clinical and preclinical)
compared to controls, whereas FC values above 1 indicate higher
abundance in NDEVs of participants with AD. Red dots show the
statistically significant miRNAs surpassing the FDR threshold of 0.05.
Gray dots identify miRNAs that showed non-significant different
expression comparing cases and controls. Abbreviations: AD,
Alzheimer’s disease; FC, fold change; FDR, false discovery rate;
miRNA, microRNA; NDEVs, neuronal-derived extracellular vesicles.

3.3 TWAS identifies significant miRNAs in
preclinical AD cases

To investigate a possible role of NDEV miRNAs in presymptomatic

AD, we restricted our analyses to 14 participants with preclinical AD

and 60 healthy controls. This analysis identified a lower expression of

nine NDEV miRNAs associated with preclinical AD. Notably, five of

these miRNAs, miR-6780b-5p (FC = 0.15, FDR = 0.04), miR-27b-3p

(FC=0.51, FDR=0.04),miR-15b-5p (FC=0.4, FDR=0.04),miR-3940-

5p (FC = 0.37, FDR = 0.05), and miR-29c-3p (FC = 0.54, FDR = 0.05),

were previously associated with the risk of AD in the main TWAS

(Table 1, Figure 2B, Table S2).

Finally, we performed TWAS with 46 participants with clinical AD

and 60 controls. This approach did not identify any miRNA surpassing

the FDR-adjusted sinificance threshold of 0.05 (Figure 2C). However,

the comparisons between the estimates across the three models (all

ADcases vs controls, clinicalADcases vs controls, andpresymptomatic

AD cases vs controls) revealed a consistent trend among the miRNAs

identified, even if they did not survive FDR correction (Figure 3). We

performed a sex-stratified sensitivity analysis and found no apprecia-

ble difference between men and women for the 14 significant miRNAs

(Figure S1). Notably, we observed an expression pattern among the

14 previously identified miRNAs where participants with preclinical

AD exhibitedmore pronouncedmodulations compared to participants

with AD (Figure 4).

3.4 Differentially expressed NDEV miRNAs are
enriched in neurodegeneration pathways

We conducted a comprehensive functional enrichment analysis to find

molecular pathways linked with the miRNAs identified in the TWAS.

We identified 523 genes and seven molecular pathways targeted by

the miRNAs associated with the risk of AD (Table 2, Figure S2, Table

S3). Our analysis revealed pathways related to neurodegeneration,

including “Parkinson disease” (miRNA-target genes n = 121, adjusted

p-value= 4.04× 10−5) and “Pathways of neurodegeneration—multiple

diseases” (target genes n = 219, adjusted p-value = 2.54 × 10−6). We

further performed a protein–protein interaction study among 109 tar-

get genes shared between “Pathways of neurodegeneration—multiple

diseases” and “Parkinson disease” pathways. Our analysis identified

eight functional groups, with SNCA, CYCS, and MAPT emerging as key

genes, showing 59, 57, and 49 interactions, respectively (Figure 5,

Table S4).

4 DISCUSSION

There is a critical need to discover non-invasive biomarkers capable of

crossing the BBB, providing brain-specific molecules that could aid in

early detection, improve diagnosis, and enhance therapeutic efficacy

in AD. Our study investigated the association between serum NDEV
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F IGURE 3 Estimates between different models. Estimates from three different models of the 14miRNAs associated with an increased risk of
AD. Purple dots and lines refer to participants with preclinical AD versus controls model, pink dots and lines refer to participatns with clinical AD
versus controls, light blue data refer to all AD participants versus controls. Horizontal bars refer to lower (left end) and higher (right end) 95%
confidence intervals. Abbreviations: AD, Alzheimer’s disease; miRNA, microRNA.

TABLE 2 Biological pathways enriched bymiRNA-target genes.

Pathway Genes Targets p-value Adjusted p-value

Ubiquitin-mediated proteolysis 142 85 4.69x10−13 3.20x10−11

Protein processing in endoplasmic reticulum 194 107 8.47x10−13 4.82x10−11

Cell cycle 129 75 8.05x10−11 2.29x10−9

Endocrine resistance 118 63 2.14x10−7 1.81x10−6

Pathways of neurodegeneration—multiple diseases 539 219 3.13x10−7 2.54x10−6

Parkinson’s disease 282 121 7.59x10−6 4.04x10−5

Kaposi sarcoma–associated herpesvirus infection 245 100 4.34x10−4 1.54x10−3

Note: Biological pathways enriched by the target genes of the differentially expressed microRNAs (miRNAs) identified in the study. “Genes” refers to the

number of genes annotated within each pathway. “Targets” shows the number of miRNA-target genes for each pathway. Adjusted p-value refers to a false

discovery rate correction.
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F IGURE 4 Differentially expressedmiRNAs in preclinical and clinical AD. Violin plots showing the count per million of the differentially
expressedmiRNAs in neurologically healthy controls (purple), participants with clinical AD (pink), and participants with preclinical AD (light blue).
The horizontal line of the boxplot refers to themedian value, whereas the upper and lower limits of the boxplot show the first third quantiles,
respectively. Significance between the groups is shown (one-way ANOVA). Abbreviations: AD, Alzheimer’s disease; ANOVA, analysis of variance;
cpm, count per million; miRNA, microRNA; NS, not significant.

miRNAs and clinical AD diagnosis. We found brain-specific miRNAs

and molecular pathways that may modulate the risk of developing

clinical AD, potentially representing therapeutic targets.

In a recent study, Jia and colleagues investigated cerebrospinal fluid

and imaging biomarkers in cognitively unimpaired participants over a

20-year period, and they found that changes occurred as early as 18

years prior to the clinical diagnosis of AD.22 Their findings reveal a

preclinical AD phase that may span decades and reinforces the need

for novel non-invasive predictive biomarkers that could improve the

efficacy of therapeutic interventions.Within our study sample, 14 par-

ticipants initially enrolled as healthy controls but progressed to clinical

AD, enabling us to study the prodromal stage. Leveraging data from

these individuals, we found a specific miRNA expression signature:

participants with preclinical AD exhibited more pronounced modula-

tion compared to participants with clinical AD (Figure 4). This finding

suggests that specific miRNAs in NDEVs may reflect early biological

changes before the onset of clinical symptoms. It is also possible that

the milder miRNA modulations observed in later stages could result

from neuronal compensation or reduced neuron availability due to

neuronal death associated with disease progression. Alternatively, it is

possible that once diagnosed with Alzheimer’s disease, treatments or

changes in lifestyle may ameliorate some of the alterations.

Among the miRNAs associated with increased AD risk, miR-27b-

3p and miR-3940-5p stand out given their previous associations with

neurodegenerative disorders. Aberrant expression of miR-27b-3p is

implicated in neuroinflammation and associated with neurodegenera-

tive disorders including AD, multiple system atrophy, and amyotrophic

lateral sclerosis.33,48–53 Of interest, a recent in vitro study showed

that miR-3940-5p targets presenilin 1 (PSEN1), which encodes one of

the catalytic subunits of γ-secretase, a crucial protein involved in the

proteolytic cleavages of amyloid precursor protein (APP).54 By tar-

geting PSEN1, miR-3940-5p reduces the production of presenilin 1,

resulting in a decreased function of γ-secretase and lower levels of

the neurotoxic peptides Aβ40 and Aβ42.31 Our analysis reveals a sig-

nificant lower expression of NDEV miR-3940-5p in participants with

AD compared to healthy controls, consistent with the hypothesis that

downregulation of miR-3940-5p promotes amyloidogenic processing

of APP and the pathogenesis of AD.

Our findings support growing evidence linking the dysregula-

tion of miR-223-3p, miR-19a-3p, miR-29c-3p, and miR-15b-5p to

neurodegeneration.34,37,50,51,55 Notably, among the preclinical-

specific miRNAs, miR-144-3p, miR-451a, let-7 g-5, and let-7f-5p are

associated with an increased risk of Parkinson’s disease (PD) and

AD, further supporting their potential role in the prodromal stage of

neurodegeneration.34,36,56,57 The elevation of PD-associated miRNAs

may not be surprising as recent advances in α-synuclein assay help

identify that synuclein pathology in about 11% of preclinical AD and

25% of clinically diagnosed AD cases.41 Comparing changes in NDEV

miRNAs with cerebrospinal fluid biomarkers of synuclein pathology

may help identify a less-invasive biomarker for this co-pathology. In

addition, miR-144-3p and miR-451a co-localized upstream the gene

ERAL1 on the opposite strand, separated by 93 bps. ERAL1 encodes a

mitochondrial GTPase essential for the assembly of the 28Smitochon-

drial ribosomal subunit. Deletions or dysregulation of this gene have

been associated with mitochondrial dysfunction, a well-established

contributor to neurodegeneration.58–61

The functional enrichment analysis revealed a significant

enrichment of miRNA-target genes within pathways related to
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F IGURE 5 miRNA-target genes interactions. Circular plot showing the interconnections between 109miRNA-target genes shared between
“Parkinson disease” and “Pathways of neurodegeneration—multiple diseases” KEGG pathways. Color code refers to different functional clusters
identified by the String Consortium database tool. The pink lines show the connections betweenmiRNA-target genes. The size of the dots
represents the number of interconnections between the genes. Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; miRNA,
microRNA.

neurodegeneration and PD. Among these genes, SNCA, CYCS, and

MAPT emerged as genes of particular interest. MAPT encodes the

major constituent of neurofibrillary tangles, a defining pathological

feature of AD.62 A recent study showed that an interaction between

cytochromeC (CYCS) andmitochondrialmetabolismwith tau protein is

associated with neurodegeneration.63 In addition, mutations of SNCA

cause PD,64 and the intracellular aggregation of the misfolded protein

into Lewy bodies is associated with synucleinopathies like PD, Lewy

body dementia, and multiple system atrophy.65 Of note, our findings

align with increasing evidence linking SNCA to the etiology of AD.66

However, these findings are exploratory, and additional evidence is

necessary to confirm the role of these genes in neurodegeneration,

particularly within NDEVs.

Emerging evidence shows thatNDEVs are promising biomarkers for

neurodegenerative diseases. Sinha and colleagues showed a significant

enrichment of Aβ protein into post-mortem brain-specific exosomes of

AD patients compared to controls, providing evidence of an exosome-

mediated neuron-to-neuron propagation of toxic Aβ.67 In addition,

Ruan and collaborators showed the role of brain-derived EVs in the ini-

tiation and propagation of tau pathology in AD patients post-mortem,

corroborating the involvement of NDEVs in the progression of the

disease.68 Although these findings are undoubtedly compelling and
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expand our knowledge on the association of brain-specific EVs with

pathological changes in AD, they highlight the pressing need for non-

invasive approaches to effectively study andmonitor these biomarkers

in living patients.

Our study reveals several intriguing findings, but it does have limita-

tions. Although theHTGEdgeSeqmiRNA assay, coupledwith stringent

quality-check filtering, ensured high-quality data in our study, further

research is needed to identify the most effective methodologies. The

small sample size could affect the statistical robustness and expose

our analysis to false findings. However, similar studieswith comparable

sample sizes have demonstrated that meaningful insights can still be

generated under these conditions.40,41,69 Even with such a small sam-

ple, we identified differentially abundant miRNAs in NDEVs between

AD cases and controls that were consistent with prior evidence, but

it is possible that we lacked the power to detect other differences.

Although the study offers valuable insights into miRNAs as poten-

tial AD biomarkers, the confidence in our findings could have been

enhanced with additional approaches, such as polymerase chain reac-

tion (PCR) validation. However, the limited sample volume and low

RNA yield from NDEVs restricted our ability to conduct complemen-

tary analyses. Our controls were healthy at the time of blood draw and

were followed up for a short period; however, it is possible that some

of them developed AD later. This possibility would likely result in bias

toward the null and is unlikely led to spurious false-positive findings.

Finally, although we were unable to adjust for co-morbidities, which

may introduce residual confounding into our analysis, this limitation

does not diminish the potential utility of NDEVmiRNAs as biomarkers

for AD.

In summary, our study identified several miRNAs that exhibit dif-

ferential abundance in plasma NDEVs between participants with AD

and healthy controls, including some differences that predate clinical

diagnosis. Several of these miRNAs have been previously linked to AD,

but the overall evidence on the role of these miRNAs in neurological

health and pathology is scarce. Our findings provide valuable insights

that could point to novel therapeutic strategies in AD.
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