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Abstract 
The genetic component of early-onset Alzheimer disease (EOAD), accounting for ~10% 

of all Alzheimer’s disease (AD) cases, is largely unexplained. Recent studies suggest 

that EOAD may be enriched for variants acting in the lipid pathway. The current study 

examines the shared genetic heritability between EOAD and the lipid pathway using 

genome-wide multi-trait genetic covariance analyses. Summary statistics were obtained 

from the GWAS meta-analyses of EOAD by the Alzheimer’s Disease Genetics Con-

sortium (n=19,668) and five blood lipid traits by the Global Lipids Genetics Consortium 

(n=1,320,016). The significant results were compared between the EOAD and lipids 

GWAS and genetic covariance analyses were performed via SUPERGNOVA. Genes in 

linkage disequilibrium (LD) with top EOAD hits in identified regions of covariance with 

lipid traits were scored and ranked for causality by combining evidence from gene-based 

analysis, AD-risk scores incorporating transcriptomic and proteomic evidence, eQTL data, 

eQTL colocalization analyses, DNA methylation data, and single-cell RNA sequencing 

analyses. Direct comparison of GWAS results showed 5 loci overlapping between EOAD 

and at least one lipid trait harboring APOE, TREM2, MS4A4E, LILRA5, and LRRC25. 

Local genetic covariance analyses identified 3 regions of covariance between EOAD and 

at least one lipid trait. Gene prioritization nominated 3 likely causative genes at these 

loci: ANKDD1B, CUZD1, and MS4A64.The current study identified genetic covariance 

between EOAD and lipids, providing further evidence of shared genetic architecture and 

mechanistic pathways between the two traits.
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Author summary
Most individuals develop Alzheimer’s disease late in life, but approximately 10% of patients 
develop the disease before the age of 65 – these cases are known as early-onset Alzhei-
mer’s disease (EOAD). Relatively little is known about the genes that contribute to non-
autosomal dominant EOAD, but it is believed that some contributing genetic variants may 
be acting in the lipid pathway. We examined the genetic correlation between EOAD and 
five different lipid traits (total cholesterol, high-density lipoprotein cholesterol, low-density 
lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and triglycerides) and 
identified three genomic regions that showed genetic overlap between EOAD and at least 
one of the five lipid traits. We used a novel gene prioritization approach that combined 
evidence from multiple sources to nominate three specific candidate genes in these regions: 
ANKDD1B, CUZD1, and MS4A64, all of which have been associated with lipid-related dis-
orders and/or Alzheimer’s disease. Identification of mechanistic pathways shared between 
EOAD and lipid traits provides novel insights into the underlying etiology of these disor-
ders and informs development of improved screening, prevention, and treatment strategies.

Introduction
Alzheimer’s Disease (AD) is a highly prevalent progressive neurodegenerative disorder that 
places a substantial physical and emotional burden on patients and caregivers, and a significant 
financial toll on health care and social care systems [1]. While most AD patients are elderly 
individuals, 5-10% of cases occur before the age of 65 years and are classified as early-onset 
Alzheimer’s Disease (EOAD) [2]. EOAD has a substantial genetic basis with a heritability of 91% 
to 100% [3]. Studies of multiplex families with EOAD led to the identification of AD-causing 
mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 
(PSEN2) genes, playing a pivotal role in the implementation of the amyloid hypothesis in AD, 
which proposes an increase in β-amyloid production as a causative mechanism in AD etiology 
[4]. However, while the exact contribution of variation in APP, PSEN1, and PSEN2 to EOAD 
prevalence is unknown, it is estimated to be less than 10% of all incident EOAD cases, leaving 
~90% of EOAD cases unexplained [3–5]. A large proportion of EOAD heritability is expected to 
be explained by SNPs that do not pass the Bonferroni-corrected significance threshold [6].

Identification of the remaining genetic variation underlying EOAD and mapping of the 
mechanistic pathways involved is critical to disentangle the substantial clinical heterogeneity 
observed in this trait, develop prediction models, and develop more effective targets for screen-
ing, prevention, and treatment. A powerful approach to identify additional causative variants 
and biological pathways underlying complex traits are multi-trait analyses estimating local 
genetic covariance (i.e., genetic similarity in specific genomic regions) with other traits poten-
tially sharing etiologic mechanisms. Acknowledging the importance of disentangling pleiotropy 
to pinpoint disease etiology and potentially reposition drugs for complex diseases, multi-trait 
modeling has recently undergone rapid developments and has resulted in significantly improved 
methods. To identify new genetic loci underlying EOAD, we examined genome-wide local 
genetic covariance with five lipid traits: total cholesterol (TC), high-density lipoprotein cho-
lesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein 
cholesterol (nonHDL-C), and triglycerides (TG). A large body of epidemiologic studies of AD 
by us [7,8] and others [9–15] has shown that cholesterol levels elevated in midlife increase the 
risk of AD and cognitive decline, and associations of higher LDL-C with increased cerebral 
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β‐amyloid load have been observed in autopsy and in vivo imaging studies [16,17]. Similarly, 
AD risk is lower among statin users, and this association appears to be more pronounced with 
longer treatment exposure and the use of more potent drugs [18–23], although corresponding 
observational data on other lipid‐lowering drug classes are limited and ambiguous [24]. Studies 
specifically examining the association with EOAD are scarce, but a recent study of plasma sam-
ples from 2,125 EOAD cases and controls observed an association between EOAD and higher 
levels of LDL-C independent of the effects of APOE; as well as an enrichment of rare coding 
variants of APOB, a gene known to influence plasma cholesterol levels [25]. This supports the 
notion that EOAD may share common genetic loci with the lipid pathway. Following genetic 
covariance analyses, we validated putative loci observed to be shared between EOAD and any 
of the five lipid traits by conducting gene-based analysis; extracting publicly available AD risk 
scores calculated from genome-wide association studies (GWAS) and expression quantitative 
trait locus (eQTL), transcriptomic, and proteomic data; examining publicly available data from 
brain eQTL studies; performing colocalization analyses between EOAD summary statistics and 
eQTL data; inspecting brain DNA methylation data from the Religious Orders Study and Rush 
Memory and Aging Project (ROSMAP) cohorts; and analyzing single cell RNA sequencing data 
from both humans and zebrafish. See Fig 1 for an illustration of the methods and results.

Fig 1.  Flowchart showing input data (EOAD and Lipids GWAS) used in the primary analyses (local genetic covariance analysis using 
SUPERGNOVA).  The primary analyses resulted in three regions of genetic covariance (chr5q13.3, chr10q26.13, and chr11q12.1-q12.2). 
The genes under the peak of the EOAD top hit in these regions were submitted to secondary analyses (gene-based analysis; look up of 
Agora AD risk scores; extraction of eQTL data and eQTL colocalization analyses; brain DNA methylation analysis; and single cell RNA 
sequencing analyses in humans and zebra fish). Composite scores were calculated for each gene based on the results of the secondary anal-
yses and the top scoring gene for each region was ANKDD1B in chr5q13.3, CUZD1 in chr10q26.13, and MS4A6A in chr11q12.1-q12.2.

https://doi.org/10.1371/journal.pgen.1011631.g001

https://doi.org/10.1371/journal.pgen.1011631.g001
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Results
All base-pair positions in this section refer to genome build GRCh37.

Direct comparison of GWAS results
Direct comparison of GWAS results showed an overlap between EOAD and at least one of the 
lipid traits at five loci. One of these is the AD APOE risk haplotype on chr 19q13.32 (EOAD 
top SNP = rs59007384, P = 5.73×10-311) which also shows significant association with all four 
lipid traits (HDL top SNP = rs429358, P = 5.84×10-256; LDL top SNP = rs7412, P = 3.82×10-

305; nonHDL top SNP = rs7412, P = 1.08×10-305; TC top SNP = rs7412, P = 1.98×10-305; TG 
top SNP = rs483082, P = 1.11×10-305) (see Fig A in S1 Text). In addition, the TREM2 locus on 
chr6p21.1 (EOAD top SNP = rs75932628, P = 1.66×10-15) shows significant association with 
TG (rs742493, P = 2.68×10-10) (see Fig B in S1 Text). A locus at chr11q12.2 (EOAD top SNP 
= rs11824734; P = 2.88×10-8) is also significant for TC (rs950802; P = 4.64×10-9) (see Fig C in 
S1 Text). Based on gene prioritization analyses in the EOAD GWAS, the nearest gene to the 
variant is MS4A6E, while the prioritized gene at the locus is MS4A4E. Finally two independent 
additional loci on chr 19 show overlap: a locus on chr 19q13.42 harboring LILRA5 (EOAD 
top SNP = rs2781753, P = 3.47×10-10) is also significantly associated with HDL (rs367070, P = 
6.61×10-140), TC (rs1645788, P = 9.21×10-21), and TG (rs798889, P = 6.61×3.63×10-10) (see Fig 
D in S1 Text); and a locus on chr19p13.11 harboring LRRC25 (EOAD top SNP = rs7258465,  
P = 8.91×10-9) is also associated with HDL (rs60570301, P = 1.73×10-8) (see Fig E in S1 Text).

Analysis of genetic covariance between EOAD and lipid traits
Top results of the genetic covariance analyses with the five lipid traits (TC, HDL-C, LDL-C, 
nonHDL-C, and TG) are summarized in Table 1, with corresponding regional association 
plots displayed in Figs F-H in S1 Text. Genetic covariance analyses of EOAD with each of the 
five lipid traits identified 3 regions showing genetic correlation between EOAD and at least 
one of the five lipid traits at P < 2.12×10-5. The region showing strongest genetic correlation 
is located on chromosome 5q13.3 at 73,508,509-75,240,469 bp and showed genetic covariance 
between EOAD and TC (P = 5.5×10-10), LDL-C (P = 8.17×10-9), and nonHDL-C (P = 1.30×10-10) 
(Table 1 and Fig F in S1 Text). A second region on chromosome 10q26.13 at 123,855,124-
124,894,743 bp showed genetic covariance between EOAD and TC (P = 3.78×10-9), LDL-C 

Table 1.  Results of genetic covariance analyses for regions with P < 2.12×10-5.

Chromosome Start BP
(GRCh37)

End BP
(GRCh37)

Estimate of Covariance Variance P # SNPs

TC
 � 5 73508509 75240469 0.002 9.46×10-8 5.50×10-10 3084
 � 10 123855124 124894743 0.0007 1.39×10-8 3.78×10-9 2011
LDL-C
 � 5 73508509 75240469 0.002 1.07×10-7 8.17×10-9 3070
 � 10 123855124 124894743 0.0007 1.60×10-8 1.26×10-8 2009
nonHDL-C
 � 5 73508509 75240469 0.002 7.32×10-8 1.30×10-10 3117
 � 10 123855124 124894743 0.0006 1.18×10-8 2.90×10-9 2005
 � 11 59620206 61870732 0.0006 1.47×10-8 1.60×10-6 3150

*abbreviations: TC = total Cholesterol; LDL-C = low-density lipoprotein cholesterol; nonHDL-C = non-high-density lipoprotein cholesterol; BP = base-pair position.

https://doi.org/10.1371/journal.pgen.1011631.t001

https://doi.org/10.1371/journal.pgen.1011631.t001
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(P = 1.26×10-8), and nonHDL-C (P = 2.90×10-9) (Table 1 and Fig G in S1 Text). And lastly, a 
region on chromosome 11q12.1-q12.2 at 59,620,206-61,870,732 bp showed genetic covariance 
between EOAD and nonHDL-C (P = 1.60×10-6) (Table 1 and Fig H in S1 Text). This locus was 
also identified above in the direct comparison of GWAS results between EOAD and TC, and 
while the top SNP for nonHDL-C in the partition block assessed by SUPERGNOVA is located 
1.5MB downstream of EOAD, there is also a suggestively significant set of SNPs in the same 
haplotype as the EOAD top hits (see Fig H-iii in S1 Text). Examination of LD patterns in these 
regions identified in total 26 genes under the peaks. A complete list of these genes in each 
region can be found in Table C in S1 Table.

Gene prioritization at identified loci showing genetic covariance
To prioritize genes in each of the 3 regions showing genetic covariance between EOAD and 
lipid traits, we calculated composite scores for each gene from gene-based analysis, Agora 
AD-risk scores, MetaBrain eQTL data, eQTL colocalization analyses, ROSMAP brain meth-
ylation data, and single cell RNA sequencing analyses in humans and zebrafish. Results from 
the gene-based analysis are displayed in Table D in S1 Table. Target Risk Scores extracted from 
Agora (https://agora.adknowledgeportal.org/) for each gene of interest are shown in Table E 
in S1 Table. Results from the MetaBrain cis-eQTL mapping for the 26 genes of interest with 
the minimum P-value for each gene are detailed in Tables F and G in S1 Table. Max H4 values 
from the coloc eQTL colocalization analyses were extracted for each gene of interest along 
with their associated eQTL datasets (Table H in S1 Table). The methylation site most signifi-
cantly associated (minimum P-value) with both amyloid (Table I in S1 Table) and tau (Table J 
in S1 Table) pathology was extracted for each gene of interest. Results of the single-cell RNA 
sequencing analyses for humans and zebrafish, where a total score for each gene was derived 
by multiplying average proportion of expression by average level of expression by DEG index 
(see the Methods section for details), are detailed in Tables K and L in S1 Table.

Z-scores were calculated and summed for the variables mentioned above to create a com-
posite score for each gene (Table M in S1 Table). Boxplots for these resulting scores for each 
significant region from the genetic covariance analyses are shown in Fig 2. Three genes were 
prioritized across the 3 regions: ANKDD1B, CUZD1, and MS4A6A.

ANKDD1B is the highest scoring gene in the region on chromosome 5q13.3 and is nom-
inally associated with EOAD according to gene-based analysis (P = 2.9×10-4; Table D in S1 
Table). Meta-analyses of cis-eQTLs for brain-related traits show at least one variant in the 
ANKDD1B gene to be highly significant in the cortex (P = 3.18×10-110; Table F in S1 Table) and 
nominally significant in the hippocampus (P =.003; Table G in S1 Table) [26]. ANKDD1B has 
an AD target risk score of 1.62 according to Agora (Table E in S1 Table), and colocalization 
analyses report a high probability that EOAD and eQTL data share a causal variant in the 
ANKDD1B gene (H4 =.82; Table H in S1 Table).

The highest scoring gene in the region on chromosome 10q26.13 is CUZD1. Gene-based 
analysis shows CUZD1 to be nominally associated with EOAD (P =.01; Table D in S1 Table) 
and at least one variant in the CUZD1 gene is a cis-eQTL in the cortex (P = 1.05×10-91;Table 
F in S1 Table) and the hippocampus (P = 1.94×10-7; Table G in S1 Table) [26]. Colocalization 
analyses report a high probability that EOAD and eQTL data share a causal variant in the 
CUZD1 gene (H4 =.84; Table H in S1 Table) and Agora scores the AD risk of the gene at 1.48 
(Table E in S1 Table).

Finally, the highest scoring gene in the region on chromosome 11q12.1-q12.2 is MS4A6A, 
which is in the same family as the MS4A4E gene reported in the direct comparison of GWAS 
results. MS4A6A is highly significant according to gene-based analysis (P = 4.07×10-10; Table D 
in S1 Table) and has a high AD risk score of 3.49 (Table E in S1 Table). At least one variant in 

https://agora.adknowledgeportal.org/
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MS4A6A is a significant eQTL in the cortex (P = 4.26×10-6; Table F in S1 Table) and the hippo-
campus (P = 6.15×10-4; Table G in S1 Table) [26], and EOAD is likely to share a causal variant 
with eQTLs in the gene according to colocalization analysis (H4 =.96; Table H in S1 Table). 
Analysis of brain methylation data report that at least one methylation site in MS4A6A is asso-
ciated with both amyloid (P =.02; Table I in S1 Table) and tau (P =.005; Table J in S1 Table) 
pathology; and single cell RNA sequencing analysis shows that MS4A6A is differentially 
expressed between AD cases and controls in humans (P = 3.74×10-20; Table K in S1 Table).

Discussion
To identify genetic regions and mechanistic pathways that are shared between early-onset 
EOAD and dyslipidemia, we examined shared significant loci between EOAD and five lipid 
trait GWAS and conducted hypothesis-free genetic covariance analyses between EOAD and 
the lipid traits. Five loci were reported in both the EOAD and lipid trait GWAS containing 
three well known AD risk genes – APOE [27], TREM2 [28], MS4A4E [29] – as well as LILRA5 
and LRRC25. LILRA5 belongs to a family of immunoglobulin-like receptors [30] and its 
expression is increased in the microglia of mice with amyloid plaques [31]. LRRC25 encodes 
a leucine-rich repeat-containing protein and was identified as a potential AD risk gene in a 
recent study profiling chromatin accessibility in the microglia from 150 human brain samples 
[32].

Fig 2.  Boxplot of composite scores for all genes in each region resulting from the genetic covariance analyses 
between EOAD and lipid traits.  The chromosome and base-pair start and end positions for each region are dis-
played on the x-axis using genome build GRCh37. The top scoring gene in each region is bolded and shown in red, 
while the rest of the genes are shown in grey.

https://doi.org/10.1371/journal.pgen.1011631.g002

https://doi.org/10.1371/journal.pgen.1011631.g002


    

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011631  March 17, 2025 7 / 16

PLOS Genetics Local genetic covariance analysis with lipid traits identifies novel loci for EOAD

The genetic covariance analyses identified 3 regions of genetic overlap on chromosomes 
5q13.3, 10q26.13, and 11q12.1-q12.2. Construction of composite scores integrating gene-
based analyses and a wealth of multi-omics data prioritized 3 genes in these regions most 
likely to be causal: ANKDD1B, CUZD1, and MS4A6A. All these identified genes act in 
mechanistic pathways related to AD and/or have been associated with AD related read-outs in 
animal, cell biological, or neuropathological studies.

ANKDD1B, the highest scoring gene in the region on chromosome 5q13.3, encodes the 
ankyrin repeat and death domain containing 1 B protein. ANKDD1B has been associated with 
dyslipidemia (specifically LDL-C) [33] and type 2 diabetes [34] in major GWAS studies, and 
is one of 28 genes included in a recent polygenic risk score for severe hypercholesterolemia 
(defined as LDL-C > 4.9 mmol/L) [35]. ANKDD1B was reported as one of two top genes 
connecting migraines and major depressive disorder in a genetic correlation analysis [36] and 
is hypermethylated in response to low-dose lead exposure in mice [37]. Diabetes, depression, 
and lead exposure have all been linked with cognitive decline and various neurological disor-
ders including AD [38–43].

CUZD1 is the highest scoring gene in the region on chromosome 10q26.13 and encodes 
a protein located in secretory granules in the pancreas that is thought to affect lipid-related 
metabolite levels [44]. CUZD1 is a contributing gene to the zymogen activation path-
way, which is enriched in the top 5% of genes associated with AD from a genome-wide 
meta-analysis [45]. Increased levels of the CUZD1 protein have also been correlated with 
genetic risk of migraine [46].

The highest scoring gene in the region on chromosome chr11q12.1-q12.2 is MS4A6A, a 
known AD risk gene that encodes a member of the membrane-spanning 4A gene family [47]. 
This locus is reported in the significant results from both the EOAD and lipids GWAS. Several 
meta-analyses have found that a variant (rs610932) in MS4A6A correlates with decreased risk 
for AD [47–49]. Colocalization analysis identified a shared causal variant in MS4A6A affecting 
a locus near MS4A4A in one of the most recent AD GWAS [50]. A transcriptome-wide asso-
ciation study found that increased expression of MS4A6A in monocytes associated with AD 
risk [50] and a DNA methylation study suggested that MS4A6A expression may mediate AD 
risk [51]. MS4A6A is also involved in the formation of atherosclerosis [52] and is differentially 
associated with various classes of lipids between AD cases and controls [53].

This study has several strengths. To our knowledge this is the first study assessing genetic 
covariance between the early-onset form of AD and the lipid pathway. AD cases and controls 
in the parent EOAD GWAS were derived from datasets with meticulous characterization for 
cognitive impairment, age at onset, and AD. In addition, to further validate shared identified 
loci, this study was able to capitalize on a variety of omics data from various independent 
sources, providing significant supportive evidence for the plausibility of candidate genes at 
identified loci. Several of the genes under consideration had data missing for at least one of 
the omics resources used in the prioritization score (see Tables D-M in S1 Table), so the results 
of this approach are limited by the availability of data on each gene. The evidence presented 
here is based on correlational analyses and functional follow-up for these genes is required 
to determine causality. Because we focus here on loci under the peak of the EOAD top hits in 
regions resulting from the genetic covariance analysis, we cannot exclude the possibility that 
we missed causal variants or cis-regulated genes operating outside of these loci. In addition, it 
is possible that regions of genetic covariance were missed in our study due to a lack of statisti-
cal power (particularly in the EOAD dataset) or lack of data from sex-stratified analyses.

In summary, this study suggests that EOAD shares genetic heritability with the lipids path-
way, and that the common genetic loci include the ANKDD1B, CUZD1, and MS4A6A genes. 
These genes could lead to improved screening, prevention, and treatment for AD by targeting 
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shared mechanistic pathways between EOAD and lipids. Future studies are needed that clarify 
the molecular mechanisms through which these genes modulate risk of EOAD, and that 
identify the specific causative variants at these and additional remaining loci that underlie the 
contribution of lipid metabolism to AD pathogenesis.

Methods

Ethics statement
This secondary data analysis of GWAS summary statistics was approved by the Columbia Uni-
versity Human Research Protection Office and Institutional Review Board (IRB #AAAQ9793).

EOAD and lipid trait GWAS studies
Quality-controlled, ancestry-specific summary statistics were obtained from the GWAS 
meta-analyses of EOAD by the Alzheimer’s Disease Genetics Consortium (n = 19,668) and 
plasma lipid levels conducted by the Global Lipids Genetics Consortium (n = 1,320,016).

EOAD GWAS.  In brief, the EOAD GWAS included genetic data on 6,282 EOAD cases 
with AD diagnosis at or before age 70 and 13,386 cognitively normal controls with age at 
examination greater than 70 [54]. Participants were obtained from 40 independent datasets 
assembled through the Alzheimer’s Disease Genetics Consortium (ADGC), and European 
ancestry was determined by genetic principal component analysis. Demographic information 
for each cohort is described in Table A in S1 Table. Genetic data was genotyped on multiple 
genotyping arrays, QCed, imputed using the TOPMed imputation server, and aligned to the 
GRCh38 reference panel [54].

Lipids GWAS.  Data on the genetic architecture of lipid traits were derived from Graham 
et al. (2021) which meta-analyzed HDL-C, LDL-C, non-HDL-C, TC and TG summary 
statistics from 1,654,960 individuals across 201 individual studies [56]. Data from each 
cohort was QCed and imputed to the 1000 Genomes Phase 3 v5 (1KGP3) and the Haplotype 
Reference Consortium (HRC) panel [56,57]. The genetic covariance analyses presented here 
were conducted on ancestry-specific summary statistics obtained from 1,320,016 individuals 
of European ancestry.

Direct comparison of GWAS results
We first conducted a direct comparison of association patterns in the EOAD and lipid trait 
GWAS data. For each genome-wide significant (P < 5×10-8) locus reported in the EOAD 
GWAS [54] a 1 MB region was created with 500kb to each side of the top SNP. Any genome-
wide significant loci reported from the European-specific lipids GWAS [56] located within 
these regions were extracted and examined using locus zoom to confirm whether or not the 
haplotypes surrounding the top SNPs overlapped between EOAD and the respective lipid 
trait(s).

Analysis of genetic covariance between EOAD and lipid traits
Estimation of genetic covariance of EOAD with individual lipid traits (TC, HDL-C, 
nonHDL-C, LDL-C, and TG) was performed via SUPERGNOVA [55]. SUPERGNOVA 
estimates local genetic correlation while taking into account linkage disequilibrium structure 
by decorrelating local z-scores with eigenvectors of the local LD matrix followed by estima-
tion of local genetic covariance through a weighted least squares regression in each region. 
This technique has been demonstrated to be superior to other available methods such as LD 
score regression (LDSC) or GeNetic cOVariance Analyzer (GNOVA) [55]. The genome was 
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partitioned into 2,353 approximately independent regions (~1.6 centimorgan on average) 
using LDetect [56], and LD was estimated using all European populations from the 1000 
Genomes Phase3 reference panel [57]. Accordingly, the P-value threshold for significance of 
local genetic covariance between EOAD and each lipid trait was set based on a conservative 
Bonferroni threshold of P < 2.12×10-5 (0.05/2,353 bins). Regions resulting from the genetic 
covariance analyses were only reported if a strong genetic signal was observed in both traits, 
as defined by a P-value cutoff of 5×10-5. In addition, within-trait local genetic association 
and haplotype structure at these loci was assessed in the respective individual trait summary 
statistics (EOAD and the respective lipid trait showing genetic covariance), and visualized, 
annotated, and aligned across traits using LocusZoom [58].

Gene prioritization
Genes included for prioritization were selected from the regions showing genetic correla-
tion between EOAD and any of the five lipid traits. Locus zoom plots of these regions were 
inspected visually and any gene within the LD block of the EOAD top SNP in each region (any 
part of the gene can be within the LD block) was investigated further and given a composite 
score based on: 1) results from gene-based analysis; 2) AD risk scores from Agora (hosting 
high-dimensional human transcriptomic, proteomic, and metabolomic evidence for gene 
association with AD; 3) MetaBrain eQTL data; 4) eQTL colocalization analyses; 5) ROSMAP 
brain DNA methylation data (see below); and 6) single cell RNA sequencing data from both 
humans and zebrafish. The resulting composite scores were used to prioritize the top scoring 
gene in each region.

Gene-based analysis.  We performed gene-based analysis on our EOAD summary statistics 
using the MAGMA [59] software via the FUMA [60] web tool (https://fuma.ctglab.nl/). The 
1000 Genomes Phase3 European reference panel [57] was employed along with the following 
parameters: FUMA v1.6.0; MAGMA v1.08; P-value of lead SNPs < 1×10-5; P-value of GWAS 
SNPs <.05; r2 threshold to define independent significant SNPs ≥ 0.6; second r2 threshold to 
define lead SNPs ≥ 0.1; minimum MAF = 0; maximum distance between LD blocks = 250kb. 
A window was set 35kb upstream and 10kb window downstream of the gene. 19,163 genes 
were tested by MAGMA, resulting in a Bonferroni-corrected P-value threshold of 2.61×10-6.

AD risk score data.  Genetic, multi-omic, and target AD risk scores were extracted 
for each gene of interest from the Agora tool (https://agora.adknowledgeportal.org/). The 
Genetics Risk Score ranges from 0-3 and is based on: 1) data from 24 GWAS or GWAS by 
proxy studies and 3 QTL studies; 2) phenotypic evidence supporting a gene from human and/
or animal models; and 3) whether a gene has a model in development through the MODEL-
AD consortium (https://www.model-ad.org/) [61]. The Multi-omic Risk Score ranges from 0-2 
and is based on: 1) transcriptomic data from RNA-Seq profiling from 8 neocortical tissues and 
2) proteomic data from label-free quantitation (LFQ) and Tandem Mass Tagging (TMT) shot-
gun profiling methods generated from 8 neocortical tissues [61]. The Target Risk Score ranges 
from 0-5 and is a sum of the Genetic Risk Score and the Multi-omic Risk Score.

MetaBrain cis-eQTL data.  Results from cis-eQTL analyses from the cortex (n = 2,683) 
and hippocampus (n = 208) of individuals of European ancestry were obtained from 
MetaBrain (www.metabrain.nl). MetaBrain has collected 6,518 genotype samples and 8,613 
bulk RNA-sequenced samples across 14 datasets and has performed ancestry and brain region 
specific cis- and trans-eQTL metanalyses [26], defining cis-eQTLs as common variants (MAF 
>1%) within 1 megabase (Mb) of the transcription start site of a protein-coding gene. For the 
present study, cis-eQTLs were extracted from this data for each gene under the peaks of the 3 
regions resulting from the genetic covariance analyses, and the eQTL with the minimum P-
value was selected to represent each gene.

https://fuma.ctglab.nl/
https://agora.adknowledgeportal.org/
https://www.model-ad.org/)
www.metabrain.nl
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eQTL colocalization analyses.  To calculate the probability that genes in identified regions 
of covariance between EOAD and at least one lipid trait share a single causal variant with 
eQTL loci (this probability is referred to as H4), we performed colocalization analyses between 
the regions resulting from our genetic covariance analyses and a set of 61 eQTL datasets 
(Table B in S1 Table) using the ‘coloc’ package in R [62–64].

Brain DNA methylation analyses in the ROS/MAP cohort.  DNA methylation data 
came from frozen dorsolateral prefrontal cortex from 761 participants in ROSMAP [65]. All 
ROSMAP participants enroll without known dementia, agree to annual clinical evaluation and 
agree to brain donation at the time of death. Both studies were approved by an Institutional 
Review Board of Rush University Medical Center. All participants signed informed and 
repository consents and an Anatomic Gift Act. Details of the data generation have been 
previously published, whereby methylation profiles were generated using the Illumina 
HumanMethylation450 beadset [66,67]. For the present analyses the β-values reported by the 
Illumina platform for each probe ranging from 0 (no methylation) to 1 (100% methylation) 
were utilized as the methylation level measurement for the targeted CG site in a given sample. 
To examine identified top loci for differentially methylated regions associated with AD 
pathology, we conducted a linear regression in R, adjusting for age at death, sex, experimental 
batch, and bisulfite conversion efficiency. β-amyloid load and PHF-tau tangle density were 
generated as previously described [68].

Single cell RNA sequencing.  To evaluate the RNA expressions of target genes at the 
single nucleus/cell level, we evaluated publicly available human single cell sequencing data 
(GSE157827) [69] and analyzed zebrafish data generated in-house. For human snRNA, we 
selected the single cell expression matrices of 4 AD and 4 control samples that were matched 
on sex and age. Matrices were generated with 10X function of the ‘Seurat’ (version 4.1.3) R 
package [70]. To create the Seurat object, we filtered out any cells with less than 200 expressed 
genes, and with genes expressed in less than 3 cells. Following the normalization of the 
dataset, the top 2,000 genes were used for further analyses. Anchors were identified with the 
FindIntegrationAnchors function and integration was performed using the IntegrateData 
function. We used ‘DoubletFinder’ [71] to remove doublets and performed the rest of the 
analyses on singlets only. The integrated Seurat object included 44,132 cells (27,198 for AD, 
and 16,934 for Control) with 29,772 features. The data were scaled using all genes, and 30 
PCAs (RunPCA) were identified using the RunPCA function in the ‘Seurat’ package [70]. 
Thirty clusters were identified with resolution 1. The main cell types were defined using AQP4 
and GFAP for astroglia; SLC17A7 and NRGN for excitatory neurons; GAD1 and GAD2 for 
inhibitory neurons; PDGFRB, MCAM and GRM8 for pericytes; C3 and DOCK8 for microglia; 
PLP1 and MOBP for oligodendrocytes; PDGFRA and VCAN for OPC; and FLIT1 and CLDN5 
for endothelial cells.

We used the same methods and parameters as described above for creating a Seurat object 
with our zebrafish dataset. The main cell types were identified as described elsewhere [72,73]. 
Briefly, we used s100b and gfap for astroglia; sv2a, nrgna, grin1a, grin1b for neurons; pdgfrb 
and kcne4 for pericytes; cd74a and apoc1 for microglia; mbpa and mpz for oligodendrocytes; 
aplnra for OPC; myh11a and tagln2 for vascular smooth muscle cells; lyve1b for lymph endo-
thelial cells; and kdrl for vascular cells. To find the average expression of the genes, we used 
AverageExpression function. To define the percent expression of the given genes, PrctCellEx-
pringGene was used.

Differential gene expression (DEG) in clusters was performed using the FindMarkers 
function by comparing AD cases against age-matched controls in humans and zebrafish 
injected with Aβ42 (AD model) versus those injected with phosphate buffered saline (control 
group). P-values and log2 fold change values of DEG results were transformed to generate the 
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DEG index using the following equation: -log10(P) × (1 - |log2 fold change value|). If a gene 
is differentially expressed in multiple cell clusters, the one with lowest P-value was selected for 
the index. If no DEG was observed for a gene, a non-DEG penalty value of.25 was assigned for 
that gene.

Composite scores for each gene.  A single continuous value was either extracted or 
calculated for each of the types of evidence described above such that higher values generally 
indicate greater AD risk. P-values were extracted and transformed – using -log10(P) – 
from the results of the MetaBrain eQTL data, the gene-based analysis, and the ROSMAP 
methylation data for each gene. Where results existed for multiple variants or methylation 
probes within a gene, the variant with the minimum P-value was selected to represent 
the gene. The target risk score for each gene was extracted from Agora. After performing 
the colocalization analyses between the EOAD summary statistics and the multiple eQTL 
datasets, the maximum H4 value between EOAD and the various eQTL datasets was selected 
to represent each gene of interest. A score was calculated for each gene for both the human 
and zebrafish single-cell RNA sequencing analyses by multiplying the average proportion of 
each gene’s expression across different brain cell types by the average amount of each gene’s 
expression across the same cell types and by each gene’s DEG index. Z-scores were calculated 
for each of the variables described above, subsequently these z-scores were summed to form a 
total prioritization score for each gene. To standardize these variables, we calculated z-scores 
in R and then summed the z-scores to form a total prioritization score for each gene. The top 
scoring gene from each region resulting from the genetic covariance analyses was nominated 
as a priority gene for that locus.

Supporting information
S1 Text.   Fig A. Locus zoom plots showing a 1MB region surrounding the EOAD top SNP 
chr19:45396665 and any overlapping genome-wide significant loci from the lipids GWAS. Fig 
B. Locus zoom plots showing a 1MB region surrounding the EOAD top SNP chr6:41129252 
and any overlapping genome-wide significant loci from the lipids GWAS. Fig C. Locus 
zoom plots showing a 1MB region surrounding the EOAD top SNP chr11:60076693 and any 
overlapping genome-wide significant loci from the lipids GWAS. Fig D. Locus zoom plots 
showing a 1MB region surrounding the EOAD top SNP chr19:54814234 and any overlapping 
genome-wide significant loci from the lipids GWAS. Fig E. Locus zoom plots showing a 1MB 
region surrounding the EOAD top SNP chr19:18533642 and any overlapping genome-wide 
significant loci from the lipids GWAS. Fig F. Locus zoom plots for EOAD and each lipid trait 
that showed significant covariance with EOAD at chr5:73508509-75240469. Fig G. Locus 
zoom plots for EOAD and each lipid trait that showed significant covariance with EOAD 
at chr10:123855124-124894743. In Fig G-i the reference SNP was changed to second low-
est P-value because the SNP with the lowest P-value did not appear in the 1000 Genomes 
reference panel and therefore did not show LD information. Fig H. Locus zoom plots for 
EOAD and each lipid trait that showed significant covariance with EOAD at chr11:59620206-
61870732. Because of the extremely large effect shown to the right side of the nonHDL-C plot 
increasing the scale of the y-axis, we also include a plot for that trait zoomed into the region 
under the peak of the EOAD top hit.
(DOCX)

S1 Table.   Table A. Demographic information for each cohort included the EOAD GWAS 
on individuals of European ancestry. Table B. eQTL datasets used in colocalization analyses. 
Table C. Genes within the LD block of the EOAD top SNP for each region resulting from the 
genetic covariance analyses. Table D. Results of MAGMA gene-based analysis for genes in loci 

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011631.s001
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showing genetic correlation between EOAD and lipid traits. Table E. Agora AD risk scores for 
genes in loci showing genetic correlation between EOAD and lipid traits. Table F. Results from 
MetaBrain meta-analysis of cis-eQTLs in the cortex of Europeans for loci showing genetic 
correlation between EOAD and lipid traits. Table G. Results from MetaBrain meta-analysis 
of cis-eQTLs in the hippocampus of Europeans for loci showing genetic correlation between 
EOAD and lipid traits. Table H. Max H4 values from eQTL colocalization analyses for genes 
in loci showing genetic correlation between EOAD and lipid traits. Table I. Variants with most 
signficant (minimum P-value) amyloid methylation for each gene in loci showing genetic 
correlation between EOAD and lipid traits. Table J. Variants with most signficant (minimum 
P-value) tau methylation for each gene in loci showing genetic correlation between EOAD 
and lipid traits. Table K. Results of single cell RNA sequencing analyses in Humans for genes 
in loci showing genetic correlation between EOAD and lipid traits. Table L. Results of sin-
gle cell RNA sequencing analyses in zebrafish for genes in loci showing genetic correlation 
between EOAD and lipid traits. Table M. Z-scores and composite scores for all variables used 
to calculate the composite scores for genes in loci showing genetic correlation between EOAD 
and lipid traits.
(XLSX)
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