
Nature Genetics | Volume 55 | December 2023 | 2060–2064 2060

nature genetics

Letter https://doi.org/10.1038/s41588-023-01524-6

Benchmarking of deep neural networks for 
predicting personal gene expression from 
DNA sequence highlights shortcomings

Alexander Sasse1,7, Bernard Ng    2,7, Anna E. Spiro1,7, Shinya Tasaki    2, 
David A. Bennett2, Christopher Gaiteri2,3, Philip L. De Jager    4, 
Maria Chikina    5   & Sara Mostafavi    1,6 

Deep learning methods have recently become the state of the art in a variety 
of regulatory genomic tasks1–6, including the prediction of gene expression 
from genomic DNA. As such, these methods promise to serve as important 
tools in interpreting the full spectrum of genetic variation observed in 
personal genomes. Previous evaluation strategies have assessed their 
predictions of gene expression across genomic regions; however, systematic 
benchmarking is lacking to assess their predictions across individuals, 
which would directly evaluate their utility as personal DNA interpreters. 
We used paired whole genome sequencing and gene expression from 839 
individuals in the ROSMAP study7 to evaluate the ability of current methods 
to predict gene expression variation across individuals at varied loci. Our 
approach identifies a limitation of current methods to correctly predict 
the direction of variant effects. We show that this limitation stems from 
insufficiently learned sequence motif grammar and suggest new model 
training strategies to improve performance.

Sequence-based deep learning methods are emerging as powerful 
tools for a variety of functional genomic prediction tasks. These mod-
els take as input genomic DNA and learn to predict context-dependent 
functional outputs such as transcription factor binding2,8,9, chroma-
tin state10–13 and gene expression values1,14. State-of-the-art models 
can reproduce experimental measurements with a high degree of 
accuracy and enable mechanistic insights through their learned DNA 
features1,2,15. Yet, the true potential of these sequence-based models  
lies in their ability to predict outcomes for arbitrary sequence inputs—
a space too large for experimental methods to fully explore. While 
partial evaluations through expression quantitative trait locus 
(eQTL)1,16 studies or massively parallel reporter assays (MPRAs)17 have  

shown promise, the broader application of these models as personal-
ized DNA interpreters has not been comprehensively assessed. We 
address this by conducting extensive analyses using paired whole 
genome sequencing (WGS) and cerebral cortex RNA-sequencing 
(RNA-seq) data from the ROSMAP datasets7 with measurements 
from 839 individuals. Our study bridges the gap between the known 
potential and the actual performance of these models in personalized 
genomics interpretation.

To start, we focus our evaluation on Enformer1, the top-performing 
deep learning model. Enformer is trained to predict various functional 
outputs from (cis) sub-sequences from the reference genome. This 
training approach allows Enformer and other deep learning models 
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restricted the analysis to a smaller set of genes (n = 3,401) overlapping 
Enformer’s test regions (Pearson’s r = 0.51; Supplementary Fig. 1).

While Enformer is not explicitly trained on genetic variation data, 
once trained, it holds promise that it has learned the cis-regulatory 
logic of gene expression and so can predict the impact of arbitrary 
genetic variation on its outputs. To evaluate its performance in this 
setting, which is distinct from the cross-genome performance evalu-
ated above, we applied Enformer to predict individual-specific gene 
expression levels based on personal genomic sequences (Methods and 
Fig. 1c). As a positive example, we present results for a highly heritable 
gene, DDX11 (heritability r2 = 0.8). DDX11’s variance in expression across 
individuals can be attributed to a single causal single-nucleotide vari-
ant (SNV) using statistical fine-mapping16. Using WGS data, we created 
839 input sequences of length 196,608 bp centered at the TSS, one per 

to identify short DNA sub-sequences (motifs) that are shared across 
the genome and exploits variations in motif combinations across 
genomic regions to make context-dependent predictions. As a control 
experiment, we used the pre-trained Enfomer model, provided it with 
sub-sequences around the transcription start site (TSS) from the refe
rence genome and evaluated its predictions on population-average 
gene expression (n = 13,397 expressed protein-coding genes) from the 
cerebral cortex (Fig. 1a,b). To account for the differences between the 
data types that were used during Enformer’s training and our study, we 
used a fine-tuning strategy, whereby we trained an elastic net model 
on top of the predictions from Enformer’s output tracks (Methods). 
Consistent with the expectation for this type of evaluation, we observed 
good prediction accuracy as measured by Pearson’s correlation coef-
ficient (Pearson’s r) = 0.58 (Fig. 1b). The results were similar when we 
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Fig. 1 | Evaluation of Enformer across genomic regions and select loci. 
a, Schematic of the reference-based training approach. Different genomic 
regions from the reference genome are treated as data points. Genomic DNA 
underlying a given region is the input to the model, and the model learns to 
predict various functional properties, including gene expression (CAGE–seq), 
chromatin accessibility (ATAC-seq) or transcription factor binding (ChIP–seq). 
b, Population-average gene expression levels in the cerebral cortex (averaged 

in ROSMAP samples, n = 839) for expressed genes (n = 13,397) versus Enformer’s 
predictions. c, Schematic of the per-locus evaluation strategy. d, Predicted 
and observed DDX11 gene expression levels in the cortex for individuals in the 
ROSMAP cohort (n = 839). Each dot represents one individual. The output of 
Enformer is fine-tuned using an elastic net model (Methods). e, ISM values for all 
SNVs that occur at least once in 839 genomes within 98 kb of the DDX11 TSS. SNVs 
are colored according to minor allele frequency (MAF).
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individual for the gene (Fig. 1c Supplementary Fig. 2 and Methods). 
Applying Enformer to these input sequences we observed a Pearson’s 
correlation coefficient of 0.85 (P < 1 ✕ 10−200) between predicted and 
observed gene expression levels across individuals (Fig. 1d). Further, 
in silico mutagenesis (ISM) at this locus showed that Enformer used a 
single SNV with high correlation to gene expression (eQTLs) in mak-
ing its predictions (Fig. 1e). This SNV is the same causal SNV that was 
identified through statistical fine-mapping with Susie16. Thus, at this 
locus, Enformer can identify the causal SNV among all those in linkage 
disequilibrium (LD), and in addition provides hypotheses about the 
underlying functional cause, in this case, the extension of a repressive 
motif (Supplementary Fig. 3).

However, the impressive predictions on DDX11 proved to be the 
exception rather than the rule. When we tested 6,825 cortex-expressed 
genes, we found a large distribution in the Pearson’s r (Fig. 2a and 
Supplementary Table 1; minimum r = −0.76, maximum r = 0.84, mean 
= 0.01). Surprisingly, while the predictions were significantly corre-
lated with observed expression for 598 genes (Benjamini–Hochberg 
false-discovery rate (FDRBH) = 0.05; Methods), they were significantly 
anti-correlated with the true gene expression for 195 (33%) of these 

genes. For example, predicted GSTM3 gene expression values were 
anti-correlated with the observed values (r = −0.49; P< 1 × 10−200;  
Fig. 2b). We performed several sensitivity analyses to which these 
results proved robust (Methods and Extended Data Fig. 1): (1) these 
results were not sensitive to output track fine-tuning, (2) to model 
ensembling as done in Enformer or (3) to subsetting the analysis to a 
smaller set of genes that have easily detectable causal variants based on 
statistical fine-mapping (Supplementary Table 1). Overall, these results 
imply that the model fails to correctly attribute the variants’ direction 
of effect (that is, whether a given variant decreases or increases gene 
expression level).

We then compared Enformer against a widely used linear approach 
called PrediXcan18. PrediXcan constructs an elastic net model for each 
gene from cis genotype SNVs across individuals. Unlike Enformer, Pre-
diXcan is explicitly trained to predict gene expression from variants, 
but it does not take into account variants that were not present in its 
training data and cannot output a prediction for unseen variants. While 
the models are conceptually different, the PrediXcan model gives a lower 
bound on the fraction of gene expression variance that can be predicted 
from genotype. Further, genes that are significantly predicted with the 
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Fig. 2 | Evaluation of Enformer on prediction of gene expression across 
individuals. a, The y axis shows the Pearson’s r coefficient between observed 
expression values and Enformer’s predicted values per gene (n = 6,825 genes). 
The x axis shows the negative log10 (P-value), computed using a gene-specific null 
model (Methods; one-sided t-test, permutation analysis with n = 50 independent 
samples per gene). The colors represent the predicted mean expression using the 
most relevant Enformer output track (‘CAGE, adult, brain’). The red dashed line 
indicates FDRBH = 0.05. b, The y axis shows the prediction from Enformer’s ‘CAGE, 
adult, brain’ track across individuals for the GSTM3 gene (n = 839). The x axis 
shows the observed gene expression values. c, Pearson’s r coefficients between 
PrediXcan-predicted versus observed expression across individuals are shown 
on the x axis, Enformer’s Pearson’s r coefficients are shown on the y axis. Red lines 

indicate the threshold for significance (abs(r) > 0.2, Bonferroni-corrected nominal 
P-value). Darker colored dots are significant genes from a. The yellow cross 
represents the location of the mean across all x and y values. d, ISM value versus 
eQTL effect size for all SNVs (n = 706 with MAF > 0.01) within the 196 kb input 
sequence of the GSTM3 gene. Red circles represent driver SNVs. SNVs are defined 
as supported or unsupported based on the concordance of the sign of the eQTL 
effect size. e, Fraction of supported driver SNVs per gene (y axis) versus Pearson’s r 
coefficients between Enformer’s predictions and observed expression values  
(x axis) (n = 161 positively correlated genes, n = 87 negatively correlated genes).  
f, Number of driver SNVs within the 1,000-bp window centered on the TSS. The 
main drivers are those with the strongest impact on linear approximation, shown 
in different colors. Left plot, n = 983 driver SNVs; right plot, n = 564 driver SNVs.
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PrediXcan should have at least one causal variant somewhere in the 
genomic region used for the predictions, thus providing a substantial 
set of loci for assessing Enformer’s predictions. We used a previously 
published PrediXcan model that was trained on Genotypic tissue Expres-
sion (GTEx) cerebral cortex data18 and applied it to ROSMAP samples. 
Hence, neither Enformer nor PrediXcan had seen the ROSMAP samples 
before their application. As shown in Fig. 2c, for the 1,570 genes where 
PrediXcan’s elastic net model was available, the performance of Enformer 
was substantially lower (921 significantly predicted genes by PrediXcan 
versus 162 by Enformer; mean r Enformer = 0.02, mean r PrediXcan = 
0.26; Supplementary Table 1). Further, PrediXcan did not have the same 
challenge with misprediction of the direction of the SNV effect (that is, 
all of PrediXcan’s significantly predicted genes had a positive correlation 
between predicted and observed values). When we ignored the sign of 
Enformer’s correlation values, we observed that both models, despite 
their conceptual differences, showed some predictive power for the same 
genes (r = 0.58; Supplementary Fig. 4). This supports the observation that 
Enformer can identify genes at which genetic variation across individu-
als significantly impacts gene expression values, but unlike PrediXcan, 
Enformer is not able to determine the sign of SNV effects accurately. We 
note that Enformer predictions were evaluated against eQTLs in the origi-
nal study using signed linkage disequilibrium profile (SLDP) regression1,19, 
demonstrating improved performance over competing models in terms 
of z score; however, this previous result was based on evaluation across 
the genome, and was not locus specific as we report here.

To investigate whether these observations are specific to Enformer 
or more broadly apply to sequence-based deep learning models that 
follow the same training recipe, we trained a simple convolutional 
neural network (CNN) that takes as input sub-sequences from the 
reference genome centered at the TSSs of genes (40 kb) and predicts 
population-average RNA-seq gene expression in the cerebral cortex as 
output (Methods). This CNN could predict population-average gene 
expression in the cortex with similar accuracy as Enformer (r = 0.57; 
Extended Data Fig. 2a), yet it has the same challenge with the direction 
of the predictions across individuals (Extended Data Fig. 2b). Thus, our 
results on Enformer are likely to generalize to other sequence-based 
deep learning models trained in the same way.

To explore the causes for the negative correlation between 
Enformer predictions and the observed gene expression values we 
used two explainable artificial intelligence (AI) approaches: ISM and 
input-Gradient (Supplementary Methods 2). These approaches approx-
imate the output of a nonlinear neural network with a linear function 
that weights the contribution of each SNV through a process referred 
to as feature attribution. First, we confirmed that this approxima-
tion was reasonable for 95% of the examined genes (Supplementary  
Figs. 5 and  6). For each gene, based on its ISM attributions, we deter-
mined the main SNV driver(s) that dominate the differential gene 
expression predictions across individuals (Supplementary Methods 2).  
Across the 256 examined genes, we found that 32% had a single SNV 
driver, and the vast majority (85%) had five or fewer drivers (Sup-
plementary Fig. 7 and Supplementary Table 2) that determine the 
direction and correlation with the observed expression values. To 
understand how these driver SNVs cause mispredictions, we classified 
Enformer-identified driver SNVs into ‘supported’ and ‘unsupported’ 
categories based on the agreement of the SNV’s ISM attribution sign 
with the direction of effect according to the eQTL analysis (Methods). 
For this analysis, we computed marginal eQTL effect sizes, which do not 
distinguish causal variants from others in LD. However, it is important 
to note that the Enformer model is entirely agnostic to LD structure as it 
was trained with a single reference genome. As such, Enformer predic-
tions by construction assume a causal interpretation of the identified 
driver variants. Thus, a comparison of Enformer-identified driver vari-
ants is informative because sign discordance between the two strongly 
suggests that the Enformer effect is incorrect. On the other hand, the 
reverse analysis is not interpretable: an eQTL with a large marginal 

effect can have a low Enformer effect because it is not causal. As an 
example of sign discordance analysis, GSTM3 had two common driver 
SNVs identified by Enformer, yet their predicted direction of effect was 
unsupported based on the SNVs signed eQTL effect sizes (Fig. 2d). For 
all 256 inspected genes, we found that mispredicted genes had almost 
exclusively unsupported driver SNVs, whereas correctly predicted 
genes indeed had supported driver SNVs (Fig. 2e). This analysis thus 
confirms that the small number of driver SNVs per gene is the cause of 
Enformer’s misprediction for the sign of the effect.

To investigate whether these unsupported attributions are caused 
by systematically erroneous sequence-based motifs that Enformer 
learns from the training data, we analyzed the genomic sequences 
around driver SNVs. We did not find any enrichment for specific 
sequence motifs (Supplementary Fig. 8). When we plotted the location 
of SNV drivers along the input sequences, we found that most drivers 
were located close to the TSS (Fig. 2f, Supplementary Figs. 9 and 10 and 
Supplementary Methods 3), supporting a recent report17 that showed 
that current sequence-based deep learning models mainly predict 
gene expression from genomic DNA close to the TSS, despite using 
larger input DNA sequences. Further, when we analyzed ISM values in 
windows around the driver SNVs, we observed that the majority did not 
fall into coherent ‘attributional motifs’ (short regions of sequence with 
consistent attribution) as would be expected if the model were picking 
up on biologically meaningful regulatory mechanisms (Supplementary  
Fig. 11, Supplementary Table 3 and Supplementary Methods 4).

In summary, our results suggest that current sequence-based deep 
learning models trained on the input-output pair of a single reference 
genome often fail to correctly predict the direction of SNV effects on 
gene expression. We further show that current neural network models 
perform worse than simple baseline approaches such as PrediXcan in 
predicting the impact of genetic variation across individuals. For future 
development, we recommend that new models be assessed not only on 
genome-wide statistics of absolute causal eQTL effect sizes, but also on 
the per-gene agreement between the sign and the size of the predicted 
and measured effect of causal variants.

We hypothesize that two complementary strategies will be fruit-
ful for improving the prediction of gene expression across individuals. 
First, current models are trained on sequences from a single refer-
ence genome and learn sequence features that explain gene-to-gene 
expression variation; they thus have not been explicitly trained to learn 
how locus-dependent genetic variation impacts gene expression. The 
mechanisms that explain gene-to-gene variation may be distinct from 
those that explain interpersonal variation. For example, while promoter 
logic is important to determine which genes are expressed within a cell 
type, long-range interaction appears to be much more important for 
interpersonal variation17. Thus, training on input–output pairs of diverse 
genomes and their corresponding gene expression measurements 
may be a way to increase sequence variation and learn these effects for 
accurate personalized predictions. Second, current methods do not 
accurately model all of the biochemical processes that determine RNA 
abundance. For example, post-transcription RNA processing (whose 
dependence on sequence is mediated via RNA–protein or RNA–RNA 
interactions) is entirely ignored. While including datasets that explicitly 
measure post-transcriptional regulatory processes and long-range inter-
action may improve the modeling of these effects4,6, it is also possible 
that, with sufficiently large paired WGS and gene expression training 
datasets, the resulting models will implicitly learn these mechanisms 
as long as they impact gene expression variation across individuals.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
No specific ethics approval was needed to conduct the current study.

WGS and RNA-seq datasets
We used n = 839 individuals with available WGS (blood) and RNA-seq 
(cerebral cortex) data from the ROS and MAP cohort studies20 (previ-
ously described21, also see Supplementary Methods). The 839 samples 
were from distinct individuals. Both studies were approved by the Insti-
tutional Review Board of Rush University Medical Center. All partici-
pants signed an informed and repository consent form and an anatomic 
gift act. Besides the availability of both WGS and cortex RNA-seq data 
after pre-processing, no other inclusion criteria were used.

Predicting gene expression with Enformer
Population-average gene expression. We centered the reference 
genome (GRCh38) around the gene’s TSS (Gencode v27) and extracted 
the genomic sequence in the 196,608-bp window, which was then used 
as input to Enformer v1 (April 2022). We performed this analysis for 
13,397 brain-expressed genes (for computational reasons, a random 
set of 6,825 genes among these were used in per-individual analyses 
described below). To use the outputs of Enformer predictions, we 
closely followed the previous methodology. Specifically, for a given 
input sequence, Enformer makes predictions for 5,313 human out-
put tracks and 986 bins. The predictions were obtained for all 5,313 
human output tracks, as the sum of log values from the three central 
128-bp bins (bin numbers 447, 448 and 449) for each output track. 
We performed two types of summarization of the output tracks: (1) 
directly using the single track that best matched our RNA-seq gene 
expression data (‘Cortex, adult, brain’) and (2) using an elastic net 
model, trained on the predictions from all tracks and all expressed 
genes (that is, a matrix of 5,313 tracks ⨯ 13,397 brain-expressed genes), 
to predict population-average gene expression for adult cortex (using 
GTEx data). As discussed further in the ‘Sensitivity analysis’ section the 
results from these two types of analyses proved similar. Finally, we also 
performed our evaluation analysis on a smaller set of genes (n = 3,401) 
that overlapped test regions not used to train the Enformer model 
(Supplementary Fig. 1).

Predicting gene expression across individuals. For each individual 
and each gene, we constructed a personalized DNA sequence input 
(196,608 bp) from phased WGS data (separated maternal and paternal 
DNA sequence inputs were constructed for each individual and each 
gene). As above, we summed the log-transformed predicted values for 
the three central 128-bp bins (bin numbers 447, 448 and 449) for each 
output track. We used two methods to predict final gene expression: (1) 
‘fine-tuning’ and 2) direct selection of a single track most representative 
of cortex gene expression data (‘CAGE, brain, adult’). For fine-tuning, 
we trained an elastic net model to linearly weight all of Enformer’s 5,313 
human output tracks to predict population-average gene expression 
in the cerebral cortex, using the GTEx RNA-seq data (cortex). Specifi-
cally, the elastic net model was fit to predict population-average gene 
expression levels in the cortex from Enformer’s predictions when the 
reference sequence centered at each gene’s TSS was used as input. 
Enformer was used to make separate predictions from the maternal and 
paternal sequences. For each individual and each gene, we averaged 
the predictions from the maternal and paternal sequences.

Statistics and reproducibility
We used a sample size of 839 independent individuals to assess the 
significance of the model’s predictions. This sample size is sufficient to 
assess significance across individuals and per gene, based on previous 
eQTL analyses22,23. We also note that no data from the complete initial 
dataset (where both WGS and RNA-seq samples passed quality control) 
were excluded from the analyses. Permutation analysis was used to 
complement the standard FDRBH and Bonferroni-corrected P-values.

Deriving the gene-specific null distribution. Predicted gene expres-
sion for the 839 individuals is a function of SNV genotype for each 
gene and individual. Thus, we can linearly approximate Enformer’s 
predictions for each gene and each individual as the weighted sum 
of the SNVs present in that individual for the given gene18. Therefore, 
to create a null distribution for predictions of gene expression value 
for each individual and each gene, we assigned random attribution 
weights to each SNV present in the given individual. Specifically, we 
sampled random normally distributed weights for every SNV within 
the 196,608-bp window around the TSS and summed them for each 
individual genotype as the random gene-specific predictions. For each 
gene, we generated 50 random predictors from which we derived the 
mean and standard deviation of the absolute Pearson’s correlation to 
the observed expression values. To assign P-values to Enformer’s cor-
relation to observed gene expression, we used a one-sided t-test and 
the Benjamini–Hochberg procedure to target a FDR of 0.05.

Sensitivity analysis. We performed three types of sensitivity analyses 
to ensure our cross-individual prediction results were robust. First, we 
compared the predictions from a single relevant track (CAGE, cortex, 
adult) with the results when we fine-tuned the predictions with the 
elastic net model described above (trained on average gene expres-
sion prediction from all tracks, using data from GTEx) (Extended Data  
Fig. 1a). Second, we performed model ensembling, whereby we aver-
aged model predictions on shifted sub-sequences and reverse and for-
ward strands, but this did not impact the sign of significant correlations 
in ~96% of cases (Extended Data Fig. 1b). Third, we focused the analysis 
on 184 genes with known causal SNVs according to previous eQTL 
analysis16, and again observed that while Enformer can make significant 
predictions, the predicted expression levels were anti-correlated for 80 
(43%) of these genes (Extended Data Fig. 1c and Supplementary Table 1).

Training and testing of a simple CNN
Our simple CNN was trained on genes that were not located within the 
regions of the Enformer’ test set. During training, we used sequences 
of length 40,001 bp from the reference genome centered at the TSS 
as input to the model and predicted mean log gene expression from 
the ROSMAP dataset (dorsolateral prefrontal cortex). The length of 
the input sequence was informed by a recent study17. This CNN has a 
very shallow architecture; it consists of a single convolutional layer 
with 900 kernels of width 10 and rectified linear unit (ReLU) activa-
tion. We applied a single average pooling layer of size 900 bp that 
reduces the input of the network to 44 segments. We then applied a 
single hidden layer of size 200 with ReLU activation before predict-
ing the mean gene expression of the given gene. For training, we used 
mean squared error loss and the Adam optimizer with a learning rate 
of 0.001 and default hyperparameters. Then, for a random set of 
190 individuals, we constructed a maternal and a paternal genomic 
sequence by inserting all the variant alleles within ± 20,000 bp of 
the TSS into the reference sequence. We then made separate predic-
tions for the maternal and paternal sequences and averaged them for 
every individual. We computed the Pearson’s correlation coefficient 
between the predicted and observed expression values for these 190 
individuals and compared the absolute Pearson’s r to the value that we 
would expect from our gene-specific null model for variants within 
± 20,000 bp of the TSS.

Driver variant attribution scores using input-gradient and ISM
To explore the causes for the negative correlation between Enformer 
predictions and the observed gene expression values we applied two 
explainable AI techniques on all genes with a significant correlation 
value (abs(r) > 0.2; Fig. 2a): ISM and gradients9,15,24. Please see the Sup-
plementary Methods for details on the rationale and methodology, 
as well as the procedure for identifying the Enformer ‘driver SNVs’ for 
predictions from WGS data.
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Computing eQTL values and sorting drivers into supported 
and unsupported drivers
We computed eQTL effect sizes for a given SNV as the slope of the linear 
regression solution that predicts gene expression across individuals 
from this SNV genotype, that is, for individuals with two copies of the 
major allele (genotype 0), those with one copy of the major allele (geno-
type 1) and those with two copies of the minor allele (genotype 2). The 
slope of the regression with the genotype of each SNV represents how 
much expression changes with an additional copy of the minor allele. 
Positive or negative slopes determine the direction of the SNV effect 
on gene expression. Based on the eQTL effect size and ISM attribution 
values for each SNV, one can distinguish between supported and unsup-
ported drivers. Supported drivers’ attributions have the same sign as the 
eQTL effect size, whereas unsupported drivers have the opposite sign.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Genotype and RNA-seq data for the Religious Orders Study and Rush 
Memory and Aging Project (ROSMAP) samples are available from the 
Synapse AMP-AD Data Portal (accession code syn2580853) as well 
as the RADC Research Resource Sharing Hub at www.radc.rush.edu.

Code availability
Scripts for running the analyses presented, as well as intermedi-
ate results, are available from https://github.com/mostafavilabuw/
EnformerAssessment (ref. 25).
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Extended Data Fig. 1 | Sensitivity analysis for Enformer Predictions.  
(a) Density plot, where each dot represents a gene (n = 13,397). X-axis shows 
Pearson’s r coefficients for Enformer predictions for the single most relevant 
track (‘CAGE,brain,adult’) and y-axis shows the fine-tuned cortex model from all 
human tracks. Color depicts local density. (b) Pearson’s r coefficients across 839 
individuals between observed expression and the predicted CAGE track from a 
single forward-stranded input sequence centered at the TSS (x-axis) versus the 
average over forward-stranded sequences which were shifted by −3, −2, −1, 0, 1, 
2, 3 bp, and a reverse-stranded input sequence centered at the TSS (y-axis). Data 

shown for a random subset of loci (n = 30). Orange line: diagonal line where x and 
y-axis have the same value. The correlation coefficient between values on x-axis 
and y-axis is R = 0.94 (c) Absolute Pearson’s r coefficients between Enformer 
predictions and observed gene expression for sets of genes with one causal SNP 
and all others. Causal genes determined by the Susie algorithm (‘Susie-Causal’). 
Edges of the box indicate the 25th and 75th percentiles, and the central mark 
indicates the median (N1 = 183 genes fine-mapped with Susie, N2 = 6625 genes 
without fine-mapped variants, two-sided Wilcoxon rank-sum test, for each gene 
R coefficient computed using n = 839 individuals).
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Extended Data Fig. 2 | Performance of the shallow CNN model. (a) Density 
plot of observed population-average expression of test set genes (n = 3,401 
genes) in cerebral cortex versus simple CNN’s predicted gene expression from 
the Reference sequences. This plot only displays genes which could be assigned 
to Enformer’s test set. Colors depict local density. (b) Y-axis shows Pearson’s 

r correlation coefficients between observed expression values and a simple 
CNN’s predicted values per individual. X-axis shows the negative log10 p-value 
computed with a gene-specific Null model (one-sided T-test, n = 50 independent 
samples per gene; Supplementary Method). The color represents the predicted 
mean expression. Red dashed line indicates FDRBH = 0.05.
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